
WFH Series

Aluminum Housed Wirewound Power

_	Power Rating*	Resistance Range	Dim	ension (n	nm)	
Туре	(watts)	(Ω)	A	В	L	
WFH90	90	0.22Ω – 6.8K	70	39.7	53	
WFH160	160	0.47Ω-18K	140	80	123	
WFH230	230	0.82Ω-27K	210	2x 80	193	
WFH330	330	1Ω - 39K	280	2x 100	263	

*at 40°C base plate temperature

DESIGNING

The following equations are applied in the dimensioning of the resistors at stationary load. If more information is required please consult Ohmite. It is assumed that the air around the resistors is stationary (worst case). **See ohmite.com for more examples.**

1. WFH is mounted on a heat sink:

```
A. The thermal resistance RTH of the heat sink is known,
```

```
T = W_{MAX} \times (R_{TH4} + R_{TH})
```

```
Check that:
```

- $T_{MAX} = W_{MAX} x (R_{TH} + R_{TH3} + R_{TH1}) + T_{AMB} < 220^{\circ}C$
- B. The Temperature of the Heat Sink is known,
 - $T = W_{MAX} \times R_{TH4} + T_{H}$
 - Check that:
 - T_{MAX} = W_{MAX} x (R_{TH1} + R_{TH3}) + T_H <220°C

2. WFH is mounted without a heat sink:

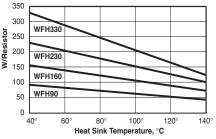
Check that:

 $T_{MAX} = W_{MAX} \times (R_{TH1} + R_{TH2}) + T_{AMB} < 220^{\circ}C$

Where:

34

- W_{MAX} = Maximum reguired load in resistor
- $\begin{array}{rcl} T_{MAX} & = & Maximum \ hot \ spot \ temperature \ reguested \ in \ resistor \ (T_{MAX} \\ & < 220^{\circ}C) \ The \ lower \ T_{MAX} \ the \ higher \ reliability \ and \\ & lifetime. \end{array}$
- R_{TH} = Thermal resistance. Refer to table Thermal resistances
- $T_{\rm H}$ = Heat sink temperature (chassis).
- T = Temperature on top of the Aluminum profile.


Ohmite's new flat core winding technology allows for wirewound heatsinkable resistors affording a very low profile, and superior thermal transfer characteristics when compared to conventional aluminum housed wirewound resistors. Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminum profile.

No heat sink compound is required because of large mounting surface.

F E A T U R E S

- Solder, wire and "Fast-On" Termination
- More resistors in one profile possible
- Custom wire lengths available

POWER DISSIPATION

This graph shows the maximum wattage rating for each possible resistor of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.

THERMAL RESISTANCES

Thermal Resistance (°C/W) between different measuring points

R _{TH1}	WFH90 2	WFH160 1	WFH230 0.75	WFH330 0.5	
R _{TH2}	6.8	3.9	2.75	2	
R _{TH3}	0.1	0.05	0.03	0.02	
R _{TH4}	0.3	0.17	0.1	0.085	1

RTH4 to air RTH4 to air RTH4 to air RTH4 RTH3 wire to aluminum aluminum housing to heat sink

resistor

surface to

ORDERING INFORMATION

 $\frac{WFH}{E} = \frac{160}{100} L \frac{R47}{R47} K E^{-\frac{R0HS}{Compliant}}$

Series	Wattage	Terminal Type	Ohms	J = 5%
	at 40°C	L = lug terminals		K = 10%
	temp.	A = amp terminals W= 30cm insulate		AWG

THIS PRODUCT IS DESIGNED FOR USE WITH PROPER HEATSINKING.

Maximum base plate temperature of the resistor must be monitored and kept within specified limits to establish the power rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor.

STANDARD PART NUMBERS FOR WFH SERIES

WFH90L4R7KE	WFH160LR47KE	WFH160L1K0JE	WFH230L100JE	WFH330L50RJE
WFH90L10RKE	WFH160L1R0KE	WFH160L5K0JE	WFH230L150JE	WFH330L75RJE
WFH90L25RJE	WFH160L2R0KE	WFH160L10KJE	WFH230L250JE	WFH330L100JE
WFH90L50RJE	WFH160L10RKE	WFH230L1R0KE	WFH230L1K0JE	WFH330L150JE
WFH90L100JE	WFH160L27RJE	WFH230L2R0KE	WFH230L1K5JE	WFH330L250JE
WFH90L470JE	WFH160L50RJE	WFH230L5R0KE	WFH230L2K5JE	WFH330L1K0JE
WFH90L750JE	WFH160L75RJE	WFH230L10RKE	WFH330L1R0KE	WFH330L5K0JE
WFH90L1K0JE	WFH160L100JE	WFH230L27RJE	WFH330L2R0KE	WFH330L10KJE
WFH90L2K7JE	WFH160L150JE	WFH230L50RJE	WFH330L10RKE	
WFH90L5K0JE	WFH160L250JE	WFH230L75RJE	WFH330L27RJE	

Ohmite Mfg. Co. 1600 Gott For Folling Meadows, I. 6008-1-66-9-OHMITE Juring 947-58-319-Fax1/847 574 752 www.ohmite.com • info@ohmite.com

SPECIFICATIONS

Power rating: 90W-330W Resistance tolerance: ±5%,

±10% Temperature Coefficients:

Normal: 50ppm - 150ppm Low ohmic values: 400ppm Dielectric strength: 2500 VAC

peak Working voltage: 1200 VAC

Test voltage: 6000 VAC

Lead wire: (wire terminal version only): XLPE, 600V, 125C, 18 AWG stranded

Insulation: Silicone Rubber & Mica. The Silicone is UL-recognised (UL 94 HB) to a working temperature of 220°C. Temperatures of up to 300°C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.