Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.
A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.
For further information, contact Maxim's Applications Tech Support.

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

Abstract

General Description The MAX408/428/448 are high speed general purpose monolithic operational amplifiers in a single, dual or quad package, that are useful for signal frequencies extending into the video range. These Op Amps function in gain configurations greater-than or equal-to 3. High output current allows large capacitive loads to be driven at high speeds.

Open-loop voltage gain of 10k V/V and high slew rate of $90 \mathrm{~V} / \mu \mathrm{s}$ make the MAX408/428/448 ideal for analog amplification and high speed signal processing. 100 MHz gain bandwidth and a $\pm 0.1 \%$ settling time of I50ns make each amplifier ideal for fast data conversion systems. The amplifiers are capable of driving back terminated transmission lines of 75Ω with amplitudes of 5 V peak-to-peak. Along with the high speed and output drive capability, a 35nA offset current and trimmable offset voltage make the MAX408/428/448 optimal for signal conditioning applications where accuracy must be maintained.

Applications

Video Amplifiers
Test Equipment
Waveform Generators
Video Distribution
Pulse Amplifiers

- Fast Settling Time: $\pm 0.1 \%$ In 150 ns
- High Slew Rate: 90V/us
- Large Gain Bandwidth: 100MHz
- Full Power Bandwidth: 4.8 MHz at 6 V p-p
- Ease of Use: Internally Compensated for

AcL ≥ 3 with $50^{\circ}-60^{\circ}$ Phase Margin

- Low Supply Voltage Operation: $\pm 4 \mathrm{~V}$
- Wide Input Voltage Range: Within 1.5V of V+ and 0.5 V of V -
- Minimal Crosstalk: >90dB Separation (MAX428/448)
- Short Circuit Protection

PART	TEMP. RANGE	PIN-PACKAGE
MAX408ACPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX408ACSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
MAX408CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX408CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
MAX408C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice

Pin Configurations

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

ABSOLUTE MAXIMUM RATINGS

Supply Voltages \qquad $+6 \mathrm{~V}$
Differential Input Voltage $+9 \mathrm{~V}$
Common Mode Input Voltage|Vs| -0.5 V
Output Short Circuit Current Duration \qquad ndefinite Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .727 \mathrm{~mW}$
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 471 mW

14-Pin Plastic DIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .800 mW 14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............... 667 mW Operating Temperature Range
Commercial (MAX4_8AC/C) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)................... $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-MAX408

($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MAX408C			MAX408AC			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 16 \end{aligned}$		3	$\begin{gathered} 6 \\ 10 \end{gathered}$	mV
Average Offset Voltage Drift	$\Delta \mathrm{VOS} / \Delta \mathrm{T}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB			650	1100		650	1100	nA
Input Offset Current	los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{aligned} & 120 \\ & 200 \end{aligned}$		$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{aligned} & 120 \\ & 200 \end{aligned}$	nA
Input Common Mode Range	Vсм		$\begin{gathered} +3 \\ -4 \end{gathered}$	$\begin{gathered} +3.5 \\ -4.5 \end{gathered}$		$\begin{aligned} & +3 \\ & -4 \end{aligned}$	$\begin{gathered} +3.5 \\ -4.5 \end{gathered}$		V
Differential Input Resistance	Rind	(Note 1)	3	10		3	10		$\mathrm{M} \Omega$
Common Mode Input Resistance	Rinc	(Note 1)	4	8		4	8		$\mathrm{M} \Omega$
Differential Input Capacitance	CIND			2			2		pF
Common Mode Input Capacitance	Cinc			3			3		pF
Input Voltage Noise	eN	BW $=10 \mathrm{~Hz}$ to 100 kHz		12			12		$\mu \mathrm{V}$ RMS
Open Loop Voltage Gain	Av	VOUT $= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2	5		5	10		V / mV
Output Voltage Swing	Vout	$\begin{aligned} & \mathrm{R} \mathrm{~L}=2 \mathrm{k} \Omega \\ & \mathrm{RL}=150 \Omega \end{aligned}$	$\begin{aligned} & \pm 3.5 \\ & \pm 2.0 \end{aligned}$	± 2.4		$\begin{aligned} & \pm 3.5 \\ & \pm 2.5 \end{aligned}$	± 2.7		V
Power Supply Current	Is			7	10		7	10	mA
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {CM }}= \pm 2 \mathrm{~V}$	60	70		60	70		dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{VPS}= \pm 0.5 \mathrm{~V}$	60	66		60	66		dB
Slew Rate (Note 1)	SR	10-90\% of Leading Edge (Figure 1)	60	90		60	90		V/ $/ \mathrm{S}$
Settling Time	ts	To $\pm 0.1 \%(\pm 4 \mathrm{mV})$ of Final Value (Figure 1) (Note 1)		150	200		150	200	ns
Gain Bandwidth Product	GBW			100			100		MHz

Note 1: Not tested, guaranteed by design.

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

ELECTRICAL CHARACTERISTICS—MAX428

($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MAX428C			MAX428AC			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \end{aligned}$		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$	mV
Average Offset Voltage Drift	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		650	$\begin{aligned} & 1100 \\ & 1700 \end{aligned}$		650	$\begin{aligned} & 1100 \\ & 1700 \end{aligned}$	mA
Input Offset Current	los			35	120		35	120	nA
Input Common Mode Range	VCM		$\begin{aligned} & +3 \\ & -4 \end{aligned}$	$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		$\begin{aligned} & +3 \\ & -4 \end{aligned}$	$\begin{gathered} +3.5 \\ -4.5 \end{gathered}$		V
Differential Input Resistance	Rind	(Note 1)	3	10		3	10		$\mathrm{M} \Omega$
Common Mode Input Resistance	Rinc	(Note 1)	4	8		4	8		$\mathrm{M} \Omega$
Differential Input Capacitance	CIND			2			2		pF
Common Mode Input Capacitance	Cinc			3			3		pF
Input Voltage Noise	eN	BW $=10 \mathrm{~Hz}$ to 100 kHz		12			12		$\mu \mathrm{V}$ RMS
Open Loop Voltage Gain	Av	VOUT $= \pm 3 \mathrm{~V}, \mathrm{RL}=2 \mathrm{k} \Omega$	2	5		5	10		V / mV
Output Voltage Swing	Vout	$\begin{aligned} & \mathrm{RL}=2 \mathrm{k} \Omega \\ & \mathrm{RL}=150 \Omega \end{aligned}$	$\begin{aligned} & \pm 3.5 \\ & \pm 2.0 \end{aligned}$	± 2.4		$\begin{aligned} & \pm 3.5 \\ & \pm 2.5 \end{aligned}$	± 2.7		V
Power Supply Current (Both Amplifiers)	Is			15	20		15	20	mA
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {CM }}= \pm 2 \mathrm{~V}$	60	70		60	70		dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}$ PS $= \pm 0.5 \mathrm{~V}$	60	66		60	66		dB
Slew Rate (Note 1)	SR	10-90\% of Leading Edge (Figure 1)	60	90		60	90		V/ $\mu \mathrm{S}$
Settling Time	ts	To $\pm 0.1 \%(\pm 4 \mathrm{mV})$ of Final Value (Figure 1) (Note 1)		150	200		150	200	ns
Gain Bandwidth Product	GBW			100			100		MHz

Note 1: Not tested, guaranteed by design.

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

ELECTRICAL CHARACTERISTICS—MAX448
($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MAX408C			MAX408AC			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \end{aligned}$		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$	mV
Average Offset Voltage Drift	$\Delta \mathrm{V}$ os/ $/ \mathrm{T}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		650	$\begin{aligned} & 1100 \\ & 1700 \end{aligned}$		650	$\begin{aligned} & 1100 \\ & 1700 \end{aligned}$	nA
Input Offset Current	los			35	120		35	120	nA
Input Common Mode Range	VCM		$\begin{gathered} +3 \\ -4 \end{gathered}$	$\begin{gathered} +3.5 \\ -4.5 \end{gathered}$		$\begin{gathered} +3 \\ -4 \end{gathered}$	$\begin{gathered} +3.5 \\ -4.5 \end{gathered}$		V
Differential Input Resistance	Rind	(Note 1)	3	10		3	10		$\mathrm{M} \Omega$
Common Mode Input Resistance	Rinc	(Note 1)	4	8		4	8		$\mathrm{M} \Omega$
Differential Input Capacitance	CIND			2					pF
Common Mode Input Capacitance	Cinc			3			3		pF
Input Voltage Noise	eN	$B W=10 \mathrm{~Hz}$ to 100 kHz		12			12		$\mu \mathrm{V}_{\text {RMS }}$
Open Loop Voltage Gain	Av	VOUT $= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2	5		4	10		V / mV
Output Voltage Swing	Vout	$\begin{aligned} & \mathrm{RL}=2 \mathrm{k} \Omega \\ & \mathrm{RL}=150 \Omega \end{aligned}$	$\begin{aligned} & \pm 3.5 \\ & \pm 2.0 \end{aligned}$	± 2.4		$\begin{aligned} & \pm 3.5 \\ & \pm 2.5 \end{aligned}$	± 2.7		V
Power Supply Current (All Four Amplifiers)	Is			30	40		30	40	mA
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{VPS}= \pm 0.5 \mathrm{~V}$	60	66		60	66		dB
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$	60	70		60	70		dB
Slew Rate (Note 1)	SR	10-90\% of Leading Edge (Figure 1)	60	90		60	90		$\mathrm{V} / \mu \mathrm{S}$
Settling Time	ts	To $\pm 0.1 \%(\pm 4 \mathrm{mV})$ of Final Value (Figure 1) (Note 1)		150	200		150	200	ns
Gain Bandwidth Product	GBW			100			100		MHz

Note 1: Not tested, guaranteed by design.

AC CHARACTERISTICS—MAX408/428/448

($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MAX4XXC			MAX4XXC			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Small Signal Rise/Fall Time	tr/tf	$\begin{aligned} & \text { eo }= \pm 100 \mathrm{mV} \\ & 10-90 \% \text { (Figure 1) } \end{aligned}$		7			7		ns
Full Power Bandwidth	BWFP	$\begin{aligned} & \mathrm{RL}=2 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { VOUT }=6 \mathrm{Vp}-\mathrm{p} \end{aligned}$		4.8			4.8		MHz
Amp-Amp Crosstalk (MAX428/448)		Input Referenced $f=10 \mathrm{kHz}$		-96			-96		dB

\qquad

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

Typical Operating Characteristics
($\mathrm{V}_{\mathrm{S}}= \pm 5, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise stated and apply for each individual op amp where applicable.)

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

Figure 1A. Settling Time and Slew Rate Test Circuit

Figure 1B. Large Signal Response

Figure 1C. Small Signal Response

Application Information

AC Characteristics

The 35 MHz 10 dB crossover point of the MAX408/ 428/448 is achieved without feed forward compensation, a technique which can produce long tails in the recovery characteristic. The single pole rolloff follows the classic $20 \mathrm{~dB} / \mathrm{dec} a d e$ slope to frequencies approaching 50 MHz . The $10 \mathrm{~dB}(3.2 \mathrm{~V} / \mathrm{V})$ phase margin of 50°, even with a capacitive load of 50 pF , gives stable and predictable performance down to non-inverting gain configurations of approximately 3V/V (inverting gains of $-2 \mathrm{~V} / \mathrm{V}$). At frequencies beyond 50 MHz , the $20 \mathrm{~dB} / \mathrm{decade}$ slope is disturbed by an output stage zero, the damping factor of which is dependent upon the RL, CL load combination. This results in loss of gain

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

margin (gain at loop phase $=360^{\circ}$) at frequencies of 70 to 100 MHz which at a gain margin of $5 \mathrm{~dB}\left(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}\right.$ $=5 p F$) results in a peak in the gain of 3 amplifier configurations as shown in Figures 3 and 4.
Figure 3 shows a blow up of the open loop characteristics in the 10 MHz to 200 MHz frequency range, as well as the corresponding closed loop characteristics for a gain of three non-inverting amplifier at similar load conditions. It should be noted that the open loop characteristic does not show the additional phase shift covered by the input capacitance pole. This is why the closed loop peaking at 30 to 40 MHz is greater than what would be expected from the 50 to 60 degrees of phase margin indicated by the open loop characteristics. Corresponding small signal step response characteristics show well-behaved pulse waveforms with 16-33\% overshoot.
The input capacitive pole can be neutralized by adding a feedback capacitor to R_{2}. The value of capacitance is selected according to $\mathrm{R}_{1} \mathrm{CIN}=\mathrm{R}_{2} \mathrm{CFB}_{\mathrm{FB}}$, where $\mathrm{CIN}_{\text {IN }}$ is the sum of the common mode and differential input capacitance $\approx 5 p$ F. For $R_{2}=2 R_{1}, C_{F B}=C_{I N} / 2 \approx 2.5 p F$.
Figure 4 shows the results of this feedback capacitor addition. Neutralizing the input capacitance demonstrates the peaking that can result from the loss of gain margin at 70 to 100 MHz . As the load time constant
($\mathrm{R}_{\mathrm{L} C L}$) increases the peaking gets progressively worse $\approx 6 \mathrm{~dB}$ at $R_{L}=2 K, C_{L}=50 \mathrm{pF}$. The step response waveforms are as expected with a very strong 88 MHz ring being exhibited at $R_{L}=2 k, C_{L}=50 p F$ and no overshoot at $R L=50 \Omega, C L=5 p F$.

Layout Considerations

As with any high-speed wideband amplifier, certain layout considerations are necessary to ensure stable operation. All connections to the amplifier should remain as short as possible, and the power supplies bypassed with $0.1 \mu \mathrm{~F}$ capacitors to signal ground. It is suggested that a ground plane be considered as the best method for ensuring stability because it minimizes stray inductance and unwanted coupling in the ground signal paths.
To minimize capacitive effects, resistor values should be kept as small as possible, consistent with the application.

MAX408 Offset Voltage Nulling

The configuration of Figure 2 will give a typical Vos nulling range of $\pm 15 \mathrm{mV}$. If a smaller adjustment range is desired, resistor values R1 and R2 can be increased accordingly. For example, at $\mathrm{R} 1=3.6 \mathrm{k} \Omega$, the adjustment range is $\pm 5 \mathrm{mV}$. Since pins 1 and 5 are not part of the signal path, AC characteristics are left undisturbed.

Simplified Schematic. For MAX428/448 omit balance pins.

Figure 2. VOS Nulling Method for MAX408

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

Figure 3. Frequency and Time Domain Response Characteristics, $A v=3$

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

[^0]
Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX428A_CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX428ACSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
MAX428CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX428CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Small Outline
MAX428C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX448ACPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
MAX448ACSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Small Outline
MAX448CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
MAX448CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Small Outline
MAX448C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice

Single/Dual/Quad High-Speed, Fast-Settling, High Output Current Operational Amplifier

NOTES

\qquad

[^0]: Figure 4. Response Characteristics with Input Pole Cancellation, $A v=3$

