## Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.
A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.
For further information, contact Maxim's Applications Tech Support.

# 2MAXIM <br> 140MHz, 2-Channel Video Multiplexer/Amplifier 

$\overline{\text { General Description }}$
The MAX442 combines a 140 MHz video amplifier with a high-speed, 2-channel multiplexer in an 8-pin package. With its 36 ns switching time and low differential gain ( $0.07 \%$ ) and phase $\left(0.09^{\circ}\right)$ errors, it is ideal for broad-cast-quality video applications. The device is designed to drive both $50 \Omega$ and $75 \Omega$ cables, and can directly drive a $75 \Omega$ load to $\pm 3 \mathrm{~V}$.
The MAX442 video amplifier is compensated for unitygain stability, and features a 140 MHz bandwidth and a $250 \mathrm{~V} / \mathrm{\mu s}$ slew rate. The multiplexer's low input capacitance ( 4 pF with the channel on or off) maximizes highspeed performance, and a ground pin separating the two input channels minimizes crosstalk and simplifies board layout.
The MAX442 operates from $\pm 5 \mathrm{~V}$ supplies and typically consumes 300 mW . For applications that require more input channels, see the data sheets for the MAX440 8channel mux/amp and the MAX441 4-channel mux/amp.

Applications
Broadcast-Quality Video-Signal Multiplexing
Coaxial-Cable Drivers
Video Editing
Video Security Systems
Medical Imaging
High-Speed Signal Processing

Pin Configuration

$\qquad$

- 140MHz Unity-Gain Bandwidth
- 250V/ $\mu$ s Slew Rate
- 0.07\%/0.09 ${ }^{\circ}$ Differential Gain/Phase Error
- 36ns Channel Switch Time
- No External Compensation Components
- 8-Pin DIP and SO Packages
- Directly Drives $50 \Omega$ and $75 \Omega$ Cables

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX442CPA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX442CSA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 SO |
| MAX442C/D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice ${ }^{*}$ |
| MAX442EPA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX442ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |

${ }^{*}$ Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only.


## 140MHz, 2-Channel <br> Video Multiplexer/Amplifier

## ABSOLUTE MAXIMUM RATINGS

|  | Supply Voltage (V+ to V-)................................................ 12 V |
| :---: | :---: |
|  | Analog Input Voltage ......................... $\mathrm{V}+\mathrm{+}+0.3 \mathrm{~V}$ ) to (V- - 0.3V) |
|  | Digital Input Voltage .................................0.3V to (V+ + 0.3V) |
|  | Short-Circuit Current Duration ................................... 1 minute |
|  | Input Current to Any Pin, Power On or Off..................... $\pm 50 \mathrm{~mA}$ |
|  | Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ) |
|  | Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ........... 727 mW |
|  |  |



Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

( $V+=5 \mathrm{~V}, \mathrm{~V}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {max, }}$ unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC PERFORMANCE |  |  |  |  |  |  |  |
| Input Voltage Range | VIN |  |  | -2 |  | 2 | V |
| Input Offset Voltage (All Channels) | Vos | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\pm 1.5$ | $\pm 7.0$ | mV |
|  |  | MAX442C |  |  |  | $\pm 10$ |  |
|  |  | MAX442E |  |  |  | $\pm 12$ |  |
| Offset Matching (Voso-Vos1) |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\pm 1$ | $\pm 2.5$ | mV |
|  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | $\pm 5.0$ |  |
| Input Bias Current (Channel On) | IB | $\mathrm{V} / \mathrm{N}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\pm 0.6$ | $\pm 2$ | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | $\pm 5$ |  |
| Input Leakage Current (Channel Off) | ILKG | $\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\pm 0.5$ | $\pm 50$ | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| Input Resistance (Channel On) (Note 1) | RIN | $-2 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq 2 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 0.5 | 2.0 |  | $\mathrm{M} \Omega$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 0.2 |  |  |  |
| Input Capacitance | CIN | Channel on or off |  |  | 4 |  | pF |
| DC Output Resistance | Rout | $\mathrm{AV}=0 \mathrm{~dB}$ |  |  | 25 |  | $\mathrm{m} \Omega$ |
|  |  | $A v=6 d B$ |  |  | 50 |  |  |
| Open-Loop Voltage Gain | Avol | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega, \\ & -2 \mathrm{~V} \leq \mathrm{V} \text { OUT } \leq+2 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 50 | 60 |  | dB |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 46 |  |  |  |
| Common-Mode Rejection Ratio | CMRR | $-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 46 | 50 |  | dB |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 46 |  |  |  |
| Power-Supply Rejection Ratio | PSRR | $\pm 4.75 \mathrm{~V}$ to $\pm 5.25 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 54 | 80 |  | dB |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 54 |  |  |  |
| Output Voltage Swing | Vout | $R \mathrm{~L}=75 \Omega$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | $\pm 2.5$ | $\pm 3.0$ |  | V |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | $\pm 2.0$ |  |  |  |

## 140MHz, 2-Channel Video Multiplexer/Amplifier

ELECTRICAL CHARACTERISTICS (continued)
( $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |  |
| -3dB Bandwidth | BW | $A \mathrm{~V}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ |  | 140 |  |  | MHz |
| Slew Rate | SR1 |  |  | 250 |  |  | V/ $\mu \mathrm{s}$ |
| Differential Phase Error | DP | Figure 1 |  |  | 0.09 |  | degrees |
| Differential Gain Error | DG | Figure 1 |  | 0.07 |  |  | \% |
| Settling Time | ts | To $0.1 \%$ of final value, $A V=0 d B, R L=150 \Omega, 2 V$ step input |  | 50 |  |  | ns |
| Crosstalk | Xtalk | $f=10 \mathrm{MHz}, \mathrm{RS}=75 \Omega, A \mathrm{~V}=0 \mathrm{~dB}$, Figure 6 |  |  | 76 |  | dB |
| Input Noise-Voltage Density | $e_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ |  | 12 |  |  | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| POWER REQUIREMENTS |  |  |  |  |  |  |  |
| Operating Supply-Voltage Range | Vs |  |  | $\pm 4.75$ |  | $\pm 5.25$ | V |
| Positive Supply Current | Icc | V IN $=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 25 | 30 | 35 | mA |
|  |  |  | MAX442C | 22 |  | 38 |  |
|  |  |  | MAX442E | 19 |  | 41 |  |
| Negative Supply Current | IeE | $\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 23 | 28 | 35 | mA |
|  |  |  | MAX442C | 20 |  | 38 |  |
|  |  |  | MAX442E | 17 |  | 41 |  |
| SWITCHING CHARACTERISTICS |  |  |  |  |  |  |  |
| Logic Low Voltage | VIL |  |  |  |  | 0.8 | V |
| Logic High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.4 |  |  | V |
| Address Propagation Delay | tAPD | Figure 7 |  | 24 |  |  | ns |
| Channel Switching Time | tsw | Figure 7 (Note 2) |  | 36 |  |  | ns |

Note 1: Incremental resistance for a common-mode voltage between $\pm 2 \mathrm{~V}$.
Note 2: Channel Switching Time specified between two grounded input channels; does not include signal rise/fall times for switching between channels with different input voltages.

Typical Operating Characteristics
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)




## 140MHz, 2-Channel Video Multiplexer/Amplifier



4 $\qquad$

# 140MHz, 2-Channel Video Multiplexer/Amplifier 

Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :--- |
| 1 | IN0 | Analog Input, channel 0 |
| 2 | GND | Ground |
| 3 | IN1 | Analog Input, channel 1 |
| 4 | V- | Negative Power Supply, -5V |
| 5 | IN- | Amplifier Inverting Input |
| 6 | Vout | Amplifier Output |
| 7 | V+ | Positive Power Supply, +5V <br> 8 |
| A0 | Channel Address Input: <br> A0 $=$ logic 0 selects channel 0, <br> A0 $=$ logic 1 selects channel 1 |  |

## Applications Information

The MAX442's bipolar construction results in a typical channel input capacitance of only 4 pF , whether the channel is on or off. As with all ICs, the mux's input capacitance forms a single-pole RC lowpass filter with the signal source's output impedance. This filter can limit the system's signal bandwidth if the RC product becomes too large. However, the MAX442's low channel input capacitance allows full AC performance of the amplifier, even with source impedances as great as $250 \Omega$-a significant improvement over common mux or switch alternatives.
Feedback resistors should be limited to no more than $500 \Omega$ to ensure that the RC time constant formed by the resistors, the circuit board's capacitance, and the capacitance of the amplifier input pins does not limit the system's high-speed performance.

Power-Supply Bypassing and Board Layout
Realizing the full AC performance of high-speed amplifiers requires careful attention to power-supply bypassing and board layout. Use a low-impedance ground plane with the MAX442. With multilayer boards, the ground plane should be located on the PC board's component side to minimize impedance between the components and the ground plane. For single-layer boards, components should be mounted on the board's copper side and the ground plane should include the entire portion of the board that is not dedicated to a specific signal trace.

To prevent oscillation and unwanted signal coupling, minimize trace area at the circuit's critical high-impedance nodes, especially the amplifier summing junction (the amplifier's inverting input). Surround these critical nodes with a ground trace, and include ground traces between all signal traces to minimize parasitic coupling that can degrade crosstalk and/or amplifier stability. Keep signal paths as short as possible to minimize inductance, and keep all input channel traces at equal lengths to maintain the phase relationship between the input channels.
Bypass all power-supply pins directly to the ground plane with $0.1 \mu \mathrm{~F}$ ceramic capacitors, placed as close to the supply pins as possible. For high-current loads, it may be necessary to include $1 \mu \mathrm{~F}$ tantalum or alu-minum-electrolytic capacitors in parallel with the $0.1 \mu \mathrm{~F}$ ceramic bypass capacitors. Keep capacitor lead lengths as short as possible to minimize series inductance; surface-mount (chip) capacitors are ideal for this application.

Differential Gain and Phase Errors
In color video applications, lowest differential gain and phase errors are critical for an IC, because they cause changes in contrast and color of the displayed picture. Typically, the MAX442's multiplexer/amplifier combination has a differential gain and phase error of only $0.07 \%$ and $0.09^{\circ}$, respectively. This low differential gain and phase error makes the MAX442 ideal for use in broadcast-quality color video systems.

Coaxial-Cable Drivers
High-speed performance and excellent output current capability make the MAX442 ideal for driving $50 \Omega$ or $75 \Omega$ coaxial cables. The MAX442 will drive $50 \Omega$ and $75 \Omega$ coaxial cables to $\pm 3 \mathrm{~V}$.


Figure 1. Differential Gain and Phase Error Test Circuit

## 140MHz, 2-Channel Video Multiplexer/Amplifier

The Typical Operating Circuit shows the MAX442 driving a back-terminated $75 \Omega$ video cable. The back-termination resistor (at the MAX442 output) is included to match the impedance of the cable's driven end to the characteristic impedance of the cable itself. This, plus the load-termination resistor, eliminates signal reflections from the cable's ends. The back-termination resistor forms a voltage divider with the load impedance, which attenuates the signal at the cable output by onehalf. The amplifier is operated with a $2 \mathrm{~V} / \mathrm{V}$ closed-loop gain to provide unity gain at the cable's video output.

Capacitive-Load Driving Driving large capacitive loads increases the likelihood of oscillation in most amplifier circuits. This is especially true for circuits with high loop gains, like voltage fol-


Figure 2. Capacitive-Load-Driving Circuit


Figure 3. Output Switching Transient when Switching Between Two Grounded Inputs with $R_{L}=100 \Omega$
lowers. The amplifier's output impedance and the capacitive load form an RC filter that adds a pole to the loop response. If the pole frequency is low enough, as when driving a large capacitive load, the circuit phase margin is degraded and oscillation may occur.
With capacitive loads greater than approximately 50 pF and the MAX442 configured as a unity-gain buffer, use an isolation resistor in series with the load, as shown in Figure 2. The resistor removes the pole from the loop response caused by the load capacitance.

Channel Switching Time/Transient
When the MAX442 multiplexer is switched from one channel to another, a small glitch will appear at the output. Figure 3 shows the results of putting a 0 V to 5 V pulse 100 ns wide into AO.


Figure 4. Pulse Response with $R_{L}=100 \Omega$ (50 3 back-terminated cable), $A V C L=+1 V / V$


Figure 5. Pulse Response with $R_{L}=100 \Omega$ ( $50 \Omega$ back-terminated cable), $A V C L=+2 V / V$

# 140MHz, 2-Channel Video Multiplexer/Amplifier 



Figure 6. Crosstalk Test Circuit


Figure 7. Switch Timing

TRANSISTOR COUNT: 137 SUBSTRATE CONNECTED TO V-


| 3 |
| :--- |
|  |
|  |
| A |

## 140MHz, 2-Channel <br> Video Multiplexer/Amplifier



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

