250MHz, Broadcast-Quality, Low-Power Video Op Amps

Abstract

General Description The MAX4102/MAX4103 op amps combine high-speed performance and ultra-low differential gain and phase while drawing only 5 mA of supply current. The MAX4102 is compensated for unity-gain stability, while the MAX4103 is compensated for a closed-loop gain (Avcl) of $2 \mathrm{~V} / \mathrm{V}$ or greater. The MAX4102/MAX4103 deliver a 250 MHz -3dB bandwidth (MAX4102) or a $180 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth (MAX4103). Differential gain and phase are an ultra-low 0.002\%/0.002 ${ }^{\circ}$ (MAX4102) and $0.008 \% / 0.003^{\circ}$ (MAX4103), making these amplifiers ideal for composite video applications. These high-speed op amps have a wide output voltage swing of $\pm 3.4 \mathrm{~V}\left(R_{L}=100 \Omega\right)$ and 80 mA current-drive capability.

Applications
Broadcast and High-Definition TV Systems
Pulse/RF Amplifier
ADC/DAC Amplifier

- 250MHz -3dB Bandwidth (MAX4102) 180MHz -3dB Bandwidth (MAX4103)
- Unity-Gain Stable (MAX4102)
- 350V/ μ s Slew Rate
- Lowest Differential Gain/Phase ($\mathrm{RL}_{\mathrm{L}}=150 \Omega$)

MAX4102: 0.002\%/0.002 ${ }^{\circ}$
MAX4103: $0.008 \% / 0.003^{\circ}$

- Low Distortion (SFDR 5MHz): -78dBc
- 100dB Open-Loop Gain
- High Output Drive: 80mA
- Low Power: 5mA Supply Current

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4102ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4103ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

TOP VIEN

AUAXIMV \qquad Maxim Integrated Products

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

250MHz, Broadc ast-Quality, Low-Power Video Op Amps

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE}) \qquad
Voltage on Any Pin to Ground or Any Other Pin $V_{C C}$ to $V_{E E}$
Short-Circuit Duration (VOUT to GND)........................Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
\qquad 471 mW

Operating Temperature Range
MAX4102ESA/MAX4103ESA $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC SPECIFICATIONS							
Input Offset Voltage	Vos	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			0.5	8	mV
Input Offset Voltage Drift	TCVos	VOUT $=0 \mathrm{~V}$			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}$ IN $=-\mathrm{V}_{\text {OS }}$			3	9	$\mu \mathrm{A}$
Input Offset Current	Ios	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-\mathrm{V}_{\text {OS }}$			0.04	0.5	$\mu \mathrm{A}$
Common-Mode Input Resistance	Rincm	Either input			5		$\mathrm{M} \Omega$
Common-Mode Input Capacitance	CIncm	Either input			1		pF
Input Voltage Noise	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$	MAX4102		7		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			MAX4103		5		
Integrated Voltage Noise		$\mathrm{f}=1 \mathrm{MHz}$ to 100 MHz	MAX4102		88		$\mu \mathrm{V}_{\text {RMS }}$
			MAX4103		63		
Input Current Noise	in_{n}	$f=100 \mathrm{kHz}$	MAX4102		1.0		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			MAX4103		1.0		
Integrated Current Noise		$\mathrm{f}=1 \mathrm{MHz}$ to 100 MHz	MAX4102		12.5		nARMS
			MAX4103	12.5			
Common-Mode Input Voltage	$\mathrm{V}_{\text {CM }}$			-2.5		2.5	V
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$		75	100		dB
Power-Supply Rejection	PSR	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$		70	100		dB
Open-Loop Voltage Gain	Avol	$\mathrm{V}_{\text {OUT }}= \pm 2.0 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=\infty$	66	96		dB
			$\mathrm{R}_{\mathrm{L}}=100 \Omega$	70	100		
Quiescent Supply Current	ISY	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			4.6	6	mA
Output Voltage Swing	Vout	$\mathrm{R}_{\mathrm{L}}=\infty$		± 3.3	± 3.7		V
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$		± 3.1	± 3.4		
Output Current		$\mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		65	80		mA
Short-Circuit Output Current	Isc	Short to ground or either supply voltage			90		mA

250MHz, Broadcast-Quality, Low-Power Video Op Amps

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 V, V_{E E}=-5 V, R L=100 \Omega, A V C L=+1\right.$ (MAX4102), $A V C L=+2(M A X 4103), T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Typic al Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted..$)$

250MHz, Broadcast-Quality, Low-Power Video Op Amps

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, R_{L}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

250MHz, Broadcast-Quality, Low-Power Video Op Amps

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

250MHz, Broadcast-Quality, Low-Power Video Op Amps

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

250MHz, Broadcast-Quality, Low-Power Video Op Amps

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

250MHz, Broadc ast-Quality, Low-Power Video Op Amps

Pin Description

PIN	NAME	FUNCTION
1	N.C.	Not internally connected
2	IN-	Inverting Input
3	IN+	Noninverting Input
4	VEE	Negative Power Supply. Connect to -5 V
5	N.C.	Not internally connected
6	VCC	Amplifier Output
7	N.C.	Positive Power Supply. Connect to +5 V
8		

Detailed Description

The MAX4102/MAX4103 low-power, high-speed op amps feature ultra-low differential gain and phase, and are optimized for the highest quality video applications. Differential gain and phase errors are $0.002 \% / 0.002^{\circ}$ for the MAX4102 and $0.008 \% / 0.003^{\circ}$ for the MAX4103. The MAX4102 also features a -3dB bandwidth of over 250 MHz and 0.1 dB gain-flatness of 130 MHz . The MAX4103 features a -3 dB bandwidth of 180 MHz and a 0.1 dB bandwidth of 80 MHz .

The MAX4102 is unity-gain stable, and the MAX4103 is optimized for closed-loop gains of $2 \mathrm{~V} / \mathrm{V}(6 \mathrm{~dB})$ and higher. Both devices drive back-terminated 50Ω or 75Ω cables to $\pm 3.1 \mathrm{~V}(\mathrm{~min})$ and deliver an output current of 80 mA .
Available in a small 8 -pin SO package, the MAX4102/ MAX4103 are ideal for high-definition TV systems (in RGB, broadcast, or consumer video applications) that benefit from low power consumption and superior differential gain and phase characteristics.

Applic ations Information Grounding, Bypassing, and PC Board Layout

In order to achieve the full bandwidth, Microstrip and Stripline techniques are recommended in most cases. To ensure your PC board does not degrade the amp's performance, it's wise to design the board for a frequency greater than 1 GHz . Even with very short runs, it's good practice to use this technique at critical points, such as inputs and outputs. Whether you use a constant-impedance board or not, observe the following guidelines when designing the board:

- Do not use wire-wrap boards, because they are too inductive.
- Do not use IC sockets. They increase parasitic capacitance and inductance.
- In general, surface-mount components have shorter leads and lower parasitic reactance, and give better high-frequency performance than through-hole components.
- The PC board should have at least two layers, with one side a signal layer and the other a ground plane.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.
- The ground plane should be as free from voids as possible.
On Maxim's evaluation kit, the ground plane has been removed from areas where keeping the trace capacitance to a minimum is more important than maintaining ground continuity. For example, the ground plane has been removed from beneath the IC to minimize pin capacitance.
The bypass capacitors should include a $0.1 \mu \mathrm{~F}$ at each supply pin and the ground plane, located as close to the package as possible. Then place a $10 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$ lowESR tantalum at the point of entry (to the PC board) of the power-supply pins. The power-supply trace should lead directly from the tantalum capacitor to the V_{CC} and $V_{E E}$ pins to maintain the low differential gain and phase of these devices.

Setting Gain

The MAX4102/MAX4103 are voltage-feedback op amps that can be configured as an inverting or noninverting gain block, as shown in Figures 1a and 1b. The gain is determined by the ratio of two resistors and does not affect amplifier frequency compensation.
In the unity-gain configuration (Figure 1c), maximum bandwidth and stability are achieved with the MAX4102 when a small feedback resistor is included. This resistor suppresses the negative effects of parasitic inductance and capacitance. A value of 24Ω provides the best combination of wide bandwidth, low peaking, and fast settling time. In addition, this resistor reduces the errors from input bias currents.

Choosing Resistor Values

The values of feedback and input resistors used in the inverting or noninverting gain configurations are not critical (as is the case with current-feedback amplifiers), but should be kept small and noninductive.

250MHz, Broadcast-Quality, Low-Power Video Op Amps

The input capacitance of the MAX4102/MAX4103 is approximately $2 p F$. In either the inverting or noninverting configuration, the bandwidth limit caused by the package capacitance and resistor time constant is $\mathrm{f} 3 \mathrm{~dB}=1 /(2 \Pi R C)$, where R is the parallel combination of the input and feedback resistors (RF and RG in Figure 2) and C is the package and board capacitance at the inverting input. RS1 and Rs2 represent the input termination resistors. Table 1 shows the typical bandwidth and resistor values for several gain configurations.

Figure 1a. Inverting Gain Configuration

Figure 1b. Noninverting Gain Configuration

Figure 1c. MAX4102 Unity-Gain Buffer Configuration

Table 1. Resistor and Bandwidth Values for Various Gain Configurations

DEVICE	GAIN $(\mathbf{V} / \mathbf{V})$	$\mathbf{R}_{\mathbf{G}}$ (Ω)	$\mathbf{R}_{\mathbf{F}}$ (Ω)	$\mathbf{R}_{\mathbf{T}}$ (Ω)	BAND- WIDTH $(\mathbf{M H z})$
MAX4102	1	∞	24	50	250
MAX4102	2	200	200	50	100
MAX4103	2	200	200	50	180
MAX4103	5	50	200	50	40
MAX4103	10	30	270	50	20
MAX4103	-1	200	200	56	180
MAX4103	-2	75	150	150	140
MAX4103	-5	50	250	∞	75
MAX4103	-10	50	500	∞	35

Note: Refer to Figure 1a for inverting gain configurations and Figure 1b for noninverting gain configurations. RT is calculated for 50Ω systems.

Resistor Types
Surface-mount resistors are the best choice for highfrequency circuits. They are of similar material to the metal-film resistors, but are deposited using a thick-film process in a flat, linear manner so that inductance is minimized. Their small size and lack of leads also minimize parasitic inductance and capacitance, thereby yielding more predictable performance.

Figure 2. Effect of Feedback Resistor Values and Parasitic Capacitance on Bandwidth

250MHz, Broadc ast-Quality, Low-Power Video Op Amps

Driving Capacitive Loads
When driving 50Ω or 75Ω back-terminated transmission lines, capacitive loading is not an issue. The MAX4102/ MAX4103 can typically drive 5 pF and 20pF, respectively. Figure 3a illustrates how a capacitive load influences the amplifier's peaking without an isolation resistor (Rs). Figure 3b shows how an isolation resistor decreases the amplifier's peaking. By using a small isolation resistor

Figure 3a. MAX4102 Bandwidth vs. Capacitive Load (No Isolation Resistor (Rs))

Figure 4a. Using an Isolation Resistor (RS) for Large Capacitive Loads (MAX4102)
between the amplifier output and the load, large capacitance values may be driven without oscillation (Figure $4 a)$. In most cases, less than 50Ω is sufficient. Use Figure $4 b$ to determine the value needed in your application. Determine the worst-case maximum capacitive load you may encounter and select the appropriate resistor from the graph.

Figure 3b. MAX4102 Bandwidth vs. 10pF Capacitive Load and Isolation Resistor

Figure 4b. Isolation vs. Capacitive Load

250MHz, Broadcast-Quality, Low-Power Video Op Amps

Package Information

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
E	0.150	0.157	3.80	4.00
e	0.050		1.27	
H	0.228	0.244	5.80	
L	0.016	0.050	0.40	1.27

> Narrow SO
> SMALL-OUTLINE
> PACKAGE
> (0.150 in.)

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	0.189	0.197	4.80	5.00
D	14	0.337	0.344	8.55	8.75
D	16	0.386	0.394	9.80	10.00
$21-0041 \mathrm{~A}$					

TRANSISTOR COUNT: 51
SUBSTRATE CONNECTED TO: VEE

250MHz，Broadcast－Quality，Low－Power Video Op Amps

