Features

- Single Voltage Operation Read/Write: 2.65V 3.6V
- Access Time 70 ns
- Sector Erase Architecture
 - One Hundred Twenty-seven 32K Word (64K Bytes) Main Sectors with Individual Write Lockout
 - Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout
- Fast Word Program Time 10 μs
- Typical Sector Erase Time: 32K Word Sectors 700 ms; 4K Word Sectors 100 ms
- Suspend/Resume Feature for Erase and Program
 - Supports Reading and Programming Data from Any Sector by Suspending Erase of a Different Sector
 - Supports Reading Any Word by Suspending Programming of Any Other Word
- Low-power Operation
 - 10 mA Active
 - 15 µA Standby
- VPP Pin for Write Protection and Accelerated Program Operation
- WP Pin for Sector Protection
- RESET Input for Device Initialization
- Flexible Sector Protection
- Top or Bottom Boot Block Configuration Available
- 128-bit Protection Register
- Minimum 100,000 Erase Cycles
- Common Flash Interface (CFI)
- · Green (Pb/Halide-free/RoHS Compliant) Packaging

1. Description

The AT49BV640D(T) is a 2.7-volt 64-megabit Flash memory organized as 4,194,304 words of 16 bits each. The memory is divided into 135 sectors for erase operations. The device is offered in a 48-ball CBGA package. The device has $\overline{\text{CE}}$ and $\overline{\text{OE}}$ control signals to avoid any bus contention. This device can be read or reprogrammed using a single power supply, making it ideally suited for in-system programming.

The device powers on in the read mode. Command sequences are used to place the device in other operation modes such as program and erase. The device has the capability to protect the data in any sector (see "Flexible Sector Protection" on page 6).

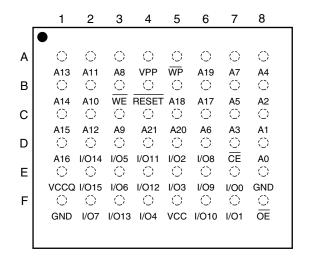
To increase the flexibility of the device, it contains an Erase Suspend and Program Suspend feature. This feature will put the erase or program on hold for any amount of time and let the user read data from or program data to any of the remaining sectors within the memory.

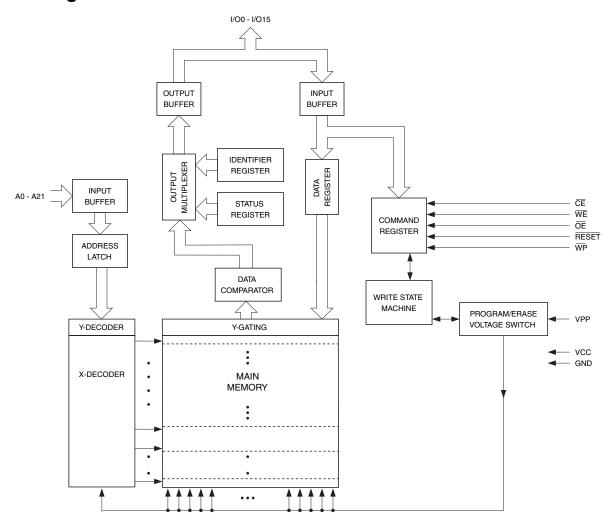
The VPP pin provides data protection. When the V_{PP} input is below 0.4V, the program and erase functions are inhibited. When V_{PP} is at 1.65V or above, normal program and erase operations can be performed. With V_{PP} at 10.0V, the program (Dual-word Program command) operation is accelerated.

64-megabit (4M x 16) 3-volt Only Flash Memory

AT49BV640DT

3608C-FLASH-11/06




2. Pin Configurations

Pin Name	Pin Function
A0 - A21	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RESET	Reset
VPP	Write Protection and Power Supply for Accelerated Program Operations
I/O0 - I/O15	Data Inputs/Outputs
NC	No Connect
VCCQ	Output Power Supply
WP	Write Protect

2.1 48-ball CBGA - Top View

3. Block Diagram

4. Device Operation

4.1 Command Sequences

When the device is first powered on, it will be in the read mode. Command sequences are used to place the device in other operating modes such as program and erase. The command sequences are written by applying a low pulse on the \overline{WE} input with \overline{CE} low and \overline{OE} high or by applying a low-going pulse on the \overline{CE} input with \overline{WE} low and \overline{OE} high. The address is latched on the first rising edge of the \overline{WE} or \overline{CE} . Valid data is latched on the rising edge of the \overline{WE} or the \overline{CE} pulse, whichever occurs first. The addresses used in the command sequences are not affected by entering the command sequences.

4.2 Read

The AT49BV640D(T) is accessed like an EPROM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and $\overline{\text{WE}}$ is high, the data stored at the memory location determined by the address pins are asserted on the outputs. The outputs are put in the high impedance state whenever $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual-line control gives designers flexibility in preventing bus contention.

4.3 Reset

A $\overline{\text{RESET}}$ input pin is provided to ease some system applications. When $\overline{\text{RESET}}$ is at a logic high level, the device is in its standard operating mode. A low level on the $\overline{\text{RESET}}$ pin halts the present device operation and puts the outputs of the device in a high-impedance state. When a high level is reasserted on the $\overline{\text{RESET}}$ pin, the device returns to read mode.

4.4 Erase

Before a word can be reprogrammed it must be erased. The erased state of the memory bits is a logical "1". The individual sectors can be erased by using the Sector Erase command.

4.4.1 Sector Erase

The device is organized into 135 sectors (SA0 - SA134) that can be individually erased. The Sector Erase command is a two-bus cycle operation. The sector address and the D0H Data Input command are latched on the rising edge of $\overline{\text{WE}}$. The sector erase starts after the rising edge of $\overline{\text{WE}}$ of the second cycle provided the given sector has not been protected. The erase operation is internally controlled; it will automatically time to completion. The maximum time to erase a sector is t_{SEC} . An attempt to erase a sector that has been protected will result in the operation terminating immediately.

4.5 Word Programming

Once a memory sector is erased, it is programmed (to a logical "0") on a word-by-word basis. Programming is accomplished via the Internal Device command register and is a two-bus cycle operation. The device will automatically generate the required internal program pulses.

Any commands except Read Status Register, Program Suspend and Program Resume written to the chip during the embedded programming cycle will be ignored. If a hardware reset happens during programming, the data at the location being programmed will be corrupted. Please note that a data "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s. Programming is completed after the specified t_{BP} cycle time. If the program status bit is a "1", the device was not able to verify that the program operation was performed successfully. The status register indicates the programming status. While the program sequence executes, status bit I/O7 is "0".

4.6 VPP Pin

The circuitry of the AT49BV640D(T) is designed so that the device cannot be programmed or erased if the V_{PP} voltage is less that 0.4V. When V_{PP} is at 1.65V or above, normal program and erase operations can be performed. The VPP pin cannot be left floating.

4.7 Read Status Register

The status register indicates the status of device operations and the success/failure of that operation. The Read Status Register command causes subsequent reads to output data from the status register until another command is issued. To return to reading from the memory, issue a Read command.

The status register bits are output on I/O7 - I/O0. The upper byte, I/O15 - I/O8, outputs 00H when a Read Status Register command is issued.

The contents of the status register [SR7:SR0] are latched on the falling edge of $\overline{\text{OE}}$ or $\overline{\text{CE}}$ (whichever occurs last), which prevents possible bus errors that might occur if status register contents change while being read. $\overline{\text{CE}}$ or $\overline{\text{OE}}$ must be toggled with each subsequent status read, or the status register will not indicate completion of a Program or Erase operation.

When the Write State Machine (WSM) is active, SR7 will indicate the status of the WSM; the remaining bits in the status register indicate whether the WSM was successful in performing the preferred operation (see Table 4-1).

Table 4-1. Status Register Bit Definition

WSMS	ESS	ES	PRS	VPPS	PSS	SLS	R
7	6	5	4	3	2	1	0
	1	1			No	tes	
SR7 WRITE ST 1 = Ready 0 = Busy	•					rst to determine \ ore checking prog	
1 = Erase Susp	SR6 = ERASE SUSPEND STATUS (ESS) 1 = Erase Suspended 0 = Erase In Progress/Completed			both WSMS and		WSM halts exect - ESS bit remains	
1 = Error in Sec	SR5 = ERASE STATUS (ES) 1 = Error in Sector Erase 0 = Successful Sector Erase					has applied the n still unable to ve	
1 = Error in Pro	SR4 = PROGRAM STATUS (PRS) 1 = Error in Programming 0 = Successful Programming			When this bit is program a word		has attempted bu	ut failed to
	SR3 = VPP STATUS (VPPS) 1 = VPP Low Detect, Operation Abort 0 = VPP OK			level. The WSM Erase command system if V _{PP} has	l interrogates V _{PF} d sequences hav	de continuous ind level only after the been entered a hed on. The V _{PP} y the WSM.	he Program or and informs the
1 = Program Su	SR2 = PROGRAM SUSPEND STATUS (PSS) 1 = Program Suspended 0 = Program in Progress/Completed		sets both WSM		ed, WSM halts ex o "1". PSS bit rem nd is issued.		
1 = Prog/Erase	SR1 = SECTOR LOCK STATUS (SLS) 1 = Prog/Erase attempted on a locked sector; Operation aborted. 0 = No operation to locked sectors		sectors, this bit	is set by the WS	is attempted to or M. The operation ed to read status	specified is	
SR0 = Reserve	SR0 = Reserved for Future Enhancements (R)			ved for future use e status register.	and should be n	nasked out	

Note: 1. A Command Sequence Error is indicated when SR1, SR3, SR4 and SR5 are set.

4.8 Clear Status Register

The WSM can set status register bits 1 through 7 and can clear bits 2, 6 and 7; but, the WSM cannot clear status register bits 1, 3, 4 or 5. Because bits 1, 3, 4 and 5 indicate various error conditions, these bits can be cleared only through the Clear Status Register command. By allowing the system software to control the resetting of these bits, several operations may be performed (such as cumulatively programming several addresses or erasing multiple sectors in sequence) before reading the status register to determine if an error occurred during those operations. The status register should be cleared before beginning another operation. The Read command must be issued before data can be read from the memory array. The status register can also be cleared by resetting the device.

4.9 Flexible Sector Protection

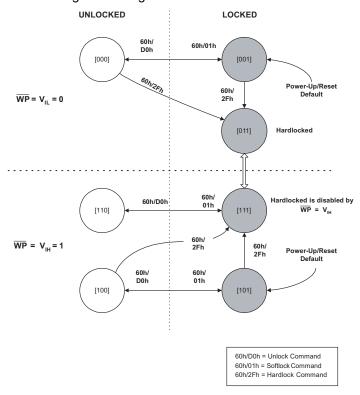
The AT49BV640D(T) offers two sector protection modes, the Softlock and the Hardlock. The Softlock mode is optimized as sector protection for sectors whose content changes frequently. The Hardlock protection mode is recommended for sectors whose content changes infrequently. Once either of these two modes is enabled, the contents of the selected sector is read-only and cannot be erased or programmed. Each sector can be independently programmed for either the Softlock or Hardlock sector protection mode. At power-up and reset, all sectors have their Softlock protection mode enabled.

4.9.1 Softlock and Unlock

The Softlock protection mode can be disabled by issuing a two-bus cycle Unlock command to the selected sector. Once a sector is unlocked, its contents can be erased or programmed. To enable the Softlock protection mode, a two-bus cycle Softlock command must be issued to the selected sector.

4.9.2 Hardlock and Write Protect (WP)

The Hardlock sector protection mode operates in conjunction with the Write Protection ($\overline{\text{WP}}$) pin. The Hardlock sector protection mode can be enabled by issuing a two-bus cycle Hardlock software command to the selected sector. The state of the Write Protect pin affects whether the Hardlock protection mode can be overridden.


- When the $\overline{\text{WP}}$ pin is low and the Hardlock protection mode is enabled, the sector cannot be unlocked and the contents of the sector is read-only.
- When the WP pin is high, the Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command.

To disable the Hardlock sector protection mode, the chip must be either reset or power cycled.

Table 4-2. Hardlock and Softlock Protection Configurations in Conjunction with WP

V _{PP}	WP	Hard- lock	Soft- lock	Erase/ Prog Allowed?	Comments
V _{CC} /5V	0	0	0	Yes	No sector is locked
V _{CC} /5V	0	0	1	No	Sector is Softlocked. The Unlock command can unlock the sector.
V _{CC} /5V	0	1	1	No	Hardlock protection mode is enabled. The sector cannot be unlocked.
V _{CC} /5V	1	0	0	Yes	No sector is locked.
V _{CC} /5V	1	0	1	No	Sector is Softlocked. The Unlock command can unlock the sector.
V _{CC} /5V	1	1	0	Yes	Hardlock protection mode is overridden and the sector is not locked.
V _{CC} /5V	1	1	1	No	Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command.
V _{IL}	х	х	х	No	Erase and Program Operations cannot be performed.

Figure 4-1. Sector Locking State Diagram

Note: 1. The notation [X, Y, Z] denotes the locking state of a sector. The current locking state of a sector is defined by the state of WP and the two bits of the sector-lock status D[1:0].

4.9.3 Sector Protection Detection

A software method is available to determine if the sector protection Softlock or Hardlock features are enabled. When the device is in the software product identification mode a read from the I/O0 and I/O1 at address location 00002H within a sector will show if the sector is unlocked, softlocked, or hardlocked.

Table 4-3. Sector Protection Status

I/O1	1/00	Sector Protection Status
0	0	Sector Not Locked
0	1	Softlock Enabled
1	0	Hardlock Enabled
1	1	Both Hardlock and Softlock Enabled

4.10 Erase Suspend/Erase Resume

The Erase Suspend command allows the system to interrupt a sector erase operation and then program or read data from a different sector within the memory. After the Erase Suspend command is given, the device requires a maximum time of 15 µs to suspend the erase operation. After the erase operation has been suspended, the system can then read data or program data to any other sector within the device. An address is not required during the Erase Suspend command. During a sector erase suspend, another sector cannot be erased. To resume the sector erase operation, the system must write the Erase Resume command. The Erase Resume command is a one-bus cycle command. The only valid commands while erase is suspended are Read Status Register, Product ID Entry, CFI Query, Program, Program Resume, Erase Resume, Sector Softlock/Hardlock, and Sector Unlock.

4.11 Program Suspend/Program Resume

The Program Suspend command allows the system to interrupt a programming operation and then read data from a different word within the memory. After the Program Suspend command is given, the device requires a maximum of 10 µs to suspend the programming operation. After the programming operation has been suspended, the system can then read from any other word within the device. An address is not required during the program suspend operation. To resume the programming operation, the system must write the Program Resume command. The program suspend and resume are one-bus cycle commands. The command sequence for the erase suspend and program suspend are the same, and the command sequence for the erase resume and program resume are the same. Read, Read Status Register, Product ID Entry, Program Resume are valid commands during a Program Suspend.

4.12 Product Identification

The product identification mode identifies the device and manufacturer as Atmel[®]. It may be accessed by a software operation. For details, see "Operating Modes" on page 21.

4.13 128-bit Protection Register

The AT49BV640D(T) contains a 128-bit register that can be used for security purposes in system design. The protection register is divided into two 64-bit blocks. The two blocks are designated as block A and block B. The data in block A is non-changeable and is programmed at the factory with a unique number. The data in block B is programmed by the user and can be locked out such that data in the sector cannot be reprogrammed. To program block B in the protection register, the two-bus cycle Program Protection Register command must be used as shown in the "Command Definition Table" on page 15. To lock out block B, the two-bus cycle Lock Protection Register command must be used as shown in the "Command Definition Table". Data bit D1 must be zero during the second bus cycle. To determine whether block B is locked out, use the status of block B protection command. If data bit D1 is zero, block B is locked. If data bit D1 is one, block B can be reprogrammed. Please see the "Protection Register Addressing Table" on page 16 for the address locations in the protection register. To read the protection register, the Product ID Entry command is given followed by a normal read operation from an address within the protection register. After determining whether block B is protected or not, or reading the protection register, the Read command must be given to return to the read mode.

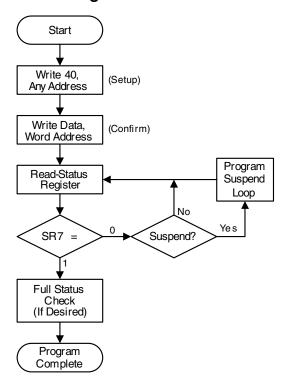
4.14 Common Flash Interface (CFI)

CFI is a published, standardized data structure that may be read from a flash device. CFI allows system software to query the installed device to determine the configurations, various electrical and timing parameters, and functions supported by the device. CFI is used to allow the system to learn how to interface to the flash device most optimally. The two primary benefits of using CFI are ease of upgrading and second source availability. The command to enter the CFI Query mode is a one-bus cycle command which requires writing data 98h to any address. The CFI Query command can be written when the device is ready to read data or can also be written when the part is in the product ID mode. Once in the CFI Query mode, the system can read CFI data at the addresses given in "Common Flash Interface Definition Table" on page 26. To return to the read mode, the read command should be issued.

4.15 Hardware Data Protection

Hardware features protect against inadvertent programs to the AT49BV640D(T) in the following ways: (a) V_{CC} sense: if V_{CC} is below 1.8V (typical), the device is reset and the program and erase functions are inhibited. (b) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (c) Program inhibit: V_{PP} is less than $V_{II,PP}$.

4.16 Input Levels

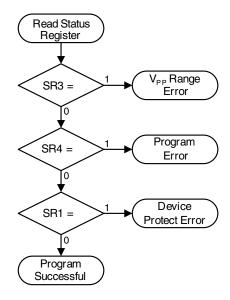

While operating with a 2.65V to 3.6V power supply, the address inputs and control inputs $(\overline{OE}, \overline{CE})$ and \overline{WE} may be driven from 0 to 5.5V without adversely affecting the operation of the device. The I/O lines can be driven from 0 to V_{CCO} + 0.6V.

4.17 Output Levels

For the AT49BV640D(T), output high levels are equal to V_{CCQ} - 0.1V (not V_{CC}). For 2.65V to 3.6V output levels, V_{CCQ} must be tied to V_{CC} .

4.18 Word Program Flowchart

4.19 Word Program Procedure

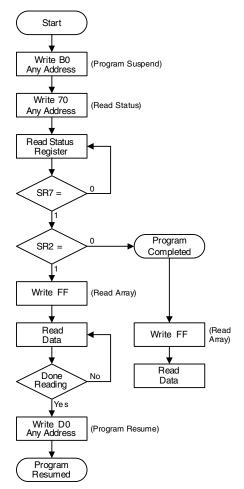

Bus Operation	Command	Comments
Write	Program Setup	Data = 40 Addr = Any Address
Write	Data	Data = Data to program Addr = Location to program
Read	None	Status register data: Toggle CE or OE to update status register
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy

Repeat for subsequent Word Program operations.

Full status register check can be done after each program, or after a sequence of program operations.

Write FF after the last operation to set to the Read state.

4.20 Full Status Check Flowchart

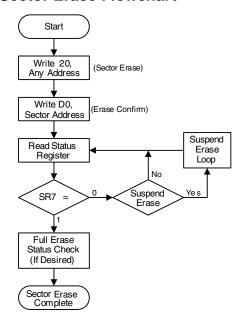

4.21 Full Status Check Procedure

Bus Operation	Command	Comments
Idle	None	Check SR3: 1 = V _{PP} Error
Idle	None	Check SR4: 1 = Data Program Error
Idle	None	Check SR1: 1 = Sector locked; operation aborted

SR3 MUST be cleared before the Write State Machine allows further program attempts.

If an error is detected, clear the status register before continuing operations – only the Clear Status Register command clears the status register error bits.

4.22 Program Suspend/Resume Flowchart

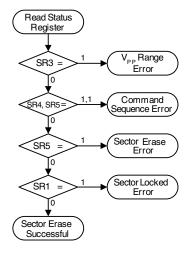


4.23 Program Suspend/Resume Procedure

4.23 Program Suspend/Nesume Procedure			
Bus Operation	Command	Comments	
Write	Program Suspend	Data = B0 Addr = Any address	
Write	Read Status	Data = 70 Addr = Any address	
Read	None	Status register data: Toggle CE or OE to update status register Addr = Any address	
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy	
Idle	None	Check SR2 1 = Program suspended 0 = Program completed	
Write	Read Array	Data = FF Addr = Any address	
Read	None	Read data from any word in the memory	
Write	Program Resume	Data = D0 Addr = Any address	

4.24 Sector Erase Flowchart

4.25 Sector Erase Procedure


Bus Operation	Command	Comments
Write	Sector Erase Setup	Data = 20 Addr = Any Address
Write	Erase Confirm	Data = D0 Addr = Sector to be erased (SA)
Read	None	Status register data: Toggle CE or OE to update status register data
Idle	None	Check SR7 1 = WSMS Ready 0 = WSMS Busy

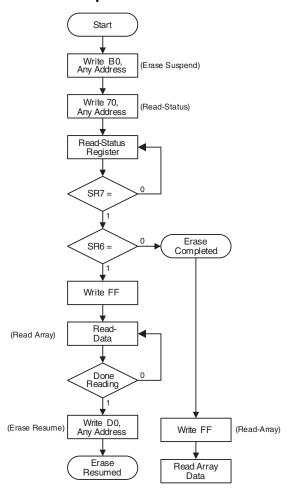
Repeat for subsequent sector erasures.

Full status register check can be done after each sector erase, or after a sequence of sector erasures.

Write FF after the last operation to enter read mode.

4.26 Full Erase Status Check Flowchart

4.27 Full Erase Status Check Procedure

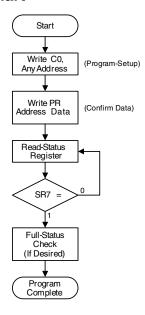

Bus Operation	Command	Comments
Idle	None	Check SR3: 1 = V _{PP} Range Error
Idle	None	Check SR4, SR5: Both 1 = Command Sequence Error
Idle	None	Check SR5: 1 = Sector Erase Error
ldle	None	Check SR1: 1 = Attempted erase of locked sector; erase aborted.

SR1, SR3 must be cleared before the Write State Machine allows further erase attempts.

Only the Clear Status Register command clears SR1, SR3, SR4, SR5.

If an error is detected, clear the status register before attempting an erase retry or other error recovery.

4.28 Erase Suspend/Resume Flowchart



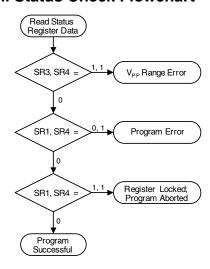
4.29 Erase Suspend/Resume Procedure

4.23 Erase oaspena/riesame r roceaure			
Bus Operation	Command	Comments	
Write	Erase Suspend	Data = B0 Addr = Any address	
Write	Read Status	Data = 70 Addr = Any address	
Read	None	Status register data: Toggle \overline{CE} or \overline{OE} to update status register Addr = Any address	
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy	
Idle	None	Check SR6 1 = Erase suspended 0 = Erase completed	
Write	Read or Program	Data = FF or 40 Addr = Any address	
Read or Write	None	Read or program data from/to sector other than the one being erased	
Write	Program Resume	Data = D0 Addr = Any address	

4.30 Protection Register Programming Flowchart

4.31 Protection Register Programming Procedure

Bus Operation	Command	Comments
Write	Program PR Setup	Data = C0 Addr = Any Address
Write	Protection Program	Data = Data to Program Addr = Location to Program
Read	None	Status register data: Toggle CE or OE to update status register data
Idle	None	Check SR7 1 = WSMS Ready 0 = WSMS Busy


Program Protection Register operation addresses must be within the protection register address space. Addresses outside this space will return an error.

Repeat for subsequent programming operations.

Full status register check can be done after each program, or after a sequence of program operations.

Write FF after the last operation to return to the Read mode.

4.32 Full Status Check Flowchart

4.33 Full Status Check Procedure

Bus Operation	Command	Comments
Idle	None	Check SR1, SR3, SR4: 0,1,1 = V _{PP} Range Error
Idle	None	Check SR1, SR3, SR4: 0,0,1 = Programming Error
Idle	None	Check SR1, SR3, SR4: 1, 0,1 = Sector locked; operation aborted

SR3 must be cleared before the Write State Machine allows further program attempts.

Only the Clear Status Register command clears SR1, SR3, SR4.

If an error is detected, clear the status register before attempting a program retry or other error recovery.

5. Command Definition Table

	Bus	1st Bu	s Cycle	2nd Bu	us Cycle	3rd Bu	s Cycle
Command Sequence	Cycles	Addr	Data	Addr	Data	Addr	Data
Read	1	XX	FF				
Sector Erase	2	XX	20	SA ⁽²⁾	D0		
Word Program	2	XX	40/10	Addr	D _{IN}		
Dual Word Program ⁽³⁾	3	XX	E0	Addr0	D _{INO}	Addr1	D _{IN1}
Erase/Program Suspend	1	XX	В0				
Erase/Program Resume	1	XX	D0				
Product ID Entry ⁽⁴⁾	1	XX	90				
Sector Softlock	2	XX	60	SA ⁽²⁾	01		
Sector Hardlock	2	XX	60	SA ⁽²⁾	2F		
Sector Unlock	2	XX	60	SA ⁽²⁾	D0		
Read Status Register	2	XX	70	XX	D _{OUT} ⁽⁵⁾		
Clear Status Register	1	XX	50				
Program Protection Register (Block B)	2	XX	C0	Addr ⁽⁶⁾	D _{IN}		
Lock Protection Register (Block B)	2	XX	C0	80	FFFD		
Status of Protection Register (Block B)	2	XX	90	80	D _{OUT1} ⁽⁷⁾		
CFI Query	1	XX	98				

Notes: 1. The DATA FORMAT shown for each bus cycle is as follows; I/O7 - I/O0 (Hex). I/O15 - I/O8 are don't care. The ADDRESS FORMAT shown for each bus cycle is as follows: A7 - A0 (Hex). Address A21 through A8 are don't care.

- 2. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 17 20 for details).
- This fast programming option enables the user to program two words in parallel only when V_{PP} = 9.5V. The addresses, Addr0 and Addr1, of the two words, D_{IN0} and D_{IN1}, must only differ in address A0. This command should be used during manufacturing purposes only.
- 4. During the second bus cycle, the manufacturer code is read from address 000000H, the device code is read from address 000001H, and the data in the protection register is read from addresses 000081H 000088H.
- 5. The status register bits are output on I/O7 I/O0.
- Any address within the user programmable protection register region. Address locations are shown on the "Protection Register Addressing Table" on page 16.
- 7. If data bit D1 is "0", block B is locked. If data bit D1 is "1", block B can be reprogrammed.

6. Absolute Maximum Ratings*

Temperature under Bias55°C to +12	<u>2</u> 5°C
Storage Temperature65°C to +15	50°C
All Input Voltages Except V _{PP} (including NC Pins) with Respect to Ground0.6V to +6	.25V
All Output Voltages with Respect to Ground0.6V to V _{CCQ} +	0.6V
V _{PP} Input Voltage with Respect to Ground0.6V to 10	0.0V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7. Protection Register Addressing Table

Address	Use	Block	A8	A 7	A6	A 5	A 4	А3	A2	A 1	A0
81	Factory	Α	0	1	0	0	0	0	0	0	1
82	Factory	Α	0	1	0	0	0	0	0	1	0
83	Factory	Α	0	1	0	0	0	0	0	1	1
84	Factory	Α	0	1	0	0	0	0	1	0	0
85	User	В	0	1	0	0	0	0	1	0	1
86	User	В	0	1	0	0	0	0	1	1	0
87	User	В	0	1	0	0	0	0	1	1	1
88	User	В	0	1	0	0	0	1	0	0	0

Note: All address lines not specified in the above table must be "0" when accessing the protection register, i.e., A21 - A8 = 0.

8. Memory Organization – AT49BV640D

A1 13	B V 040D	
		x16
Sector	Size (Words)	Address Range (A21 - A0)
SA0	4K	00000 - 00FFF
SA1	4K	01000 - 01FFF
SA2	4K	02000 - 02FFF
SA3	4K	03000 - 03FFF
SA4	4K	04000 - 04FFF
SA5	4K	05000 - 05FFF
SA6	4K	06000 - 06FFF
SA7	4K	07000 - 07FFF
SA8	32K	08000 - 0FFFF
SA9	32K	10000 - 17FFF
SA10	32K	18000 - 1FFFF
SA11	32K	20000 - 27FFF
SA12	32K	28000 - 2FFFF
SA13	32K	30000 - 37FFF
SA14	32K	38000 - 3FFFF
SA15	32K	40000 - 47FFF
SA16	32K	48000 - 4FFFF
SA17	32K	50000 - 57FFF
SA18	32K	58000 - 5FFFF
SA19	32K	60000 - 67FFF
SA20	32K	68000 - 6FFFF
SA21	32K	70000 - 77FFF
SA22	32K	78000 - 7FFFF
SA23	32K	80000 - 87FFF
SA24	32K	88000 - 8FFFF
SA25	32K	90000 - 97FFF
SA26	32K	98000 - 9FFFF
SA27	32K	A0000 - A7FFF
SA28	32K	A8000 - AFFFF
SA29	32K	B0000 - B7FFF
SA30	32K	B8000 - BFFFF
SA31	32K	C0000 - C7FFF
SA32	32K	C8000 - CFFFF
SA33	32K	D0000 - D7FFF
SA34	32K	D8000 - DFFFF
	-	

8. Memory Organization – AT49BV640D (Continued)

		x16
		Address Range
Sector	Size (Words)	(A21 - A0)
SA35	32K	E0000 - E7FFF
SA36	32K	E8000 - EFFFF
SA37	32K	F0000 - F7FFF
SA38	32K	F8000 - FFFFF
SA39	32K	100000 - 107FFF
SA40	32K	108000 - 10FFFF
SA41	32K	110000 - 117FFF
SA42	32K	118000 - 11FFFF
SA43	32K	120000 - 127FFF
SA44	32K	128000 - 12FFFF
SA45	32K	130000 - 137FFF
SA46	32K	138000 - 13FFFF
SA47	32K	140000 - 147FFF
SA48	32K	148000 - 14FFFF
SA49	32K	150000 - 157FFF
SA50	32K	158000 - 15FFFF
SA51	32K	160000 - 167FFF
SA52	32K	168000 - 16FFFF
SA53	32K	170000 - 177FFF
SA54	32K	178000 - 17FFFF
SA55	32K	180000 - 187FFF
SA56	32K	188000 - 18FFFF
SA57	32K	190000 - 197FFF
SA58	32K	198000 - 19FFFF
SA59	32K	1A0000 - 1A7FFF
SA60	32K	1A8000 - 1AFFFF
SA61	32K	1B0000 - 1B7FFF
SA62	32K	1B8000 - 1BFFFF
SA63	32K	1C0000 - 1C7FFF
SA64	32K	1C8000 - 1CFFFF
SA65	32K	1D0000 - 1D7FFF
SA66	32K	1D8000 - 1DFFFF
SA67	32K	1E0000 - 1E7FFF
SA68	32K	1E8000 - 1EFFFF
SA69	32K	1F0000 - 1F7FFF
SA70	32K	1F8000 - 1FFFFF

8. Memory Organization – AT49BV640D (Continued)

	10:02 (0	10
		x16 Address Range
Sector	Size (Words)	(A21 - A0)
SA71	32K	200000 - 207FFF
SA72	32K	208000 - 20FFFF
SA73	32K	210000 - 217FFF
SA74	32K	218000 - 21FFFF
SA75	32K	220000 - 227FFF
SA76	32K	228000 - 22FFFF
SA77	32K	230000 - 237FFF
SA78	32K	238000 - 23FFFF
SA79	32K	240000 - 247FFF
SA80	32K	248000 - 24FFFF
SA81	32K	250000 - 257FFF
SA82	32K	258000 - 25FFFF
SA83	32K	260000 - 267FFF
SA84	32K	268000 - 26FFFF
SA85	32K	270000 - 277FFF
SA86	32K	278000 - 27FFFF
SA87	32K	280000 - 287FFF
SA88	32K	288000 - 28FFFF
SA89	32K	290000 - 297FFF
SA90	32K	298000 - 29FFFF
SA91	32K	2A0000 - 2A7FFF
SA92	32K	2A8000 - 2AFFFF
SA93	32K	2B0000 - 2B7FFF
SA94	32K	2B8000 - 2BFFFF
SA95	32K	2C0000 - 2C7FFF
SA96	32K	2C8000 - 2CFFFF
SA97	32K	2D0000 - 2D7FFF
SA98	32K	2D8000 - 2DFFFF
SA99	32K	2E0000 - 2E7FFF
SA100	32K	2E8000 - 2EFFFF
SA101	32K	2F0000 - 2F7FFF
SA102	32K	2F8000 - 2FFFFF

8. Memory Organization – AT49BV640D (Continued)

		x16
Sector	Size (Words)	Address Range (A21 - A0)
SA103	32K	300000 - 307FFF
SA104	32K	308000 - 30FFFF
SA105	32K	310000 - 317FFF
SA106	32K	318000 - 31FFFF
SA107	32K	320000 - 327FFF
SA108	32K	328000 - 32FFFF
SA109	32K	330000 - 337FFF
SA110	32K	338000 - 33FFFF
SA111	32K	340000 - 347FFF
SA112	32K	348000 - 34FFFF
SA113	32K	350000 - 357FFF
SA114	32K	358000 - 35FFFF
SA115	32K	360000 - 367FFF
SA116	32K	368000 - 36FFFF
SA117	32K	370000 - 377FFF
SA118	32K	378000 - 37FFFF
SA119	32K	380000 - 387FFF
SA120	32K	388000 - 38FFFF
SA121	32K	390000 - 397FFF
SA122	32K	398000 - 39FFFF
SA123	32K	3A0000 - 3A7FFF
SA124	32K	3A8000 - 3AFFFF
SA125	32K	3B0000 - 3B7FFF
SA126	32K	3B8000 - 3BFFFF
SA127	32K	3C0000 - 3C7FFF
SA128	32K	3C8000 - 3CFFFF
SA129	32K	3D0000 - 3D7FFF
SA130	32K	3D8000 - 3DFFFF
SA131	32K	3E0000 - 3E7FFF
SA132	32K	3E8000 - 3EFFFF
SA133	32K	3F0000 - 3F7FFF
SA134	32K	3F8000 - 3FFFFF

9. Memory Organization – AT49BV640DT

		10
		x16 Address Range
Sector	Size (Words)	(A21 - A0)
SA0	32K	00000 - 07FFF
SA1	32K	08000 - 0FFFF
SA2	32K	10000 - 17FFF
SA3	32K	18000 - 1FFFF
SA4	32K	20000 - 27FFF
SA5	32K	28000 - 2FFFF
SA6	32K	30000 - 37FFF
SA7	32K	38000 - 3FFFF
SA8	32K	40000 - 47FFF
SA9	32K	48000 - 4FFFF
SA10	32K	50000 - 57FFF
SA11	32K	58000 - 5FFFF
SA12	32K	60000 - 67FFF
SA13	32K	68000 - 6FFFF
SA14	32K	70000 - 77FFF
SA15	32K	78000 - 7FFFF
SA16	32K	80000 - 87FFF
SA17	32K	88000 - 8FFFF
SA18	32K	90000 - 97FFF
SA19	32K	98000 - 9FFFF
SA20	32K	A0000 - A7FFF
SA21	32K	A8000 - AFFFF
SA22	32K	B0000 - B7FFF
SA23	32K	B8000 - BFFFF
SA24	32K	C0000 - C7FFF
SA25	32K	C8000 - CFFFF
SA26	32K	D0000 - D7FFF
SA27	32K	D8000 - DFFFF
SA28	32K	E0000 - E7FFF
SA29	32K	E8000 - EFFFF
SA30	32K	F0000 - F7FFF
SA31	32K	F8000 - FFFFF
SA32	32K	100000 - 107FFF
SA33	32K	108000 - 10FFFF
SA34	32K	110000 - 117FFF
SA35	32K	118000 - 11FFFF

9. Memory Organization – AT49BV640DT (Continued)

		x16
		Address Range
Sector	Size (Words)	(A21 - A0)
SA36	32K	120000 - 127FFF
SA37	32K	128000 - 12FFFF
SA38	32K	130000 - 137FFF
SA39	32K	138000 - 13FFFF
SA40	32K	140000 - 147FFF
SA41	32K	148000 - 14FFFF
SA42	32K	150000 - 157FFF
SA43	32K	158000 - 15FFFF
SA44	32K	160000 - 167FFF
SA45	32K	168000 - 16FFFF
SA46	32K	170000 - 177FFF
SA47	32K	178000 - 17FFFF
SA48	32K	180000 - 187FFF
SA49	32K	188000 - 18FFFF
SA50	32K	190000 - 197FFF
SA51	32K	198000 - 19FFFF
SA52	32K	1A0000 - 1A7FFF
SA53	32K	1A8000 - 1AFFFF
SA54	32K	1B0000 - 1B7FFF
SA55	32K	1B8000 - 1BFFFF
SA56	32K	1C0000 - 1C7FFF
SA57	32K	1C8000 - 1CFFFF
SA58	32K	1D0000 - 1D7FFF
SA59	32K	1D8000 - 1DFFFF
SA60	32K	1E0000 - 1E7FFF
SA61	32K	1E8000 - 1EFFFF
SA62	32K	1F0000 - 1F7FFF
SA63	32K	1F8000 - 1FFFFF
SA64	32K	200000 - 207FFF
SA65	32K	208000 - 20FFFF
SA66	32K	210000 - 217FFF
SA67	32K	218000 - 21FFFF
SA68	32K	220000 - 227FFF
SA69	32K	228000 - 22FFFF
SA70	32K	230000 - 237FFF
SA71	32K	238000 - 23FFFF

9. Memory Organization – AT49BV640DT (Continued)

Sector Size (Words) x16 Address Range (A21 - A0) (A21 - A0) SA72 32K 240000 - 247FFF SA73 32K 248000 - 24FFFF SA74 32K 250000 - 257FFF SA75 32K 258000 - 25FFFF SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
Sector Size (Words) (A21 - A0) SA72 32K 240000 - 247FFF SA73 32K 248000 - 24FFFF SA74 32K 250000 - 257FFF SA75 32K 258000 - 25FFFF SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA73 32K 248000 - 24FFFF SA74 32K 250000 - 257FFF SA75 32K 258000 - 25FFFF SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA74 32K 250000 - 257FFF SA75 32K 258000 - 25FFFF SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA75 32K 258000 - 25FFFF SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA76 32K 260000 - 267FFF SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA77 32K 268000 - 26FFFF SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA78 32K 270000 - 277FFF SA79 32K 278000 - 27FFFF	
SA79 32K 278000 - 27FFFF	
0400 0000 007555	
SA80 32K 280000 - 287FFF	
SA81 32K 288000 - 28FFFF	
SA82 32K 290000 - 297FFF	
SA83 32K 298000 -29FFFF	
SA84 32K 2A0000 - 2A7FFF	
SA85 32K 2A8000 - 2AFFFF	
SA86 32K 2B0000 - 2B7FFF	
SA87 32K 2B8000 - 2BFFFF	
SA88 32K 2C0000 - 2C7FFF	
SA89 32K 2C8000 - 2CFFFF	
SA90 32K 2D0000 - 2D7FFF	
SA91 32K 2D8000 - 2DFFFF	
SA92 32K 2E0000 - 2E7FFF	
SA93 32K 2E8000 - 2EFFFF	
SA94 32K 2F0000 - 2F7FFF	
SA95 32K 2F8000 - 2FFFFF	
SA96 32K 300000 - 307FFF	
SA97 32K 308000 - 30FFFF	
SA98 32K 310000 - 317FFF	
SA99 32K 318000 - 31FFFF	
SA100 32K 320000 - 327FFF	
SA101 32K 328000 - 32FFFF	
SA102 32K 330000 - 337FFF	
SA103 32K 338000 - 33FFFF	

9. Memory Organization – AT49BV640DT (Continued)

		x16 Address Range
Sector	Size (Words)	(A21 - A0)
SA104	32K	340000 - 347FFF
SA105	32K	348000 - 34FFFF
SA106	32K	350000 - 357FFF
SA107	32K	358000 - 35FFFF
SA108	32K	360000 - 367FFF
SA109	32K	368000 - 36FFFF
SA110	32K	370000 - 377FFF
SA111	32K	378000 - 37FFFF
SA112	32K	380000 - 387FFF
SA113	32K	388000 - 38FFFF
SA114	32K	390000 - 397FFF
SA115	32K	398000 - 39FFFF
SA116	32K	3A0000 - 3A7FFF
SA117	32K	3A8000 - 3AFFFF
SA118	32K	3B0000 - 3B7FFF
SA119	32K	3B8000 - 3BFFFF
SA120	32K	3C0000 - 3C7FFF
SA121	32K	3C8000 - 3CFFFF
SA122	32K	3D0000 - 3D7FFF
SA123	32K	3D8000 - 3DFFFF
SA124	32K	3E0000 - 3E7FFF
SA125	32K	3E8000 - 3EFFFF
SA126	32K	3F0000 - 3F7FFF
SA127	4K	3F8000 - 3F8FFF
SA128	4K	3F9000 - 3F9FFF
SA129	4K	3FA000 - 3FAFFF
SA130	4K	3FB000 - 3FBFFF
SA131	4K	3FC000 - 3FCFFF
SA132	4K	3FD000 - 3FDFFF
SA133	4K	3FE000 - 3FEFFF
SA134	4K	3FF000 - 3FFFFF

10. DC and AC Operating Range

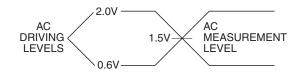
		AT49BV640D(T)-70
Operating Temperature (Case)	Industrial	-40°C - 85°C
V _{CC} Power Supply	•	2.65V - 3.6V

11. Operating Modes

Mode	CE	ŌĒ	WE	RESET	V _{PP} ⁽¹⁾	Ai	I/O
Read	V_{IL}	V _{IL}	V _{IH}	V _{IH}	X ⁽²⁾	Ai	D _{OUT}
Program/Erase ⁽³⁾	V_{IL}	V _{IH}	V_{IL}	V _{IH}	V _{IHPP} ⁽⁴⁾	Ai	D _{IN}
Standby/Program Inhibit	V _{IH}	X ⁽²⁾	Х	V _{IH}	x	×	High Z
	Х	Х	V _{IH}	V _{IH}	Х		
Program Inhibit	Х	V_{IL}	Х	V _{IH}	Х		
	Х	Х	Х	Х	V _{ILPP} ⁽⁵⁾		
Output Disable	Х	V _{IH}	Х	V _{IH}	Х		High Z
Reset	Х	Х	Х	V_{IL}	X	X	High Z
Product Identification				V		$A0 = V_{IL}, A1 - A21 = V_{IL}$	Manufacturer Code ⁽⁶⁾
Software				V _{IH}		$A0 = V_{IH}, A1 - A21 = V_{IL}$	Device Code ⁽⁶⁾

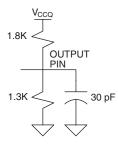
Notes: 1. The VPP pin can be tied to V_{CC} . For faster program operation, V_{PP} can be set to 9.5V \pm 0.5V.

- 2. X can be VIL or VIH.
- 3. Refer to AC programming waveforms on page 25.
- 4. V_{IHPP} (min) = 1.65V.
- 5. V_{ILPP} (max) = 0.4V.
- 6. Manufacturer Code: 001FH; Device Code: 02DEH AT49BV640D; 02DBH AT49BV640DT


12. DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$			2	μΑ
I _{LO}	Output Leakage Current	$V_{I/O} = 0V \text{ to } V_{CC}$			2	μA
I _{SB}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CCQ}} - 0.3\text{V to V}_{\text{CC}}$		15	25	μA
I _{CC} ⁽¹⁾	V _{CC} Active Read Current	f = 5 MHz; I _{OUT} = 0 mA		10	15	mA
I _{CC1}	V _{CC} Programming Current				25	mA
I _{PP1}	V _{PP} Input Load Current				10	μA
V _{IL}	Input Low Voltage				0.6	٧
V _{IH}	Input High Voltage		V _{CCQ} - 0.6			٧
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			0.45	٧
V _{OH}	Output High Voltage	I _{OH} = -100 μA	V _{CCQ} - 0.1			٧

Note: 1. In the erase mode, I_{CC} is 25 mA.



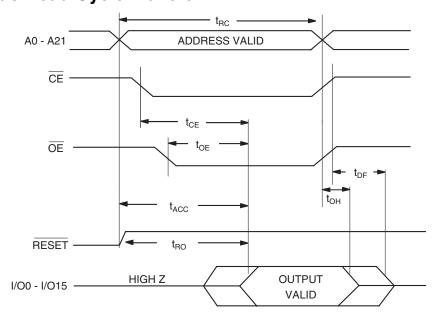
13. Input Test Waveforms and Measurement Level

 t_R , $t_F < 5$ ns

14. Output Test Load

15. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$


	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

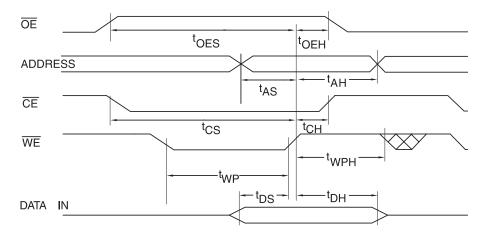
Note: 1. This parameter is characterized and is not 100% tested.

16. AC Read Characteristics

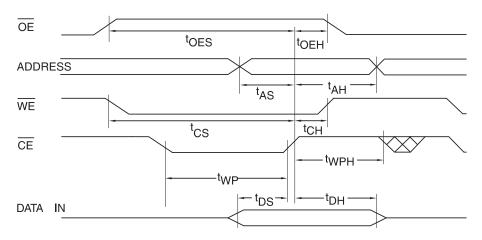
		AT49BV	640D(T)-70	
Symbol	Parameter	Min	Max	Units
t _{RC}	Read Cycle Time	70		ns
t _{ACC}	Access, Address to Data Valid		70	ns
t _{CE} ⁽¹⁾	Access, $\overline{\text{CE}}$ to Data Valid		70	ns
t _{OE} ⁽²⁾	OE to Data Valid		20	ns
t _{DF} ⁽³⁾⁽⁴⁾	CE, OE High to Data Float		25	ns
t _{OH}	Output Hold from $\overline{\text{OE}}$, $\overline{\text{CE}}$ or Address, whichever Occurs First	0		ns
t _{RO}	RESET to Output Delay		100	ns

17. Asynchronous Read Cycle Waveform (1)(2)(3)(4)

- Notes: 1. $\overline{\text{CE}}$ may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first (CL = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

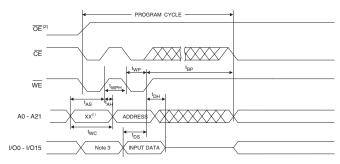


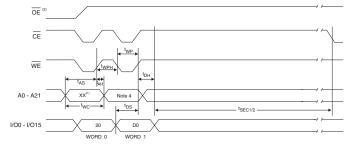
18. AC Word Load Characteristics


Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	20		ns
t _{AH}	Address Hold Time	0		ns
t _{CS}	Chip Select Setup Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	25		ns
t _{WPH}	Write Pulse Width High	15		ns
t _{DS}	Data Setup Time	25		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns

19. AC Word Load Waveforms

19.1 WE Controlled


19.2 CE Controlled


20. Program Cycle Characteristics

Symbol	Parameter	Min	Тур	Max	Units
t _{BP}	Word Programming Time		10	120	μs
t _{BPD}	Word Programming Time in Dual Programming Mode		5	60	μs
t _{AS}	Address Setup Time	20			ns
t _{AH}	Address Hold Time	0			ns
t _{DS}	Data Setup Time	25			ns
t _{DH}	Data Hold Time	0			ns
t _{WP}	Write Pulse Width	25			ns
t _{WPH}	Write Pulse Width High	15			ns
t _{WC}	Write Cycle Time	70			ns
t _{RP}	Reset Pulse Width	500			ns
t _{SEC1}	Sector Erase Cycle Time (4K Word Sectors)		0.1	2.0	seconds
t _{SEC2}	Sector Erase Cycle Time (32K Word Sectors)		0.5	6.0	seconds
t _{ES}	Erase Suspend Time			15	μs
t _{PS}	Program Suspend Time			10	μs
t _{ERES}	Delay between Erase Resume and Erase Suspend	500			μs

21. Program Cycle Waveforms

22. Sector Erase Cycle Waveforms

Notes: 1. Any address can be used to load data.

- 2. $\overline{\text{OE}}$ must be high only when $\overline{\text{WE}}$ and $\overline{\text{CE}}$ are both low.
- 3. The data can be 40H or 10H.
- 4. The address depends on what sector is to be erased.

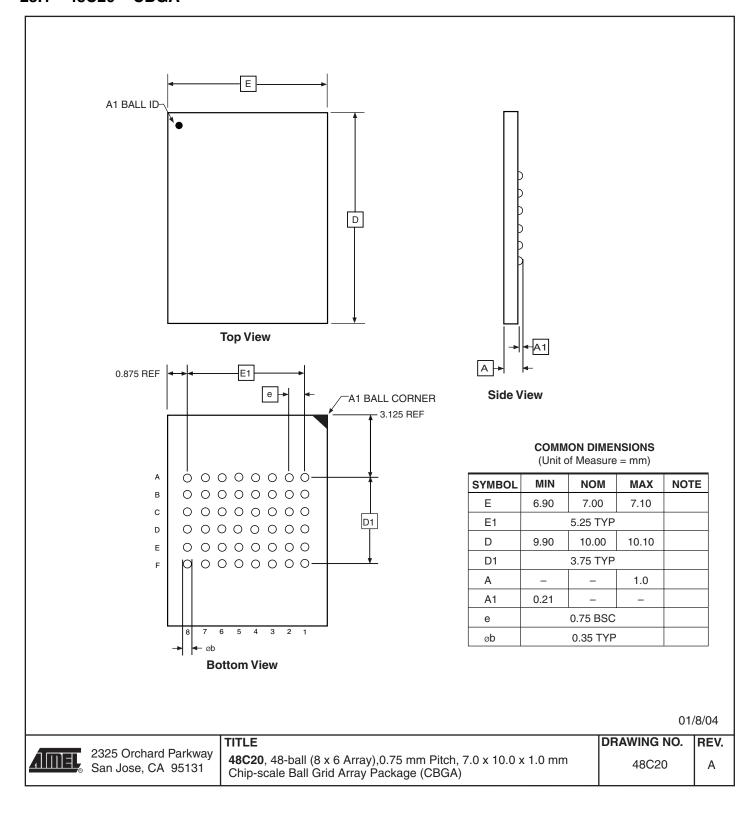
23. Common Flash Interface Definition Table

Address	AT49BV640DT	AT49BV640D	Comments
10h	0051h	0051h	"Q"
11h	0052h	0052h	"R"
12h	0059h	0059h	«Y"
13h	0003h	0003h	
14h	0000h	0000h	
15h	0041h	0041h	
16h	0000h	0000h	
17h	0000h	0000h	
18h	0000h	0000h	
19h	0000h	0000h	
1Ah	0000h	0000h	
1Bh	0027h	0027h	VCC min write/erase
1Ch	0036h	0036h	VCC max write/erase
1Dh	0090h	0090h	VPP min voltage
1Eh	00A0h	00A0h	VPP max voltage
1Fh	0004h	0004h	Typ word write – 10 μs
20h	0002h	0002h	Typ dual word program time – 5 μs
21h	0009h	0009h	Typ sector erase – 500 ms
22h	0000h	0000h	Typ chip erase – N/A
23h	0004h	0004h	Max word write/typ time
24h	0004h	0004h	Max dual word program time/typical time
25h	0003h	0003h	Max sector erase/typ sector erase
26h	0000h	0000h	Max chip erase/ typ chip erase – N/A
27h	0017h	0017h	Device size
28h	0001h	0001h	x16 device
29h	0000h	0000h	x16 device
2Ah	0002h	0002h	Maximum number of bytes in multiple byte write = 4
2Bh	0000h	0000h	Maximum number of bytes in multiple byte write = 4
2Ch	0002h	0002h	2 regions, x = 2
2Dh	007Eh	0007h	64K bytes, Y = 126 (Top); 8K bytes, Y = 7 (Bottom)
2Eh	0000h	0000h	64K bytes, Y = 126 (Top); 8K bytes, Y = 7 (Bottom)
2Fh	0000h	0020h	64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)
30h	0001h	0000h	64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)
31h	0007h	007Eh	8K bytes, Y = 7 (Top); 64K bytes, Y = 126 (Bottom)
32h	0000h	0000h	8K bytes, Y = 7 (Top); 64K bytes, Y = 126 (Bottom)
33h	0020h	0000h	8K bytes, Z = 32 (Top);64K bytes, Z = 256 (Bottom)
34h	0000h	0001h	8K bytes, Z = 32 (Top);64K bytes, Z = 256 (Bottom)

23. Common Flash Interface Definition Table (Continued)

Address	AT49BV640DT	AT49BV640D	Comments				
	VENDOR SPECIFIC EXTENDED QUERY						
41h	0050h	0050h	"P"				
42h	0052h	0052h	"R"				
43h	0049h	0049h	" "				
44h	0031h	0031h	Major version number, ASCII				
45h	0030h	0030h	Minor version number, ASCII				
46h	0086h	0086h	Bit 0 – chip erase supported, 0 – no, 1 – yes Bit 1 – erase suspend supported, 0 – no, 1 – yes Bit 2 – program suspend supported, 0 – no, 1 – yes Bit 3 – simultaneous operations supported, 0 – no, 1 – yes Bit 4 – burst mode read supported, 0 – no, 1 – yes Bit 5 – page mode read supported, 0 – no, 1 – yes Bit 6 – queued erase supported, 0 – no, 1 – yes Bit 7 – protection bits supported, 0 – no, 1 – yes				
47h	0000h	0001h	Bit 0 – top ("0") or bottom ("1") boot block device Undefined bits are "0"				
48h	0000h	0000h	Bit 0 – 4 word linear burst with wrap around, 0 – no, 1 – yes Bit 1 – 8 word linear burst with wrap around, 0 – no, 1 – yes Bit 2 – 16 word linear burst with wrap around, 0 – no, 1 – yes Bit 3 – continuous burst, 0 – no, 1 – yes Undefined bits are "0"				
49h	0000h	0000h	Bit 0 – 4 word page, 0 – no, 1 – yes Bit 1 – 8 word page, 0 – no, 1 – yes Undefined bits are "0"				
4Ah	0080h	0080h	Location of protection register lock byte, the section's first byte				
4Bh	0003h	0003h	# of bytes in the factory prog section of prot register – 2*n				
4Ch	0003h	0003h	# of bytes in the user prog section of prot register – 2*n				

24. Ordering Information


24.1 Green Package (Pb/Halide-free/RoHS Compliant)

tage	I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
70	45	0.005	AT49BV640D-70CU	48C20	Industrial
70	70 15 0.025		AT49BV640DT-70CU	48C20	(-40° to 85°C)

	Package Type
48C20	48-ball, Plastic Chip-size Ball Grid Array Package (CBGA)

25. Packaging Information

25.1 48C20 - CBGA

26. Revision History

Revision No.	History
Revision A – April 2006	Initial Release
Revision B – October 2006	Removed 56-lead TSOP Package.
Revision C – Nov. 2006	Fixed typo in the device description.