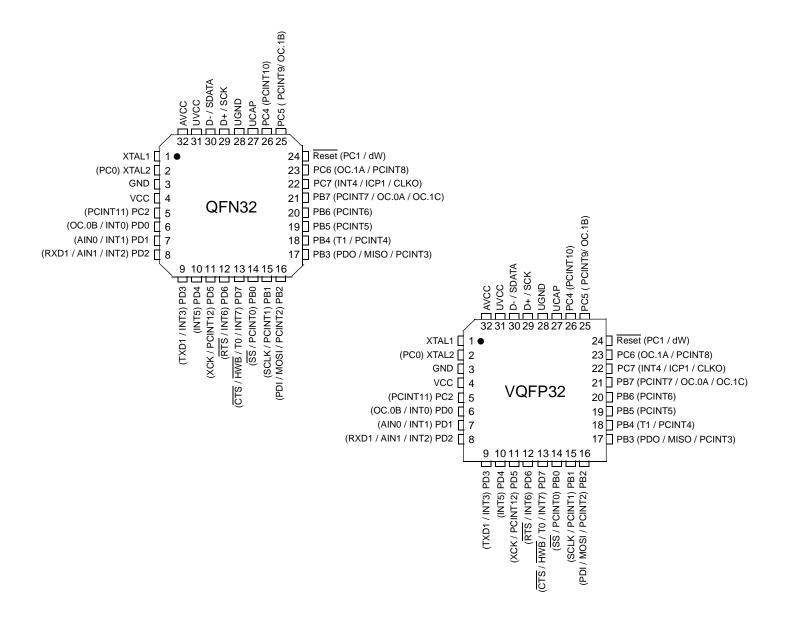
Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 125 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
- Non-volatile Program and Data Memories
 - 8K / 16K Bytes of In-System Self-Programmable Flash
 - Endurance: 10,000 Write/Erase Cycles
 - Optional Boot Code Section with Independent Lock Bits
 - USB boot-loader programmed by default in the factory
 - In-System Programming by on-chip Boot Program hardware-activated after reset
 - True Read-While-Write Operation
 - 512 Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 512 Bytes Internal SRAM
 - Programming Lock for Software Security
- USB 2.0 Full-speed Device Module with Interrupt on Transfer Completion
 - Complies fully with Universal Serial Bus Specification REV 2.0
 - 48 MHz PLL for Full-speed Bus Operation : data transfer rates at 12 Mbit/s
 - Fully independant 176 bytes USB DPRAM for endpoint memory allocation
 - Endpoint 0 for Control Transfers: from 8 up to 64-bytes
 - 4 Programmable Endpoints:
 - IN or Out Directions
 - Bulk, Interrupt and IsochronousTransfers
 - Programmable maximum packet size from 8 to 64 bytes
 - Programmable single or double buffer
 - Suspend/Resume Interrupts
 - Microcontroller reset on USB Bus Reset without detach
 - USB Bus Disconnection on Microcontroller Request
 - USB pad multiplexed with PS/2 peripheral for single cable capability
- Peripheral Features
 - PS/2 compliant pad
 - One 8-bit Timer/Counters with Separate Prescaler and Compare Mode (two 8-bit PWM channels)
 - One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Mode (three 8-bit PWM channels)
 - USART with SPI master only mode and hardware flow control (RTS/CTS)
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- On Chip Debug Interface (debugWIRE)
- Special Microcontroller Features
 - Power-On Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources

8-bit AVR®
Microcontroller with
8/16K Bytes of ISP Flash and USB
Controller

AT90USB82 AT90USB162

7707DS-AVR-07/08



- Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 22 Programable I/O Lines
 - QFN32 (5x5mm) / TQFP32 packages
- Operating Voltages
 - 2.7 5.5V
- Operating temperature
 - Industrial (-40°C to +85°C)
- Maximum Frequency
 - 8 MHz at 2.7V Industrial range
 - 16 MHz at 4.5V Industrial range

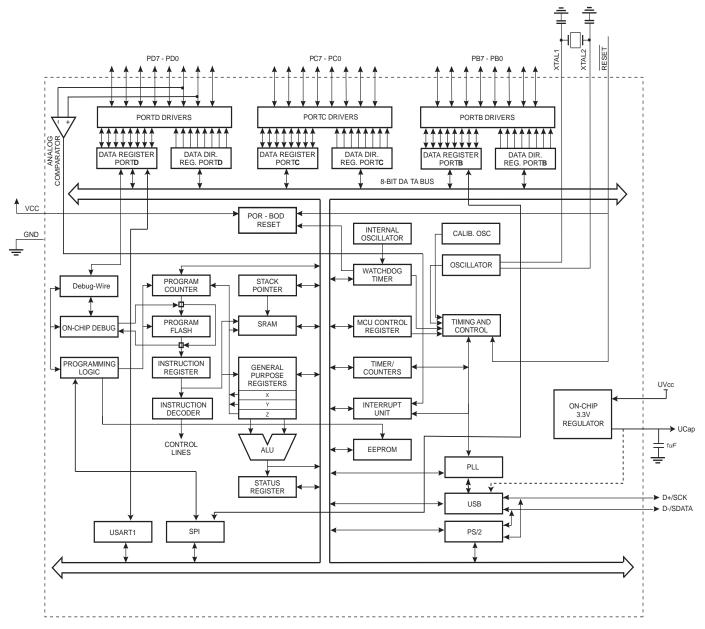
1. Pin Configurations

Figure 1-1. Pinout AT90USB82/162

Note: The large center pad underneath the QFN packages is made of metal and must be connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.



2. Overview

The AT90USB82/162 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the AT90USB82/162 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The AT90USB82/162 provides the following features: 8K / 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 22 general purpose I/O lines, 32 general purpose working registers, two flexible Timer/Counters with compare modes and PWM, one USART, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, debugWIRE interface, also used for accessing the On-chip Debug system and programming and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, the main Oscillator continues to run.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an on-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90USB82/162 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The AT90USB82/162 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the AT90USB82/162 as listed on page 74.

2.2.4 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of various special features of the AT90USB82/162 as listed on page 76.

2.2.5 Port D (PD7..PD0)

Port D serves as analog inputs to the analog comparator.

Port D also serves as an 8-bit bi-directional I/O port, if the analog comparator is not used (concerns PD2/PD1 pins). Port pins can provide internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.2.6 D-/SDATA

USB Full Speed Negative Data Upstream Port / Data port for PS/2

2.2.7 D+/SCK

USB Full Speed Positive Data Upstream Port / Clock port for PS/2

2.2.8 UGND

USB Ground.

2.2.9 UVCC

USB Pads Internal Regulator Input supply voltage.

2.2.10 UCAP

USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1µF).

2.2.11 RESET/PC1/dW

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Section 9.. Shorter pulses are not guaranteed to generate a reset. This pin alternatively serves as debugWire channel or as generic I/O. The configuration depends on the fuses RSTDISBL and DWEN.

2.2.12 XTAL1

6

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.13 XTAL2/PC0

Output from the inverting Oscillator amplifier if enabled by Fuse. Also serves as a generic I/O.

3. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

4. Register Summary

					i e					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	_	-	-	
(0xFC)	Reserved	-	-	-	-	_	-	-	-	
(0xFB)	UPOE	UPWE1	UPWE0	UPDRV1	UPDRV0	SCKI	DATAI	DPI	DMI	
(0xFA)	PS2CON	-	-	-	-	-	-	-	PS2EN	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	_	_	_	_	_	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
		-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-		-	-	
(0xF4)	UEINT		-	-			EPINT4:0			
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	UEBCLX					CT7:0				
(0xF1)	UEDATX			1		AT7:0				
(0xF0)	UEIENX	FLERRE	NAKINE	-	NAKOUTE	RXSTPE	RXOUTE	STALLEDE	TXINE	
(0xEF)	UESTA1X	-	-	-	-	-	CTRLDIR		RBK1:0	
(0xEE)	UESTA0X	CFGOK	OVERFI	UNDERFI	-		EQ1:0		YBK1:0	
(0xED)	UECFG1X	-		EPSIZE2:0		EPB	K1:0	ALLOC	-	
(0xEC)	UECFG0X	EPTY	PE1:0	-	-	-	-	-	EPDIR	
(0xEB)	UECONX	-	-	STALLRQ	STALLRQC	RSTDT	-	-	EPEN	
(0xEA)	UERST	-	-	-			EPRST4:0			
(0xE9)	UENUM	-	-	-	-	-		EPNUM2:0		
(0xE8)	UEINTX	FIFOCON	NAKINI	RWAL	NAKOUTI	RXSTPI	RXOUTI	STALLEDI	TXINI	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	UDMFN	-	-	-	FNCERR	-	-	-	-	
(0xE5)	UDFNUMH	-	-	-	-	-		FNUM10:8		
(0xE4)	UDFNUML				FNI	JM7:0				
(0xE3)	UDADDR	ADDEN				UADD6:0				
(0xE2)	UDIEN	-	UPRSME	EORSME	WAKEUPE	EORSTE	SOFE	-	SUSPE	
(0xE1)	UDINT	-	UPRSMI	EORSMI	WAKEUPI	EORSTI	SOFI	-	SUSPI	
(0xE0)	UDCON	-	-	-	-	-	RSTCPU	RMWKUP	DETACH	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
				-	1	-	-	-		
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	USBCON	USBE	-	FRZCLK	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	CLKSTA	-	-	-	-	-	-	RCON	EXTON	
(0xD1)	CLKSEL1	RCCKSEL3	RCCKSEL2	RCCKSEL1	RCCKSEL0	EXCKSEL3	EXCKSEL2	EXCKSEL1	EXCKSEL0	
(0xD0)	CLKSEL0	RCSUT1	RCSUT0	EXSUT1	EXSUT0	RCE	EXTE	-	CLKS	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1				USART1 I/C	Data Register				
(0xCD)	UBRR1H	-	-	-	-	U	SART1 Baud Rat	e Register High E	Byte	
(0xCC)	UBRR1L			·	JSART1 Baud Ra	te Register Low I	Byte	-		
(0xCB)	UCSR1D	-	-	-	-	-	-	CTSEN	RTSEN	
(0xCA)	UCSR1C	UMSEL11	UMSEL10	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	
(0xC9)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	
(0xC8)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	PE1	U2X1	MPCM1	
(0xC7)	Reserved	-	-	- ODKET	-	-	-	-	-	
(0xC6)	Reserved	-	-	-	-	-	-	-	-	
		-		-	1			-		
(0xC5)	Reserved		-		-	-	-		-	
(0xC4)	Reserved	-	-	-	-	-	-	-	-	
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	Reserved	-	-	-	-	-	-	-	-	
(0xC1)	Reserved	-	-	-	-	-	-	-	-	
(0xC0)	Reserved	-	-	-	-	-	-	-	-	
(0xBF)	Reserved	-	-	-	-	-	-	-	-	

Address (0xBE)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
(ONDL)	Reserved	-	_	_	_	_	-	_	-	Page
(0xBD)	Reserved	-	-	-	-	_	-	-	-	
(0xBC)	Reserved	-	-	-	-	_	-	-	-	
(0xBB)	Reserved	-	-	_	-	_	_	_	_	
(0xBA)	Reserved	-	-	-	-	-	-	-	-	
(0xB9)	Reserved	_	-	_	-	_	_	_	_	
(0xB8)	Reserved	-	-	-	-	-	-	-	-	
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	Reserved	-	-	-	-	-	_	-	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	Reserved	-	-	-	-	-	-	-	-	
(0xB2)	Reserved	-	-	-	-	-	-	-	-	
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	_	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	•	-	-	-	-	-	-	-	
(0x9D)	Reserved	ı	-	-	-	-	-	-	-	
(0x9C)	Reserved	•	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	OCR1CH					ompare Register				
(0x8C)	OCR1CL		Timer/Counter1 - Output Compare Register C Low Byte							
(0x8B)	OCR1BH		Timer/Counter1 - Output Compare Register B High Byte							
(A8x0)	OCR1BL		Timer/Counter1 - Output Compare Register B Low Byte							
(0x89)	OCR1AH		Timer/Counter1 - Output Compare Register A High Byte							
(0x88)	OCR1AL		Timer/Counter1 - Output Compare Register A Low Byte							
(0x87)	ICR1H		Timer/Counter1 - Input Capture Register High Byte							
(0x86)	ICR1L		Timer/Counter1 - Input Capture Register Low Byte							
(0x85)	TCNT1H		Timer/Counter1 - Counter Register High Byte							
(0x84)	TCNT1L		1			unter Register Lo		1		
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	
(0x80)										
(0x80) (0x7F) (0x7E)	Reserved Reserved	-	-	-	-	-	-	-	-	

	-	1	1	1	1	1		I	İ	<u> </u>
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7C)	Reserved	-	-	-	-	-	-	-	-	
(0x7B)	Reserved	-	-	-	-	-	-	-	-	
(0x7A)	Reserved	-	-	-	-	-	-	-	-	
(0x79)	Reserved	-	-	-	-	-	-	-	-	
(0x78)	Reserved	-	-	-	-	-	-	-	-	
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76) (0x75)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x73) (0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	_	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	Reserved	-	-	-	-	-	-	-	-	
(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1	
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	PCMSK1	-	-	-	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	
(0x6A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	
(0x68)	PCICR	-	-	-	-	-	-	PCIE1	PCIE0	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL	PRUST			Oscillator Cal	ibration Register			DD::04==:	
(0x65)	PRR1	PRUSB -	-	- DDTIMO	-	- DDTIMA	-	-	PRUSART1	
(0x64)	PRR0 REGCR	-	-	PRTIM0	-	PRTIM1	PRSPI -	-	- REGDIS	
(0x63) (0x62)	WDTCKD	-	-	-	-	WDEWIF	WDEWIE	WCLKD1	WCLKD0	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	
0x3F (0x5F)	SREG	1	Т	Н	S	V	N	Z	С	
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-		-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	
0x36 (0x56) 0x35 (0x55)	Reserved	-	-	-	-	-	-	- 11/051	-	
0x34 (0x54)	MCUCR MCUSR	-	-	USBRF	-	WDRF	BORF	IVSEL EXTRF	IVCE PORF	
0x34 (0x54) 0x33 (0x53)	SMCR	-	-		-	SM2	SM1	SM0	SE	
0x32 (0x52)	Reserved	-	-	-	-	- OIVIZ	-	-	- -	
0x31 (0x51)	DWDR					Data Register				
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR				SPI Da	ta Register				
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-		-	-	SPI2X	
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	
0x2B (0x4B)	GPIOR2				· ·	se I/O Register 2				
0x2A (0x4A)	GPIOR1					se I/O Register 1	1			
0x29 (0x49)	PLLCSR	-	-	-	PLLP2	PLLP1	PLLP0	PLLE	PLOCK	
0x28 (0x48)	OCR0B	1				put Compare Reg				
0x27 (0x47)	OCR0A			Tin		put Compare Reg	ister A			
0x26 (0x46)	TCNT0	FOC0A	FOCCE		Timer/Co	unter0 (8 Bit)	0000	0004	0000	
0x25 (0x45)	TCCR0B		FOC0B	- COMOR1	COMORO	WGM02	CS02	CS01	CS00	
0x24 (0x44) 0x23 (0x43)	TCCR0A GTCCR	COM0A1 TSM	COM0A0	COM0B1	COM0B0	-	-	WGM01 PSRASY	WGM00 PSRSYNC	
0x23 (0x43) 0x22 (0x42)	EEARH	10101	-	-	-					
0x22 (0x42) 0x21 (0x41)	EEARL	EEPROM Address Register High Byte EEPROM Address Register Low Byte								
0x20 (0x40)	EEDR			'		Data Register	,			
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	
0x1E (0x3E)	GPIOR0			•		se I/O Register 0			•	
0x1D (0x3D)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	
0x1C (0x3C)	EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTF0	
0x1B (0x3B)	PCIFR	-	-	-	-	-	-	PCIF1	PCIF0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	Reserved	-	-	-	-	-	-	-	-	
0x16 (0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	-	PORTC2	PORTC1	PORTC0	
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	-	DDC2	DDC1	DDC0	
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	-	PINC2	PINC1	PINC0	
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x00 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note:

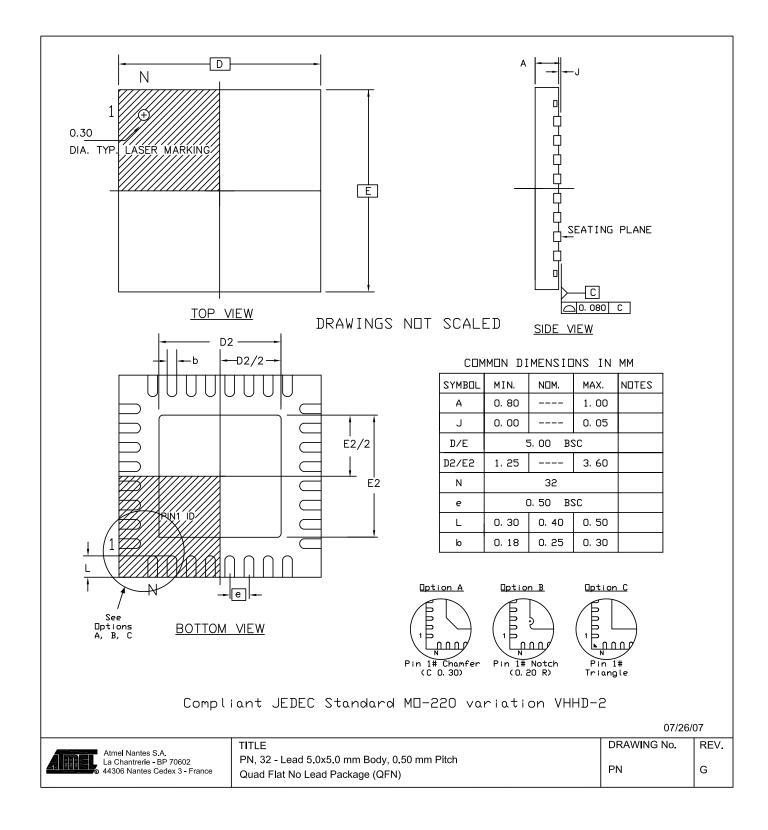
- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Moreover reserved bits are not guaranteed to be read as "0". Reserved I/O memory addresses should never be written.
- 2. I/O registers within the address range \$00 \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The AT90USB82/162 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
		FIC AND LOGIC INSTRUCTIONS	1	_	1
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
	BF	RANCH INSTRUCTIONS			
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	4
ICALL		Indirect Call to (Z)	PC ← Z	None	4
CALL	k	Direct Subroutine Call	PC ← k	None	5
RET		Subroutine Return	PC ← STACK	None	5
RETI		Interrupt Return	PC ← STACK	1	5
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
	BIT AN	D BIT-TEST INSTRUCTIONS			
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	1 ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	H	1
OLIT	DATA	TRANSFER INSTRUCTIONS	11 — 0	''	
MOV			Dd . Dr	None	1
	Rd, Rr	Move Between Registers	Rd ← Rr Rd+1:Rd ← Rr+1:Rr	None	
MOVW	Rd, Rr	Copy Register Word		None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	.,	Store Program Memory	(Z) ← R1:R0	None	<u> </u>
IN	Rd, P	In Port	(2) ← (1.100 Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
	MCU	CONTROL INSTRUCTIONS		T N	T .
		No Operation		None	1
NOP			/		
SLEEP WDR		Sleep Watchdog Reset	(see specific descr. for Sleep function) (see specific descr. for WDR/timer)	None None	1

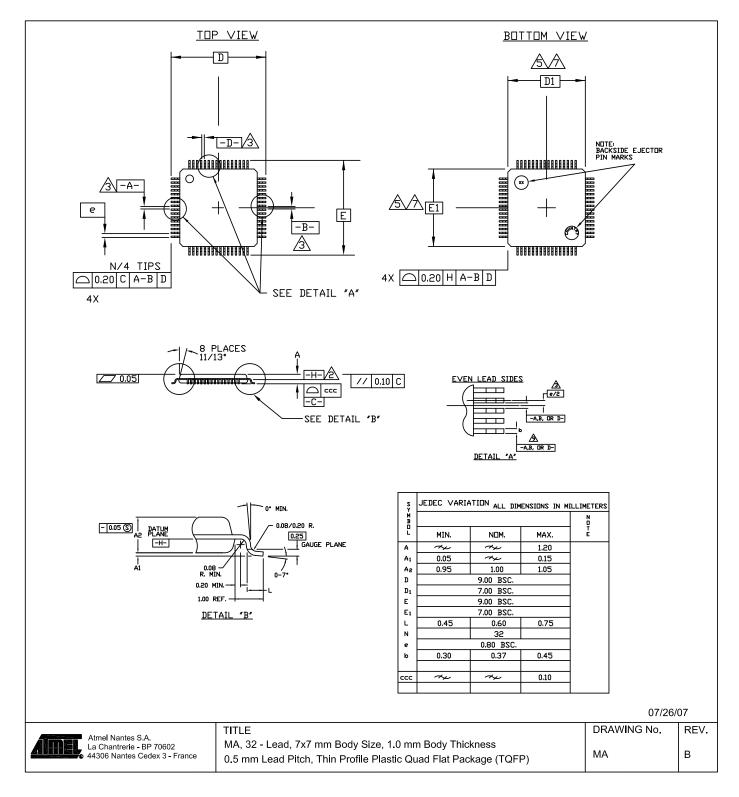
6. Ordering Information


Part Number	Temp. Range	Flash Memory Size	Package	Product Marking
90USB82-16MU	Industrial Green	8K	QFN32	90USB82-16MU
90USB162-16MU	Industrial Green	16K	QFN32	90USB162-16MU
90USB162-16AU	Industrial Green	16K	TQFP32	90USB162-16AU

7. Packaging Information

14

	Package Type						
QFN32	PN, 32-Lead 5.0 x 5.0 mm Body, 0.50 mm Pitch Quad Flat No Lead Package (QFN)						
TQFP32	MA, 32-Lead 7 x 7 mm Body size, 1.00 mm Bodu Thickness 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)						


7.1 QFN32

7.2 TQFP32

8. Errata

8.1 AT90USB162 Errata History

Silicon Release	QFP32 'DateCode LotNumber' marking	QFN32 'DateCode LotNumber' marking
First Release	'0705 6J4972' '0709 J4973-2' '0709 J5597-1'	all lots marked 90USB162–16MES
Second Release	'0709 F3150-1'	'0714 50-2' '0722 50-3' '0735 3151'
Third Release	All date codes after 0709	All other lots

8.1.1 AT90USB162 First Release

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

2. PS2 high level clamped to UCAP

When configured in PS2 mode, the output high level is clamped to the UCAP voltage level.

Problem Fix/workaround

None.

3. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

8.1.2 AT90USB162 Second Release

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

2. Extra power consumption

The typical power comsumption is increased by 90μA at 5V and by 160μA in worst case conditions.

Problem Fix/workaround

None.

3. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

8.1.3 AT90USB162 Third Release

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

2. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

8.2 AT90USB82 Errata History

8.2.1 AT90USB82 Initial Release (all lots)

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

2. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

9. Datasheet Revision History for AT90USB82/162

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

9.1 Changes from 7707A to 7707B

- 1. Removed all references to Timer/Counter 2, A/D Converter.
- 2. Clarified information in Power Reduction Mode and Timer/Counter 1 sections.
- 3. Added USB design guidelines and schematics.
- 4. Updated default fuse configuration & EEPROM page size.
- 5. Updated AC/DC parameters.
- 6. Updated Errata section.

9.2 Changes from 7707B to 7707C

1. Updated Errata section.

9.3 Changes from 7707C to 7707D

1. Correction to Oscillator description, page 245.

