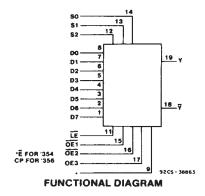


Request For Quotation

Order the parts you need from our real-time inventory database. Simply complete a request for quotation form with your part information and a sales representative will respond to you with price and availability.

Request For Quotation


Your free datasheet starts on the next page.

More datasheets and data books are available from our homepage: http://www.datasheetarchive.com

File Number 1690

High-Speed CMOS Logic

8-Input Multiplexer/Register, 3-State

CD54/74HC/HCT354 — Transparent Data & Select Latches CD54/74HC/HCT356 — Edge-Triggered Data Flip-Flops Transparent Select Latches

Type Features:

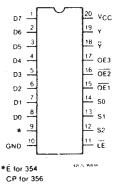
- Buffered inputs
- 3-State Complementary Outputs
- Bus Line Driving Capability
- Typical propagation delay: V_{CC} = 5V, C_L = 15 pF, T_A = 25°C Data to Output (354) = 18 ns Clock to Output (356) = 22 ns

The RCA-CD54/74HC/HCT354 and CD54/74HC/HCT356 are data selectors/multiplexers that select one of eight sources. In both the HC/HCT354 and HC/HCT356 the data select bits S0, S1, and S2 are stored in transparent latches that are enabled by a low latch enable input, LE.

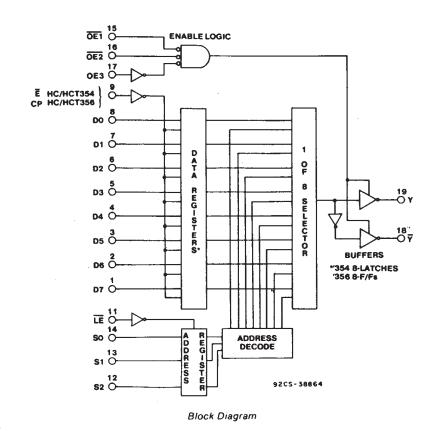
In the HC/HCT354 the data enable input, \overline{E} , controls transparent latches that pass data to the outputs when \overline{E} is high and latches in new data when \overline{E} is low.

In the HC/HCT356 the data is stored in edge-triggered flipflops that are triggered by a low-to-high clock transition.

In both types the three-state outputs are controlled by three output-enable inputs $\overline{\text{OE1}}$, $\overline{\text{OE2}}$, and $\overline{\text{OE3}}$.


The CD54HC/HCT354/356 are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT354/356 are supplied in 20-lead plastic dual-in-line plastic packages (E suffix). The CD54/74HC/HCT354/356 are also supplied in chip form (H suffix). The CD74HC/HCT354/356 are also available in plastic surface mounted packages (M suffix).

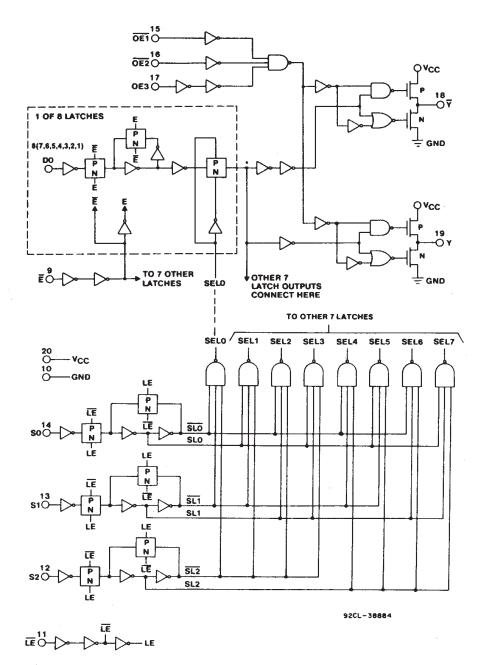
Family Features:


- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noise Immunity:

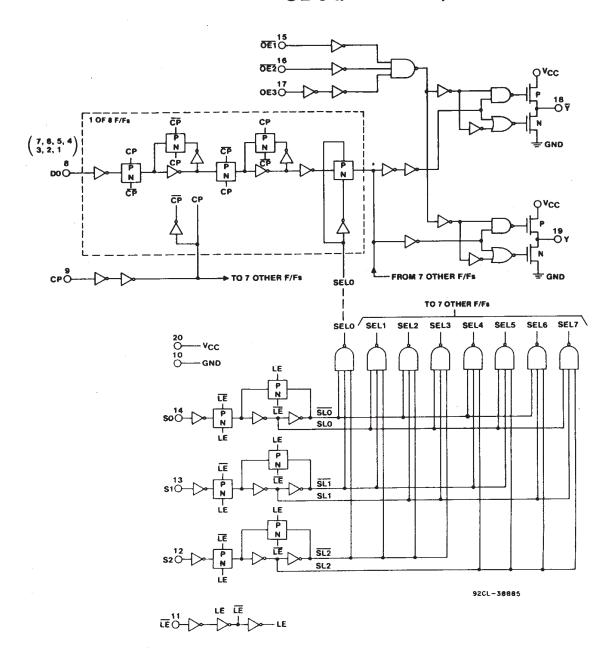
 $N_{\rm HL} = 30\%$, $N_{\rm HH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT



TRUTH TABLE


			Inp	uts					
s	elect	#	Enable Data 'HC354 'HCT354	Clock 'HC356 'HCT356		Dutpu inable		Outp	outs
S2	S1	SO	E	СР	ŌĒ1	ŌE2	OE3	Y	Y
X	Х	Х	Х	Х	Н	Х	Х	Z	Z
X	Х	X	×	×	X	Н	Χ	Z	Z
X	X	Х	×	×	X	Х	L	Z	Z
L	L	L	L		L	L	H	D0	D0
L	L	L	н	HorL	L	L	H	DO _v	DO _n
L	L	Н	L		L	L	Н	D1	D1
L	L	Н	н	HorL	L	. L	H	D1 _n	D1 _n
L	Н	L	L	_~	L	L	Н	D2	D2
L	Н	L	н	HorL	L	L	н	D2 _n	D2 _n
L	Н	Н	L	~	L	L	Н	D3	D3
L	Н	¥!	н	HorL	L	Ł	H	D3,	D3 _n
Н	L	L	L	~	L	L	Н	D4	D4
Н	L	L	н	HorL	L	Ł	Н	D4 _n	D4 _n
н	L	Н	L	~	L	Ł	H	D5	D5
Н	L	Н	н	HorL	L	L	Н	D5 ₀	D5 _n
Н	Н	L	L		L	Ł	Н	D6	D6
н	Н	L	Н	Hort	L	Ļ	Н	D6,	D6,
Н	Н	Н	L		L	L	H	D7	D7
Н	H	H	н	HorL	L	L	Н	D7,	D7

- Notes
 H = high level (steady state)
- L = low level (steady state)

- L = iow level (steady state)
 X = irrelevant (any input, including transitions)
 Z = high-impedance state (off state)
 —= transition from low to high level
 D0 ... D7 = the level of steady-state inputs at inputs D0 through D7 respectively, at the time of the low-to-high clock transition in the case of HC356
- D0_n ... D7_n = the level of steady state inputs D0 through D7, respectively, before the most recent low-to-high transition of data control
- # This column shows the input address setup with LE low

HC/HCT354 Logic Diagram

HC/HCT356 Logic Diagram

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc)	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_{\rm i} < -0.5$ V OR $V_{\rm i} > 0.5$ V $+V_{CC}$)	±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Voc + 0.5V)	
DC V _{cc} OR GROUND CURRENT (I _{cc})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	•
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (Ta):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstq)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIA	AITS	LIMITO
	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range)			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times t, t			
at 2 V	0	1000	
at 4.5 V	l ŏ	500	ns
at 6 V	Ŏ	400	"

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74	HC35	4/356/	CD54	HC35	4/356	5			C	D74H	CT35	t/356/	/CD54	нст	354/3	56		
		TEST IDITIONS	. • :	F	IC/54 TYPE		741 TY	HC PE	541 TY		TEST		74HCT/54HCT TYPE			74HCT TYPE		54HCT TYPE		
CHARACTERISTIC	٧,	l _o	Vcc		25° C	:	-4 +85	0/ i°C	-5 +12		٧, ٧	V _{cc}		25° C			0/ 5°C	-5 +12	5/ 5°C	UNITS
	v	mA.	٧	Min	Тур	Max	Min	Max	Min	Max	ľ	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		-	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	-	3.15	_	-	to	2	_	_	2	_	2	_	v
			6	4.2	_	-	4.2	_	4.2	_	1	5.5								
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	-	1.35	1 –	to	_	-	0.8	_	0.8	_	0.8	v
			6	_	_	1.8	_	1.8	-	1.8		5.5								
High-Level	V _{IL}	,	2	1.9		-	1.9	-	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4		-	4.4	_	4.4		or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads	Viii		6	5.9		-	5.9	_	5.9	-	V _{iii}									
	VıL										V _n									
TTL Loads	or	-6	4.5	3.98	_	-	3.84		3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	v
(Bus Driver)	V _{set}	-7.8	6	5.48	_	-	5.34		5.2	_	V									
Low-Level	VıL		2	_	_	0.1	_	0.1	-	0.1	٧ď									
Output Voltage Vol.	or	0.02	4.5			0.1	_	0.1	-	0.1	or	4.5	-	-	0.1	_	0.1		0.1	v
CMOS Loads	V#4		6	-	_	0.1		0.1		0.1	V _{iii}					<u> </u>				
	Vı										V _I ,									
TTL Loads	or	6	4.5	-	-	0.26	-	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
(Bus Driver)	V _{tie}	7.8	6		-	0.26	_	0.33	-	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I	or		6	-	-	±0.1	_	±1	_	±1	Voltage Between	5.5	-		±0.1	-	±1		±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	_	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd				<u>L</u> .					
Additional Quiescent Device Current per input pin: 1 unit load		•	•	·	•	•			•		V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450		490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o = V _{CC} or Gnd	6	-	-	±0.5	_	±5.0	-	±10	V _{IL} Of V _{IH}	5.5	-	-	<u>+</u> 0.5		±5.0		±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V_c V_{cc} = 5.5 V) specification is 1.8 mA.

HCT354 Input Loading Table

Input	Unit Loads*
D0-D7	0.50
S0, S1, S3	0.70
OE1, OE2	0.80
OE3	0.25
Œ	0.25
Ē	0.60

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

HCT356 Input Loading Table

Input	Unit Loads*
D0-D7	0.50
S0, S1, S3	0.70
ŌĒ1, ŌĒ2	0.80
OE3	0.25
<u>LE</u>	0.25
СР	0.60

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, input t, t, = 6 ns) - HC/HCT354

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS
OTANACTEMISTIC	(pF)	SIMBOL	54/74HC	54/74HCT	OMITS
Propagation Delay Dn → Y, ▼	15	t _{PLH} , t _{PHL}	18	20	ns
Ē →Y, Ÿ	15	t _{PLH} , t _{PHL}	21	23	ns
Sn→ Y, Ÿ	15	t _{PLH} , t _{PHL}	22	25	ns
LE →Y, Ÿ	15	t _{PLH} , t _{PHL}	24	25	ns
Output Disabling Time	15	t _{PLZ} , t _{PHZ}	13	13, 16	ns
Output Enabling Time	. 15	tezl, tezh	12, 13	14	ns
Power Dissipation Capacitance*	_	C _{PD}	90	92	рF

^{*}CPD is used to determine the dynamic power consumption, per device.

PREREQUISITE FOR SWITCHING FUNCTION — HC/HCT354

				25	°C		-4	10°C te	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	H	CT	74	НС	74F	1CT	54	HC	54F	(CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
E pulse width		2	80	l –	_	_	100	-	_	<u> </u>	120		_	—	
	t _{PLH}	4.5	16		16	_	20	_	20		24	-	24	_	ns
	t _{PHL}	6	14	_	<u> </u>		17	_	_	_	20				
LE pulse width		2	80	_	-	_	100			_	120	_	-	<u> </u>	
	t _{PLH}	4.5	16	-	16		20	-	20	—	24	—	24	—	ns
	t _{PHL}	6	14			_	17			_	20				
Set Up Times		2	50	-	_		65	_	_	-	75			_	
Dn → Ē	tsu	4.5	10	-	10	-	13	-	13	<u> </u>	15	-	15	—	ns
		6	9			<u> </u>	11	-	—	_	13			_	
	·	2	50	 -		-	65		_	_	75	_	_	_	
Sn → LE	tsu	4.5	10	—	10	_	13	_	13	—	15	_	15	-	ns
		6	9			_	11				13			_	
Hold Times		2	45	-	_		55	_	_	_	70	_			
$Dn \rightarrow \overline{E}$	tн	4.5	9	-	9	—	11	_	11	-	14		14		ns
		6	8				9		_	<u> </u>	12		<u> </u>		
		2	45		_		55	_	-	_	70	_	_	_	
Sn → LE	ŧн	4.5	9	—	9	—	11		11.		14	-	14	_	ns
		6	8	<u> </u>	_		9	_	_	_	12	-	_	-	

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

f_i = input frequency,

C_L = output load capacitance.

V_{cc} = supply voltage

大調和連合のことに対

SWITCHING CHARACTERISTICS (CL = 50 pF, Input tr, tr = 6 ns) — HC/HCT354

		•		25	°C		-4	0°C to	+85°	C	-55	°C to	+125		
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	T	741	1C	74H	CT	541	1C	54H		UNITS
	1		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	<u> </u>	210	-		_	265	_	_		315	_	_	
Dn → Y, \overline{Y}	tpHL	4.5	_	42		47	_	53	-	59	-	63	-	71	ns
		6	_	36	_			45		_		54			
		2		250	_	_	_	315	-	–	 	375	-	—	
Ē→Y, Ÿ	t _{PLH}	4.5	_	50		54	l —	63	-	68		75	—	81	ns
_ ·	t _{PHL}	6	_	43				54	_			64			
		2	T —	260	_		-	325		-		390		-	
$Sn \rightarrow Y, \overline{Y}$	t _{PLH}	4.5	-	52	—	59		65	-	74	-	78	-	89	ns
,	tpHL	6		44				55				66			ļ
		2	_	290	_	_	-	365	-	_	-	435	-		
LE → Y, ₹	t _{PLH}	4.5	-	58	-	63	-	73		79	-	87	-	94	ns
	tpHL	6	-	49	<u> </u>	<u> </u>	<u> </u>	62			<u></u>	74			
Output Disabling		2	T-	155	-	-	<u> </u>	195	-	-	-	235	-	-	
Time	1	4.5	-	31	—	33	-	39	-	41	-	47	-	50	1
ŌĒn to Y, Y	telz	6		26			<u> </u>	33_	_			40			ns
	tenz	2	_	155	Γ-	T —	-	195	-	-		235	-	-	
OE3 to Y, \overline{Y}		4.5	-	31	-	39	-	39	-	49	-	47	-	59	
0 -0 10 1,		6		26				33		-		40	<u> </u>		Ļ
Output Enabling		2	-	150		T	-	190	-	-	-	225		-	
Time		4.5	-	30	-	34	_	38	-	43	-	45	-	51	
ŌĒn to Y, Ÿ	tezu	6	_	26	_			33				38		=	ns
	t _{PZH}	2	1-	160	-	_	-	200	-	-	-	240		-	
OE3 to Y, Y	PZH	4.5		32	_	34	-	40	-	43	-	48	-	51	
		6	-	27	-			34	<u> </u>			41	↓-	<u> </u>	· -
		2	T -	60	Τ-	T —		75	-	-	-	90	-	-	
Output	t _{TLH}	4.5	_	12	_	12	-	15	-	15	-	18	-	18	ns
Transition Time	t _{THL}	6	-	10	<u> </u>			13	<u> </u>	<u> </u>	 -	15	<u> </u>	↓ -	<u> </u>
Input				T						1.0		1.0		10	pF
Capacitance	C,		-	10	-	10	-	10	-	10	_	10		10	pr.
3-state			1							20		20		20	pF
Output	Co		-	20		20	-	20		20	-	20	-	20	l br
Capacitance					1			1						1	1

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_r = 6 ns) — HC/HCT356

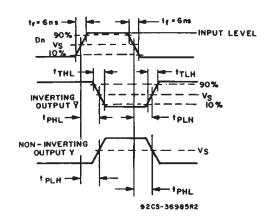
	CL	CYMBOL	TYP	ICAL	UNITS
CHARACTERISTIC	(pF)	SYMBOL	54/74HC	54/74HCT	
Propagation Delay $CP \rightarrow Y, \overline{Y}$	15	t _{PLH} , t _{PHL}	22	22	ns
Sn→Y, ♥	15	t _{PLH} , t _{PHL}	22	25	ns
LE →Y. Ÿ	15	t _{PLH} , t _{PHL}	24	25	ns
Output Disabling Time	15	tplz, tpHZ	13	13, 15	ns
Output Enabling Time	15	t _{PZL} , t _{PZH}	12, 13	14	ns
Power Dissipation Capacitance*		CPD	51	52	pF

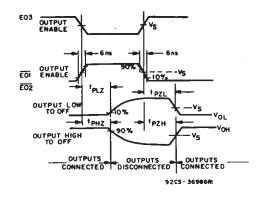
*CPD is used to determine the dynamic power consumption, per device

 $P_D = V_{CC}^2 f_i(C_{PD} + C_L)$ where:

f, = input frequency.

C_L = output load capacitance.


Vcc = supply voltage.


PREREQUISITE FOR SWITCHING FUNCTION — HC/HCT356

			1.	25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	CT.	74	нС	74t	1CT	54	HC	54H	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
CP Pulse Width		2	80	_	_	_	100	_		_	120		_	T-	
	t _{PLH}	4.5	16	-	20		20	_	25	_	24	_	30	_	ns
	t _{PHL}	6	14			_	17		-	_	20	_]
LE Pulse Width		2	80	_	<u> </u>		100	_	_	_	120	 	_	1 —	
	t _{PLH}	4.5	16	-	20	_	20	_	25		24		30	_	ns
	t _{PHL}	6	14	_			17	_	_	_	20		_	_	
Set Up Times		2	5	-	_		5	_	_		5	<u> </u>		_	
Dn → CP	t _{su}	4.5	5		7	_	5	_	9	l —	5	_	11	_	ns
		6	5	<u> </u>	_		5	_		_	5	-	_	_	
		2	5	_	_	_	5	<u> </u>	_	_	5		-	_	
Sn → LĒ	t _{su}	4.5	5	_ [7	<u> </u>	5	_	9	_	5	_	11	-	ns
<u> </u>		6	5	-		_	5	-		_	5	-	l —		
Hold Times		2	45	_	_		55			_	70	_	_	_	
Dn → CP	t _n	4.5	9	-	9	_	-11		11	_	14	_	14		ns
		6	8		_	_	9	_	_		12	_			
		2	60	-	_		75		_	_	90	_			
Sn → LE	th	4.5	12	-	12		15	- 1	15	_	18	_	18	_	ns
		6	10		_		13	_		_	15	-			

SWITCHING CHARACTERISTICS (CL - 50 pF, Input t, t = 6 ns) - HC/HCT356

•				25	°C		-4	l0°C t	o +85°	,C	-5	5°C to	°C				
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	Н	СТ	74	HC	741	1CT	54	HC	54F	1CT	UNITS		
 			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.			
Propagation Delay:	tern	2	_	255	_	_	-	320		T —		385	 -	Ι – Τ			
CP →Y, \overline{Y}	1	4.5	-	51	_	51	l —	64	_	64	-	77	-	77	ns		
	t _{PHL}	6		43			_	54	_	_	_	65	l –	—			
	t _{PLH}	2	-	260	-		_	325	-	-	-	390	_	-			
$Sn \rightarrow Y, \overline{Y}$		4.5	-	52		59	—	65	—	74	_	78	_	89	ns		
	t _{PHL}	6	-	44	_	_	_	55	-	_	-	66	_	—			
		2	-	290	_	_	_	365	-	_		435	T — .	_			
LE →Y, Υ	t _{PĻH}	4.5	-	58		63	_	73	_	79	-	87		94	ns		
	t _{PHL}	6	1 –	49			_	62	_	_	_	74		-			
Output Disabling			_	155	-		_	195	<u> </u>	T —	_	235	-				
Time		2	-	31	—	33		39		41	_	47		50			
\overline{OE} 1, \overline{OE} 2 to Y, \overline{Y} $OE3$ to Y, \overline{Y}	t _{PLZ}	4.5		26	-	_	_	33	—	_	_	40	_] — ;			
	t _{PHZ}	6	_	155	_			195	—		_	235		_	ns		
		0	_	31	_	37	_	39	—	46	_	47	_	56			
			_	26			l —	33	_	_		40	_				
Output Enabling			T —	150	_	-		190	_			225	<u> </u>				
Time		0	2	2	_	30	_	34	_	38	_	43	_	45	_	51	
OE1, OE2 to Y, Y	t _{PZL}		_	26	_	-	_	33	-	_	_	38	—				
OE3 to Y, Y	t _{ezh}	4.5	_	160	_	<u> </u>		200	_	1 —	_	240	_	<u> </u>	ns		
		6	_	32	_	34		40	_	43	_	48	_	51			
			-	27	_	_	_	34	_	_		41	_	_			
Output	tTLH	2	l –	60		_	_	75	_	-	_	90	_	_			
Transition Time	trec	4.5	-	12	_	12	_	15	—	15	_	18	—	18	ns		
	THL	6		10				13			<u> </u>	15					
Input																	
Capacitance	C,		ļ	10		10	_	10		10		10		10	pF		
3-state																	
Output	Co		-	20	-	20	_	20	_	20		20	_	20	pF		
Capacitance																	

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Vs	50% V _{CC}	1.3 V

Fig. 1 — Transition times and propagation delay times.

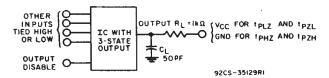


Fig. 2 — Three-state propagation delay test circuit.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated