
### BDTIC www.bdtic.com/ATMEL

#### Features

- Utilizes the AVR<sup>®</sup> RISC Architecture
- AVR High-performance and Low-power RISC Architecture
  - 89 Powerful Instructions Most Single Clock Cycle Execution
  - 32 x 8 General Purpose Working Registers
  - Up to 12 MIPS Throughput at 12 MHz
- Data and Non-volatile Program Memory
  - 1K Byte of In-System Programmable Flash Endurance: 1,000 Write/Erase Cycles
    - 64 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
  - Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
  - One 8-bit Timer/Counter with Separate Prescaler
  - On-chip Analog Comparator
  - Programmable Watchdog Timer with On-chip Oscillator
  - SPI Serial Interface for In-System Programming
- Special Microcontroller Features
  - Low-power Idle and Power-down Modes
  - External and Internal Interrupt Sources
  - Selectable On-chip RC Oscillator for Zero External Components
- Specifications
  - Low-power, High-speed CMOS Process Technology
  - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
  - Active: 2.0 mA
  - Idle Mode: 0.4 mA
  - Power-down Mode: <1 μA
- I/O and Packages
  - 15 Programmable I/O Lines
  - 20-pin PDIP, SOIC and SSOP
- Operating Voltages
  - 2.7 6.0V (AT90S1200-4)
  - 4.0 6.0V (AT90S1200-12)
- Speed Grades
  - 0 4 MHz, (AT90S1200-4)
  - 0 12 MHz, (AT90S1200-12)

### **Pin Configuration**







8-bit **AVR**<sup>®</sup> Microcontroller with 1K Byte of In-System Programmable Flash

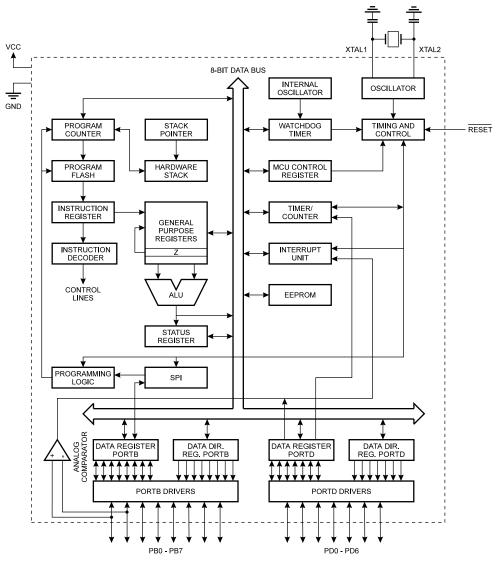
## AT90S1200

# Summary

Rev. 0838HS-AVR-03/02

Note: This is a summary document. A complete document is available on our web site at *www.atmel.com*.




#### Description

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with the 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

#### **Block Diagram**

Figure 1. The AT90S1200 Block Diagram



The architecture supports high-level languages efficiently as well as extremely dense assembler code programs. The AT90S1200 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers, internal and external interrupts, programmable watchdog timer with internal oscillator, an SPI serial port for program downloading and two software selectable power-saving modes. The Idle Mode stops the CPU while allow-

| ing the Registers, Timer/Counter, Watchdog and Interrupt system to continue                  |
|----------------------------------------------------------------------------------------------|
| functioning. The Power-down mode saves the register contents but freezes the Oscilla-        |
| tor, disabling all other chip functions until the next External Interrupt or hardware Reset. |

The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip In-System Programmable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S1200 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications.

The AT90S1200 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

| Pin Descriptions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC              | Supply voltage pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GND              | Ground pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Port B (PB7PB0)  | Port B is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). PB0 and PB1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the On-chip Analog Comparator. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active. |
|                  | Port B also serves the functions of various special features of the AT90S1200 as listed on page 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Port D (PD6PD0)  | Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.                                                                                                                                                                                                                                            |
|                  | Port D also serves the functions of various special features of the AT90S1200 as listed on page 34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RESET            | Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| XTAL1            | Input to the inverting oscillator amplifier and input to the internal clock operating circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| XTAL2            | Output from the inverting oscillator amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





#### AT90S1200 Register Summary

| Address          | Name                 | Bit 7  | Bit 6  | Bit 5  | Bit 4     | Bit 3          | Bit 2   | Bit 1  | Bit 0  | Page   |
|------------------|----------------------|--------|--------|--------|-----------|----------------|---------|--------|--------|--------|
| \$3F             | SREG                 | I      | Т      | Н      | S         | V              | N       | Z      | С      | page 1 |
| \$3E             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$3D             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$3C             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$3B             | GIMSK                | -      | INT0   | -      | -         | -              | -       | -      | -      | page 1 |
| \$3A             | Reserved             |        |        |        | •         | •              |         |        |        |        |
| \$39             | TIMSK                | -      | -      | -      | -         | -              | -       | TOIE0  | -      | page 1 |
| \$38             | TIFR                 | -      | -      | -      | -         | -              | -       | TOV0   | -      | page 1 |
| \$37             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$36             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$35             | MCUCR                | -      | -      | SE     | SM        | -              | -       | ISC01  | ISC00  | page 1 |
| \$34             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$33             | TCCR0                | -      | -      | -      | -         | -              | CS02    | CS01   | CS00   | page 2 |
| \$32             | TCNT0                |        |        |        | Timer/Cou | nter0 (8 Bits) |         |        |        | page 2 |
| \$31             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$30             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2F             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2E             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2D             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2C             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2B             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$2A             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$29             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$28             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$27             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$26             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$25             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$24             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$23             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$22             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$21             | WDTCR                | -      | -      | -      | -         | WDE            | WDP2    | WDP1   | WDP0   | page 2 |
| \$20             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$1F             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$1E             | EEAR                 | -      |        |        | EEP       | ROM Address R  | egister |        |        | page 2 |
| \$1D             | EEDR                 |        |        |        | EEPROM    | Data Register  |         |        |        | page 2 |
| \$1C             | EECR                 | -      | -      | -      | -         | -              | -       | EEWE   | EERE   | page 2 |
| \$1B             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$1A             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$19             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$18             | PORTB                | PORTB7 | PORTB6 | PORTB5 | PORTB4    | PORTB3         | PORTB2  | PORTB1 | PORTB0 | page 2 |
| \$17             | DDRB                 | DDB7   | DDB6   | DDB5   | DDB4      | DDB3           | DDB2    | DDB1   | DDB0   | page 2 |
| \$16             | PINB                 | PINB7  | PINB6  | PINB5  | PINB4     | PINB3          | PINB2   | PINB1  | PINB0  | page 2 |
| \$15             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$14             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$13             | Reserved             |        |        |        |           |                |         |        |        |        |
| \$12             | PORTD                | -      | PORTD6 | PORTD5 | PORTD4    | PORTD3         | PORTD2  | PORTD1 | PORTD0 | page 3 |
| \$11             | DDRD                 | -      | DDD6   | DDD5   | DDD4      | DDD3           | DDD2    | DDD1   | DDD0   | page 3 |
| ΨΠ               | PIND                 | -      | PIND6  | PIND5  | PIND4     | PIND3          | PIND2   | PIND1  | PIND0  | page 3 |
| \$10             | 1                    |        |        | ·      | •         | •              | •       | •      | ·      |        |
|                  | Reserved             |        |        |        |           |                |         |        |        |        |
| \$10<br>\$0F     | Reserved<br>Reserved |        |        |        |           |                |         |        |        |        |
| \$10             |                      |        |        |        |           |                |         |        |        |        |
| \$10<br>\$0F<br> | Reserved             | ACD    | -      | ACO    | ACI       | ACIE           | -       | ACIS1  | ACIS0  | page 2 |

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

4

# AT90S1200

### Instruction Set Summary

| Mnemonic     | Operands      | Description                                                        | Operation                                                                                              | Flags     | # Clocks   |
|--------------|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|------------|
|              | ND LOGIC INST |                                                                    |                                                                                                        | · · ·     |            |
| ADD          | Rd, Rr        | Add Two Registers                                                  | $Rd \leftarrow Rd + Rr$                                                                                | Z,C,N,V,H | 1          |
| ADC          | Rd, Rr        | Add with Carry Two Registers                                       | $Rd \leftarrow Rd + Rr + C$                                                                            | Z,C,N,V,H | 1          |
| SUB          | Rd, Rr        | Subtract Two Registers                                             | Rd ← Rd - Rr                                                                                           | Z,C,N,V,H | 1          |
| SUBI         | Rd, K         | Subtract Constant from Register                                    | Rd ← Rd - K                                                                                            | Z,C,N,V,H | 1          |
| SBC          | Rd, Rr        | Subtract with Carry Two Registers                                  | $Rd \leftarrow Rd - Rr - C$                                                                            | Z,C,N,V,H | 1          |
| SBCI         | Rd, K         | Subtract with Carry Constant from Reg.                             | $Rd \leftarrow Rd - K - C$                                                                             | Z,C,N,V,H | 1          |
| AND          | Rd, Rr        | Logical AND Registers                                              | Rd ← Rd • Rr                                                                                           | Z,N,V     | 1          |
| ANDI         | Rd, K         | Logical AND Register and Constant                                  | $Rd \gets Rd \bullet K$                                                                                | Z,N,V     | 1          |
| OR           | Rd, Rr        | Logical OR Registers                                               | Rd ← Rd v Rr                                                                                           | Z,N,V     | 1          |
| ORI          | Rd, K         | Logical OR Register and Constant                                   | $Rd \leftarrow Rd \lor K$                                                                              | Z,N,V     | 1          |
| EOR          | Rd, Rr        | Exclusive OR Registers                                             | $Rd \leftarrow Rd \oplus Rr$                                                                           | Z,N,V     | 1          |
| COM          | Rd            | One's Complement                                                   | Rd ← \$FF - Rd                                                                                         | Z,C,N,V   | 1          |
| NEG          | Rd            | Two's Complement                                                   | Rd ← \$00 - Rd                                                                                         | Z,C,N,V,H | 1          |
| SBR          | Rd, K         | Set Bit(s) in Register                                             | $Rd \leftarrow Rd \lor K$                                                                              | Z,N,V     | 1          |
| CBR          | Rd, K         | Clear Bit(s) in Register                                           | $Rd \leftarrow Rd \bullet (FFh - K)$                                                                   | Z,N,V     | 1          |
| INC          | Rd            | Increment                                                          | $Rd \leftarrow Rd + 1$                                                                                 | Z,N,V     | 1          |
| DEC          | Rd            | Decrement                                                          | Rd ← Rd - 1                                                                                            | Z,N,V     | 1          |
| TST          | Rd            | Test for Zero or Minus                                             | $Rd \gets Rd \bullet Rd$                                                                               | Z,N,V     | 1          |
| CLR          | Rd            | Clear Register                                                     | $Rd \leftarrow Rd \oplus Rd$                                                                           | Z,N,V     | 1          |
| SER          | Rd            | Set Register                                                       | Rd ← \$FF                                                                                              | None      | 1          |
| BRANCH INST  | RUCTIONS      | -                                                                  |                                                                                                        | 1 1       |            |
| RJMP         | k             | Relative Jump                                                      | $PC \leftarrow PC + k + 1$                                                                             | None      | 2          |
| RCALL        | k             | Relative Subroutine Call                                           | $PC \leftarrow PC + k + 1$                                                                             | None      | 3          |
| RET          |               | Subroutine Return                                                  | PC ← STACK                                                                                             | None      | 4          |
| RETI         |               | Interrupt Return                                                   | PC ← STACK                                                                                             |           | 4          |
| CPSE         | Rd, Rr        | Compare, Skip if Equal                                             | if (Rd = Rr) PC $\leftarrow$ PC + 2 or 3                                                               | None      | 1/2        |
| СР           | Rd, Rr        | Compare                                                            | Rd - Br                                                                                                | Z,N,V,C,H | 1          |
| CPC          | Rd, Rr        | Compare with Carry                                                 | Rd - Rr - C                                                                                            | Z,N,V,C,H | 1          |
| CPI          | Rd, K         | Compare Register with Immediate                                    | Rd - K                                                                                                 | Z,N,V,C,H | 1          |
| SBRC         | Rr, b         | Skip if Bit in Register Cleared                                    | if $(\text{Rr}(b) = 0) \text{ PC} \leftarrow \text{PC} + 2 \text{ or } 3$                              | None      | 1/2        |
| SBRS         | Rr, b         | Skip if Bit in Register is Set                                     | if $(\operatorname{Rr}(b) = 1) \operatorname{PC} \leftarrow \operatorname{PC} + 2 \operatorname{or} 3$ | None      | 1/2        |
| SBIC         | P, b          | Skip if Bit in I/O Register Cleared                                | if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$                                                       | None      | 1/2        |
| SBIS         | P, b          | Skip if Bit in I/O Register is Set                                 | if $(P(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$                                                     | None      | 1/2        |
| BRBS         | s, k          | Branch if Status Flag Set                                          | if (SREG(s) = 1) then $PC \leftarrow PC + k + 1$                                                       | None      | 1/2        |
| BRBC         | s, k          | Branch if Status Flag Cleared                                      | if (SREG(s) = 0) then PC $\leftarrow$ PC + k + 1                                                       | None      | 1/2        |
| BREQ         | k k           | Branch if Equal                                                    | if $(Z = 1)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRNE         | k             | Branch if Not Equal                                                | if $(Z = 0)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRCS         | k             | Branch if Carry Set                                                | if (C = 1) then PC $\leftarrow$ PC + k + 1                                                             | None      | 1/2        |
| BRCC         | k             | Branch if Carry Cleared                                            | if $(C = 0)$ then $PC \leftarrow PC + k + 1$                                                           | None      | 1/2        |
| BRSH         | k             | Branch if Same or Higher                                           | if $(C = 0)$ then $PC \leftarrow PC + k + 1$                                                           | None      | 1/2        |
| BRLO         | k             | Branch if Lower                                                    | if (C = 1) then PC $\leftarrow$ PC + k + 1                                                             | None      | 1/2        |
| BRMI         | k             | Branch if Minus                                                    | if $(N = 1)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRPL         | k             | Branch if Plus                                                     | if $(N = 0)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRGE         | k             | Branch if Greater or Equal, Signed                                 | if $(N \oplus V = 0)$ then PC $\leftarrow$ PC + k + 1                                                  | None      | 1/2        |
| BRLT         | k k           | Branch if Less than Zero, Signed                                   | . ,                                                                                                    | None      | 1/2        |
| BRHS         |               |                                                                    | if $(N \oplus V = 1)$ then PC $\leftarrow$ PC + k + 1<br>if $(H = 1)$ then PC $\leftarrow$ PC + k + 1  |           | 1/2        |
|              | k             | Branch if Half-carry Flag Set<br>Branch if Half-carry Flag Cleared |                                                                                                        | None      |            |
| BRHC         | k             | , ,                                                                | if (H = 0) then PC $\leftarrow$ PC + k + 1<br>if (T = 1) then PC $\leftarrow$ PC + k + 1               | None      | 1/2        |
| BRTS<br>BRTC | k             | Branch if T-Flag Set<br>Branch if T-Flag Cleared                   | if $(I = 1)$ then PC $\leftarrow$ PC + k + 1<br>if $(T = 0)$ then PC $\leftarrow$ PC + k + 1           | None      | 1/2<br>1/2 |
|              | k             |                                                                    |                                                                                                        | None      |            |
| BRVS         | k             | Branch if Overflow Flag is Set                                     | if $(V = 1)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRVC         | k             | Branch if Overflow Flag is Cleared                                 | if $(V = 0)$ then PC $\leftarrow$ PC + k + 1                                                           | None      | 1/2        |
| BRIE         | k             | Branch if Interrupt Enabled                                        | if (I = 1) then PC $\leftarrow$ PC + k + 1                                                             | None      | 1/2        |
| BRID         | k             | Branch if Interrupt Disabled                                       | if (I = 0) then PC $\leftarrow$ PC + k + 1                                                             | None      | 1/2        |
|              |               |                                                                    |                                                                                                        |           | -          |
| LD           | Rd, Z         | Load Register Indirect                                             | $Rd \leftarrow (Z)$                                                                                    | None      | 2          |
| ST           | Z, Rr         | Store Register Indirect                                            | (Z) ← Rr                                                                                               | None      | 2          |
| MOV          | Rd, Rr        | Move between Registers                                             | Rd ← Rr                                                                                                | None      | 1          |
| LDI          | Rd, K         | Load Immediate                                                     | $Rd \leftarrow K$                                                                                      | None      | 1          |
| IN           | Rd, P         | In Port                                                            | $Rd \leftarrow P$                                                                                      | None      | 1          |
|              |               | Out Port                                                           | P ← Rr                                                                                                 |           |            |





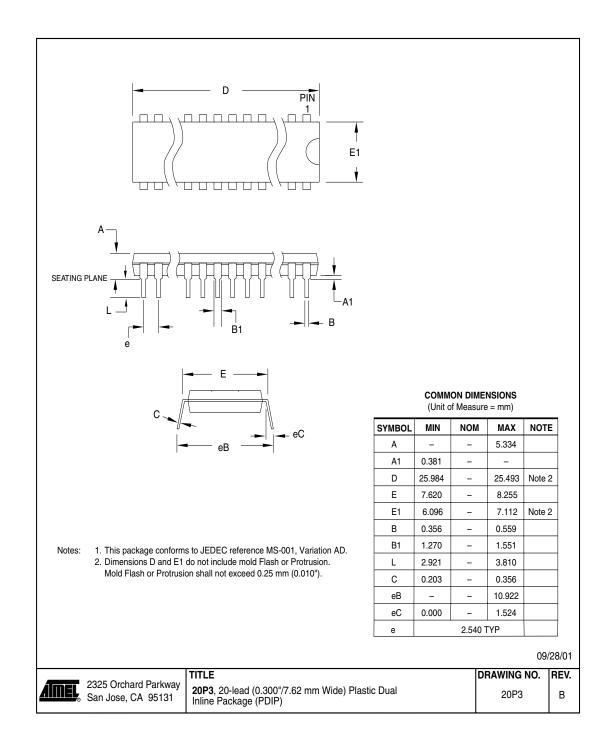
### Instruction Set Summary (Continued)

| Mnemonic      | Operands      | Description                     | Operation                                                          | Flags   | # Clocks |
|---------------|---------------|---------------------------------|--------------------------------------------------------------------|---------|----------|
| BIT AND BIT-T | EST INSTRUCTI | ONS                             |                                                                    |         | 1        |
| SBI           | P, b          | Set Bit in I/O Register         | I/O(P,b) ← 1                                                       | None    | 2        |
| CBI           | P, b          | Clear Bit in I/O Register       | $I/O(P,b) \leftarrow 0$                                            | None    | 2        |
| LSL           | Rd            | Logical Shift Left              | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                     | Z,C,N,V | 1        |
| LSR           | Rd            | Logical Shift Right             | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$                     | Z,C,N,V | 1        |
| ROL           | Rd            | Rotate Left through Carry       | $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$ | Z,C,N,V | 1        |
| ROR           | Rd            | Rotate Right through Carry      | $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ | Z,C,N,V | 1        |
| ASR           | Rd            | Arithmetic Shift Right          | $Rd(n) \leftarrow Rd(n+1), n = 06$                                 | Z,C,N,V | 1        |
| SWAP          | Rd            | Swap Nibbles                    | $Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$               | None    | 1        |
| BSET          | S             | Flag Set                        | SREG(s) ← 1                                                        | SREG(s) | 1        |
| BCLR          | S             | Flag Clear                      | $SREG(s) \leftarrow 0$                                             | SREG(s) | 1        |
| BST           | Rr, b         | Bit Store from Register to T    | $T \leftarrow Rr(b)$                                               | Т       | 1        |
| BLD           | Rd, b         | Bit Load from T to Register     | $Rd(b) \leftarrow T$                                               | None    | 1        |
| SEC           |               | Set Carry                       | C ← 1                                                              | С       | 1        |
| CLC           |               | Clear Carry                     | $C \leftarrow O$                                                   | С       | 1        |
| SEN           |               | Set Negative Flag               | N ← 1                                                              | N       | 1        |
| CLN           |               | Clear Negative Flag             | N ← 0                                                              | N       | 1        |
| SEZ           |               | Set Zero Flag                   | Z ← 1                                                              | Z       | 1        |
| CLZ           |               | Clear Zero Flag                 | $Z \leftarrow 0$                                                   | Z       | 1        |
| SEI           |               | Global Interrupt Enable         | ← 1                                                                | 1       | 1        |
| CLI           |               | Global Interrupt Disable        | I ← 0                                                              | 1       | 1        |
| SES           |               | Set Signed Test Flag            | S ← 1                                                              | S       | 1        |
| CLS           |               | Clear Signed Test Flag          | S ← 0                                                              | S       | 1        |
| SEV           |               | Set Two's Complement Overflow   | V ← 1                                                              | V       | 1        |
| CLV           |               | Clear Two's Complement Overflow | $V \leftarrow 0$                                                   | V       | 1        |
| SET           |               | Set T in SREG                   | T ← 1                                                              | Т       | 1        |
| CLT           |               | Clear T in SREG                 | $T \leftarrow 0$                                                   | Т       | 1        |
| SEH           |               | Set Half-carry Flag in SREG     | H ← 1                                                              | Н       | 1        |
| CLH           |               | Clear Half-carry Flag in SREG   | H ← 0                                                              | Н       | 1        |
| NOP           |               | No Operation                    |                                                                    | None    | 1        |
| SLEEP         |               | Sleep                           | (see specific descr. for Sleep function)                           | None    | 1        |
| WDR           |               | Watchdog Reset                  | (see specific descr. for WDR/timer)                                | None    | 1        |

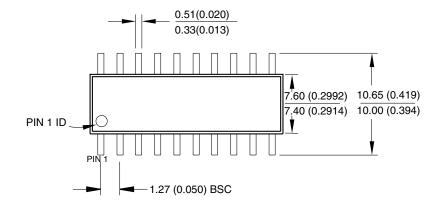
# Ordering Information<sup>(1)</sup>

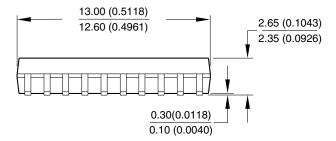
| Speed (MHz) | Power Supply | Ordering Code  | Package | Operation Range |
|-------------|--------------|----------------|---------|-----------------|
| 4           | 2.7 - 6.0V   | AT90S1200-4PC  | 20P3    | Commercial      |
|             |              | AT90S1200-4SC  | 20S     | (0°C to 70°C)   |
|             |              | AT90S1200-4YC  | 20Y     |                 |
|             |              | AT90S1200-4PI  | 20P3    | Industrial      |
|             |              | AT90S1200-4SI  | 20S     | (-40°C to 85°C) |
|             |              | AT90S1200-4YI  | 20Y     |                 |
| 12          | 4.0 - 6.0V   | AT90S1200-12PC | 20P3    | Commercial      |
|             |              | AT90S1200-12SC | 20S     | (0°C to 70°C)   |
|             |              | AT90S1200-12YC | 20Y     |                 |
|             |              | AT90S1200-12PI | 20P3    | Industrial      |
|             |              | AT90S1200-12SI | 20S     | (-40°C to 85°C) |
|             |              | AT90S1200-12YI | 20Y     |                 |

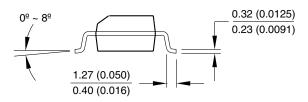
Note: 1. Order AT90S1200A-XXX for devices with the RCEN Fuse programmed.


|      | Package Type                                                      |
|------|-------------------------------------------------------------------|
| 20P3 | 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)          |
| 20S  | 20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)      |
| 20Y  | 20-lead, 5.3 mm Wide, Plastic Shrink Small Outline Package (SSOP) |







#### **Packaging Information**


20P3

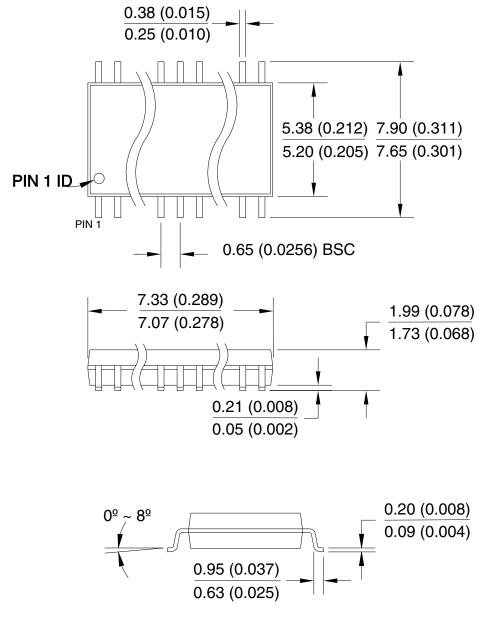


8








\*Controlling dimension: Inches

REV. A 04/11/2001





20Y, 20-lead Plastic Shrink Small Outline (SSOP), 5.3mm body Width. Dimensions in Millimeters and (inches)\*



\*Controlling dimension: millimeters

REV. A 04/11/2001

20Y