BDTIC www.bdtic.com/ATMEL

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 130 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments

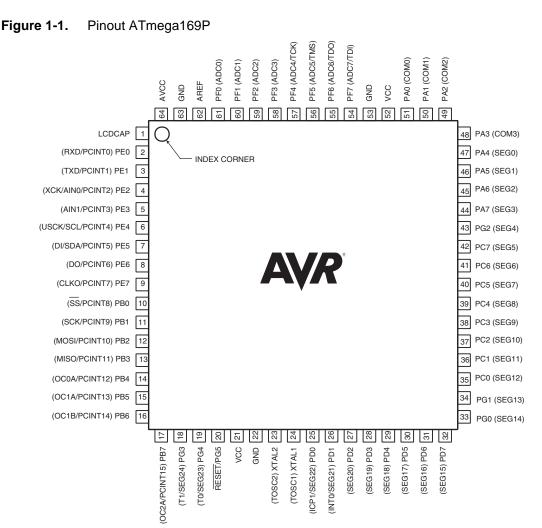
 16K Bytes of In-System Self-programmable Elash programmable
 - 16K Bytes of In-System Self-programmable Flash program memory
 512 Bytes EEPROM
 - 1K Bytes Internal SRAM
 - Write/Erase cyles: 10,000 Flash/100,000 EEPROM⁽¹⁾⁽³⁾
 - Data retention: 20 years at 85°C/100 years at 25°C⁽²⁾⁽³⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - 4 x 25 Segment LCD Driver
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four PWM Channels
 - 8-channel, 10-bit ADC
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Universal Serial Interface with Start Condition Detector
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
 - 54 Programmable I/O Lines
 - 64-lead TQFP and 64-pad QFN/MLF
- Speed Grade:
 - ATmega169PV: 0 4 MHz @ 1.8 5.5V, 0 8 MHz @ 2.7 5.5V
 - ATmega169P: 0 8 MHz @ 2.7 5.5V, 0 16 MHz @ 4.5 5.5V
- Temperature range:
 - -40°C to 85°C Industrial
- Ultra-Low Power Consumption
 - Active Mode:
 - 1 MHz, 1.8V: 330 μA
 - 32 kHz, 1.8V: 10 µA (including Oscillator)
 - 32 kHz, 1.8V: 25 µA (including Oscillator and LCD)
 - Power-down Mode:
 - _ 0.1 μA at 1.8V
 - Power-save Mode:
 - 0.6 µA at 1.8V(Including 32 kHz RTC)

Notes: 1. Worst case temperature. Guaranteed after last write cycle.

- 2. Failure rate less than 1 ppm.
- 3. Characterized through accelerated tests.

8-bit **AVR**[®] Microcontroller with 16K Bytes In-System Programmable Flash

ATmega169P ATmega169PV


Preliminary

Summary

8018JS-AVR-08/07

1. Pin Configurations

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATmega169P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega169P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega169P provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, a complete On-chip LCD controller with internal step-up voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer and the LCD controller continues to run, allowing the user to maintain a timer base and operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega169P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 Port A (PA7:PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port A" on page 72.

2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port B" on page 73.

2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega169P as listed on "Alternate Functions of Port C" on page 76.

2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port D" on page 78.

2.2.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port E" on page 80.

2.2.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see "Alternate Functions of Port F" on page 82

2.2.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega169P as listed on page 84.

2.2.10 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 27-4 on page 330. Shorter pulses are not guaranteed to generate a reset.

2.2.11 XTAL1

2.2.12

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

2.2.13 AVCC

XTAL2

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

2.2.14 AREF

This is the analog reference pin for the A/D Converter.

2.2.15 LCDCAP

An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Figure 22-2 on page 234. This capacitor acts as a reservoir for LCD power (V_{LCD}). A large capacitance reduces ripple on V_{LCD} but increases the time until V_{LCD} reaches its target value.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	LCDDR18	-	-	-	-	_	_	-	SEG324	249
(0xFD)	LCDDR17	SEG323	SEG322	SEG321	SEG320	SEG319	SEG318	SEG317	SEG316	249
(0xFC)	LCDDR16	SEG315	SEG314	SEG313	SEG312	SEG311	SEG310	SEG309	SEG308	249
(0xFB)	LCDDR15	SEG307	SEG306	SEG305	SEG304	SEG303	SEG302	SEG301	SEG300	249
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	LCDDR13	-	-	-	-	-	-	-	SEG224	249
(0xF8)	LCDDR12	SEG223	SEG222	SEG221	SEG220	SEG219	SEG218	SEG217	SEG216	249
(0xF7)	LCDDR11	SEG215	SEG214	SEG213	SEG212	SEG211	SEG210	SEG209	SEG208	249
(0xF6)	LCDDR10	SEG207	SEG206	SEG205	SEG204	SEG203	SEG202	SEG201	SEG200	249
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	LCDDR8	-	-	-	-	-	-	-	SEG124	249
(0xF3)	LCDDR7	SEG123	SEG122	SEG121	SEG120	SEG119	SEG118	SEG117	SEG116	249
(0xF2)	LCDDR6	SEG115	SEG114	SEG113	SEG112	SEG111	SEG110	SEG109	SEG108	249
(0xF1)	LCDDR5	SEG107	SEG106	SEG105	SEG104	SEG103	SEG102	SEG101	SEG100	249
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	LCDDR3	-	-	-	-	-	-	-	SEG024	249
(0xEE)	LCDDR2	SEG023	SEG022	SEG021	SEG020	SEG019	SEG018	SEG017	SEG016	249
(0xED)	LCDDR1	SEG015	SEG014	SEG013	SEG012	SEG011	SEG010	SEG09	SEG008	249
(0xEC)	LCDDR0	SEG007	SEG006	SEG005	SEG004	SEG003	SEG002	SEG001	SEG000	249
(0xEB)	Reserved	_	_	_	_	_	_	_	_	
(0xEA)	Reserved	-	-	-	-	_	-	_	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	LCDCCR	LCDDC2	LCDDC1	LCDDC0	LCDMDT	LCDCC3	LCDCC2	LCDCC1	LCDCC0	248
(0xE6)	LCDFRR	-	LCDPS2	LCDPS1	LCDPS0	-	LCDCD2	LCDCD1	LCDCD0	246
(0xE5)	LCDCRB	LCDCS	LCD2B	LCDMUX1	LCDMUX0	-	LCDPM2	LCDPM1	LCDPM0	245
(0xE4)	LCDCRA	LCDEN	LCDAB	-	LCDIF	LCDIE	LCDBD	LCDCCD	LCDBL	244
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	_	-	-	-	_	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	_	-	-	-	_	-	-	-	
(0xDF)	Reserved	_	-	-	-	_	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	_	-	-	-	_	-	-	-	
(0xDB)	Reserved	_	-	-	-	_	-	-	-	
(0xDA)	Reserved	_	-	-	-	_	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	_	_	_	-	_	_	_	_	
(0xD6)	Reserved	_	-	-	-	_	-	-	-	
(0xD5)	Reserved	_	-	-	-	_	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	_	-	-	-	_	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	_	_	_	_	_	_	_	_	
(0xCD)	Reserved	_	_	_	_	_	_	_	_	
(0xCC)	Reserved	_	_	_	_	_	_	_	_	
(0xCB)	Reserved	_	_	_	_	_	_	_	_	
(0xCA)	Reserved	_	_	_	_	_	_	_	_	
(0xC9)	Reserved	_	_	_	_	_	_	_	_	
(0xC8)	Reserved	_	_	_	_	_	_	_	_	
(0xC7)	Reserved	_	_	_	_	_	_	_	_	
(0xC6)	UDR0					Data Register	•			189
(0xC5)	UBRRH0				56		USARTO Baud P	ate Register High		193
(0.00)	UBRRLO				USART0 Baud P	Rate Register Low	20 Daud N			193
(0xC4)							_	_	_	
(0xC4) (0xC3)	Reserved	_	-	_		-				
(0xC3)	Reserved UCSR0C	-	– UMSEL0	- UPM01	- UPM00	– USBS0				189
	Reserved UCSR0C UCSR0B	- - RXCIE0	– UMSEL0 TXCIE0	– UPM01 UDRIE0	UPM00 RXEN0	USBS0 TXEN0	UCSZ01 UCSZ02	UCSZ00 RXB80	UCPOL0 TXB80	189 189

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	Reserved	-	-	-	-	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
(0xBB)	Reserved	-	-	-	-	-	-	-	-	
(0xBA)	USIDR				USI Data	a Register	•			206
(0xB9)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	206
(0xB8)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	207
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	ASSR	-	-	-	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB	155
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	OCR2A			Tin		ut Compare Regist	ter A			154
(0xB2)	TCNT2					nter2 (8-bit)				154
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	TCCR2A	FOC2A	WGM20	COM2A1	COM2A0	WGM21	CS22	CS21	CS20	152
(0xAF)	Reserved	_	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	_	-	-	-	-	-	-	
(0xAB) (0xAA)	Reserved Reserved			_	-	_	-			
	Reserved			_						
(0xA9) (0xA8)	Reserved				_	-	-			<u> </u>
(0xA8) (0xA7)	Reserved						-	-		
(0xAf)	Reserved		_	_	_	_	_		_	
(0xA5)	Reserved		_	_	_	_	_	_	_	-
(0xA4)	Reserved	_	_	_	_	_	_	_	_	
(0xA3)	Reserved	_	_	_	_	_	_	_	_	
(0xA2)	Reserved	_	_	_	_	_	_	_	_	
(0xA1)	Reserved	_	_	_	_	_	-	_	_	
(0xA0)	Reserved	_	_	_	_	_	_	_	_	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	_	
(0x9D)	Reserved	-	-	-	-	-	-	-	_	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	_	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x8E) (0x8D)	Reserved	-	-	-		-	-			
(0x8D) (0x8C)	Reserved				-			-		
(0x8C) (0x8B)	OCR1BH	_	_			- mpare Register B		_	_	131
(0x8B) (0x8A)	OCR1BH				· ·	ompare Register B	• •			131
(0x8A) (0x89)	OCR1AH					mpare Register A				131
(0x88)	OCR1AL					ompare Register A				131
(0x88) (0x87)	ICR1H				· · · ·	apture Register Hi				131
(0x86)	ICR1L					apture Register Lo				132
(0x85)	TCNT1H					nter Register High				131
(0x84)	TCNT1L					nter Register Low				131
(0x83)	Reserved	-	-	-	-	_	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	130
	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	129
(0x81)			1							
(0x81) (0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	127
		COM1A1 -	COM1A0 -	COM1B1 -	COM1B0 -			WGM11 AIN1D	WGM10 AIN0D	127 213

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	_	-	_	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	227
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	212, 231
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	229
(0x79)	ADCH				ADC Data Reg	jister High byte				230
(0x78)	ADCL			_	ADC Data Re	gister Low byte		_		230
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-		-	-	-	-	OCIE2A	TOIE2	155
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	132
(0x6E)	TIMSK0	-	_	-	-	-	_	OCIE0A	TOIE0	103
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	62
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	63
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	-	_	ISC01 -	ISC00	61
(0x68)	Reserved	-	_	-	-	-	-			
(0x67)	Reserved	-	-	-	-	-	-	-	-	07
(0x66)	OSCCAL					oration Register				37
(0x65)	Reserved	-	-	-	-	-	-		-	11
(0x64)	PRR	-	-	-	PRLCD	PRTIM1	PRSPI	PRUSART0	PRADC	44
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved								-	07
(0x61)	CLKPR	CLKPCE	-	-		CLKPS3	CLKPS2	CLKPS1	CLKPS0	37
(0x60) 0x3F (0x5F)	WDTCR SREG	-	- T	- H	WDCE S	WDE V	WDP2 N	WDP1 Z	WDP0 C	53 12
0x3E (0x5E)	SPH				-		SP10	SP9	SP8	12
0x3D (0x5D)	SPL	- SP7	- SP6	– SP5	 SP4	– SP3	SP10	SP1	SP0	14
0x3C (0x5C)	Reserved	5-7	GF 0	JF J		5-5	JF Z	3F1	3F 0	14
0x3B (0x5B)	Reserved									
0x3A (0x5A)	Reserved									
0x39 (0x59)	Reserved									
0x38 (0x58)	Reserved									
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	_	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	292
0x36 (0x56)	Reserved	-	_	_	-	_	-	_	-	
0x35 (0x55)	MCUCR	JTD	_	_	PUD	_	_	IVSEL	IVCE	59, 87, 277
0x34 (0x54)	MCUSR	-	_	-	JTRF	WDRF	BORF	EXTRF	PORF	277
0x33 (0x53)	SMCR	-	_	-	-	SM2	SM1	SM0	SE	44
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	ſ
0x31 (0x51)	OCDR	IDRD/OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	256
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	212
0x2F (0x4F)	Reserved	-	I	-	-	-	I	-	I	
0x2E (0x4E)	SPDR				SPI Data	Register				166
0x2D (0x4D)	SPSR	SPIF	WCOL	_	_	_	_	_	SPI2X	165
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	164
0x2B (0x4B)	GPIOR2				General Purpos	e I/O Register 2				28
0x2A (0x4A)	GPIOR1				General Purpos	e I/O Register 1				28
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	Reserved	-	-	-	-	-	-	-	-	
0x27 (0x47)	OCR0A			Tin	ner/Counter0 Outp	ut Compare Regist	er A			103
0x26 (0x46)	TCNT0				Timer/Cou	nter0 (8 Bit)				103
0x25 (0x45)	Reserved	-	-	-	-	-	-	-	-	ļ
0x24 (0x44)	TCCR0A	FOC0A	WGM00	COM0A1	COM0A0	WGM01	CS02	CS01	CS00	101
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSR2	PSR10	136, 156
0x22 (0x42)	EEARH	-	-	_	-	-	-	-	EEAR8	26
0x21 (0x41)	EEARL				EEPROM Address	Register Low Byte	•			26
0x20 (0x40)	EEDR					ata Register		1		26
0x1F (0x3F)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	26
0x1E (0x3E)	GPIOR0				General Purpos	e I/O Register 0				28
0.40 (0.20)	EIMSK	PCIE1	PCIE0	-	-	-	-	-	INT0	61
0x1D (0x3D) 0x1C (0x3C)	EIFR	PCIF1	PCIF0		-	-			INTF0	62

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	Reserved	-	-	-	-	-	-	_	-	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	-	OCF2A	TOV2	155
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	133
0x15 (0x35)	TIFR0	-	-	-	-	-	-	OCF0A	TOV0	104
0x14 (0x34)	PORTG	-	-	PORTG5	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	89
0x13 (0x33)	DDRG	-	-	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0	89
0x12 (0x32)	PING	-	-	PING5	PING4	PING3	PING2	PING1	PING0	89
0x11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	89
0x10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	89
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	89
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	88
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	88
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	89
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	88
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	88
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	88
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	88
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	88
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	88
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	87
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	87
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	87
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	87
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	87
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	87

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND I	OGIC INSTRUCTION	S			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd x Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd x Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C	2
BRANCH INSTRUC				_,-	
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP	K	Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL	ĸ	Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	k	Direct Subroutine Call	$PC \leftarrow k$	None	4
RET	ĸ	Subroutine Return	$PC \leftarrow K$ $PC \leftarrow STACK$	None	4
RETI		Interrupt Return	PC ← STACK	I	4
CPSE	Rd,Rr			None	1/2/3
CP3E		Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$ Rd – Rr		1/2/3
	Rd,Rr	Compare	Rd - Rr - C	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry		Z, N,V,C,H	
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\text{Rr}(b)=1) \text{PC} \leftarrow \text{PC} + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
		Bronch it Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal			
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCS BRCC	k k	Branch if Carry Set Branch if Carry Cleared	if (C = 1) then PC \leftarrow PC + k + 1 if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS BRCC BRSH	k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None	1/2 1/2
BRCS BRCC BRSH BRLO	k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None	1/2 1/2 1/2
BRCS BRCC BRSH	k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None	1/2 1/2
BRCS BRCC BRSH BRLO	k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None	1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI	k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None	1/2 1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI BRPL	k k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None	1/2 1/2 1/2 1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI BRPL BRGE	k k k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT	k k k k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=1) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array}$	None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS	k k k k k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array}$	None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k k k k k k	Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	$\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H=0) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array}$	None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST		Oct Dit in 1/O Devictor		News	0
SBI	P,b	Set Bit in I/O Register	$\frac{I/O(P,b) \leftarrow 1}{I/O(P,b) \leftarrow 0}$	None	2
CBI	P,b Rd	Clear Bit in I/O Register		None Z C N V	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V Z,C,N,V	-
ROL	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROR	Rd	Rotate Left Through Carry Rotate Right Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$ $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	ita, b	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ	1	Set Zero Flag	Z ← 1	Z	1
CLZ	1	Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable		1	1
CLI		Global Interrupt Disable	$I \leftarrow 0$	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, Rd \leftarrow (X)	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, (X) $\leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, (Y) $\leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
			(7) . D1:D0	None	-
SPM		Store Program Memory	(Z) ← R1:R0	NOTE	-
	Rd, P	In Port	$(2) \leftarrow R1:R0$ $Rd \leftarrow P$	None	- 1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
PUSH	Rr	Push Register on Stack	$STACK \leftarrow Rr$	None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

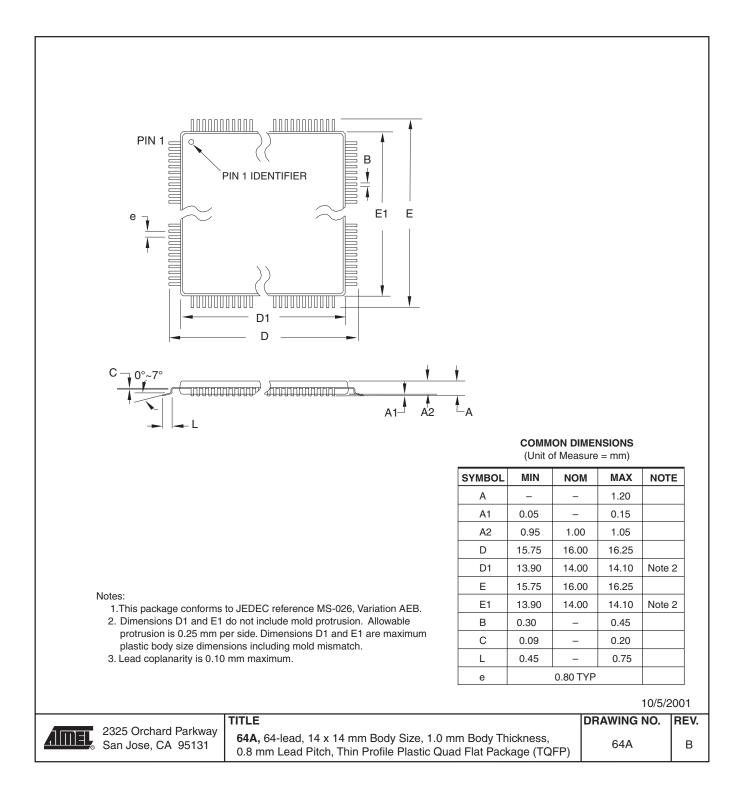
6. Ordering Information

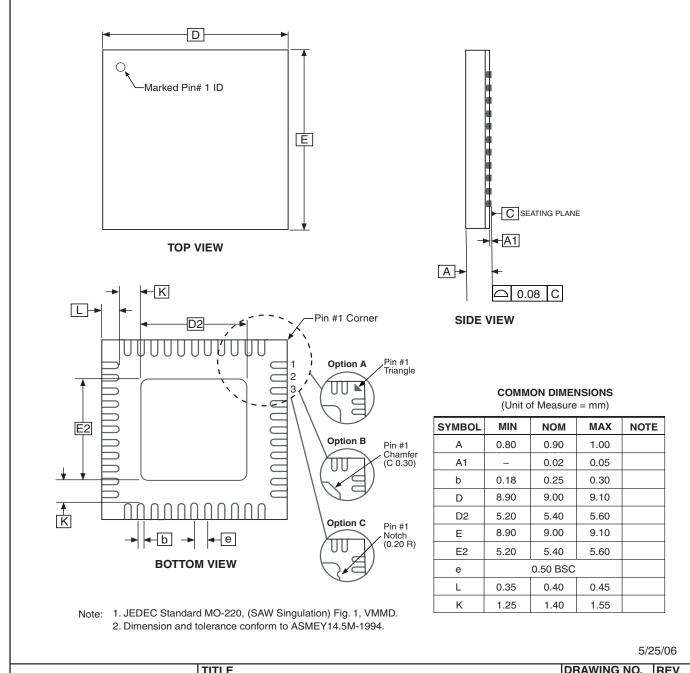
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽²⁾	Operation Range
8	1.8 - 5.5V	ATmega169PV-8AU ATmega169PV-8MU	64A 64M1	Industrial (-40°C to 85°C)
16	2.7 - 5.5V	ATmega169P-16AU ATmega169P-16MU	64A 64M1	Industrial (-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs. V_{CC} , see Figure 27-1 on page 328 and Figure 27-2 on page 329.


	Package Type
64A	64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
64M1	64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)



7. Packaging Information

7.1 64A

7.2 64M1

	тт Т	ΓLE	DRAWING NO.	REV.
2325 Orchard San Jose, CA	64 95131 64	IM1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 40 mm Exposed Pad, Micro Lead Frame Package (MLF)	64M1	G

8. Errata

8.1 ATmega169P Rev. G

No known errata.

8.2 ATmega169P Rev. A to F

Not sampled.

9. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

9.1 Rev. J 08/07

- 1. Updated "Features" on page 1.
- 2. Added "Minimizing Power Consumption" on page 235 in the LCD section.
- 3. Updated "System and Reset Characteristics" on page 330.

9.2 Rev. I 11/06

- 1. Updated "Low-frequency Crystal Oscillator" on page 33.
- 2. Updated Table 7-8 on page 34, Table 7-9 on page 34, Table 7-10 on page 34, Table 27-7 on page 333.
- 3. Updated note in Table 27-7 on page 333.

9.3 Rev. H 09/06

- 1. All characterization data moved to "Electrical Characteristics" on page 326.
- 2. Updated "Calibrated Internal RC Oscillator" on page 31.
- 3. Updated "System Control and Reset" on page 46.
- 4. Added note to Table 26-16 on page 311.
- 5. Updated "LCD Controller Characteristics" on page 334.
- 9.4 Rev. G 08/06
- 1. Updated "LCD Controller Characteristics" on page 334.

9.5 Rev. F 08/06

- 1. Updated "DC Characteristics" on page 326.
- 2. Updated Table 12-19 on page 83.

9.6 Rev. E 08/06

- 1. Updated "Low-frequency Crystal Oscillator" on page 33.
- 2. Updated "Device Identification Register" on page 258.
- 3. Updated "Signature Bytes" on page 297.
- 4. Added Table 26-6 on page 297.

9.7 Rev. D 07/06

- 1. Updated "Register Description for I/O-Ports" on page 87.
- 2. Updated "Fast PWM Mode" on page 96.
- 3. Updated "Fast PWM Mode" on page 119.
- 4. Updated Table 13-2 on page 101, Table 13-4 on page 102, Table 14-3 on page 128, Table 14-4 on page 129, Table 16-2 on page 152 and Table 16-4 on page 153.
- 5 Updated "UCSRnC USART Control and Status Register n C" on page 191.
- 6. Updated Features in "USI Universal Serial Interface" on page 198.
- 7. Added "Clock speed considerations." on page 205.
- 8. Updated Features in "LCD Controller" on page 232.
- 9. Updated "Register Summary" on page 370.

9.8 Rev. C 06/06

- 1. Updated typos.
- 2. Updated "Calibrated Internal RC Oscillator" on page 31.
- 3. Updated "OSCCAL Oscillator Calibration Register" on page 37.
- 4. Added Table 27-2 on page 329.

9.9 Rev. B 04/06

1. Updated "Calibrated Internal RC Oscillator" on page 31.

9.10 Rev. A 03/06

1. Initial revision.