
7728A-AUTO-07/08

8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
and
LIN Controller

ATtiny167
Automotive

Preliminary

BDTIC www.bdtic.com/ATMEL
Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture

– 123 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation

• Non-volatile Program and Data Memories
– 16K Byte of In-System Programmable (ISP) Program Memory Flash

Endurance: 10,000 Write/Erase Cycles
– 512 Bytes In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles
– 512 Bytes Internal SRAM
– Programming Lock for Self-Programming Flash Program and EEPROM Data

Security
– Low size LIN/UART Software In-System Programmable

• Peripheral Features
– LIN 2.1 and 1.3 Controller or 8-Bit UART
– 8-bit Asynchronous Timer/Counter0:

. 10-bit Clock Prescaler

. 1 Output Compare or 8-bit PWM Channel
– 16-bit Synchronous Timer/Counter1:

. 10-bit Clock Prescaler

. External Event Counter

. 2 Output Compares Units or 16-bit PWM Channels on 2x 4 Separated Pins
– Master/Slave SPI Serial Interface,
– Universal Serial Interface (USI) with Start Condition Detector (Master/Slave SPI,

TWI, AES, ...)
– 10-bit ADC:

. 11 Single Ended Channels

. 16 Differential ADC Channel Pairs with Programmable Gain (8x or 20x)
– On-chip Analog Comparator with Selectable Voltage Reference
– 100µA ±6% Current Source (LIN Node Identification)
– On-chip Temperature Sensor
– Programmable Watchdog Timer with Separate On-chip Oscillator

• Special Microcontroller Features
– Dynamic Clock Switching (External/Internal RC/Watchdog Clock)
– DebugWIRE On-chip Debug (OCD) System
– Hardware In-System Programmable (ISP) via SPI Port
– External and Internal Interrupt Sources
– Interrupt and Wake-up on Pin Change
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated RC Oscillator 8MHz
– 4-16 MHz and 32 KHz Crystal/Ceramic Resonator Oscillators

• I/O and Packages
– 16 Programmable I/O Lines
– 20-pin SOIC, 32-pad QFN and 20-pin TSSOP

• Operating Voltage:
– 2.7 - 5.5V for ATtiny167

• Speed Grade:
– 0 - 8 MHz @ 2.7 - 5.5V (Automotive Temp. Range: -40°C to +125°C)
– 0 - 16 MHz @ 4.5 - 5.5V (Automotive Temp. Range: -40°C to +125°C)

1. Description

1.1 Part Description
The ATtiny167 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny167 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATtiny167 provides the following features: 16K byte of In-System Programmable Flash, 512
bytes EEPROM, 512 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working reg-
isters, one 8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter,
Universal Serial Interface, a LIN controller, Internal and External Interrupts, a 4-channel, 10-bit
ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode
saves the register contents, disabling all chip functions until the next Interrupt or Hardware
Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to min-
imize switching noise during ADC conversions.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core. The Boot program can use any interface to download the application
program in the Flash memory. By combining an 8-bit RISC CPU with In-System Self-Program-
mable Flash on a monolithic chip, the Atmel ATtiny167 is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.

The ATtiny167 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.

1.2 Automotive Quality Grade
The ATtiny167 have been developed and manufactured according to the most stringent require-
ments of the international standard ISO-TS-16949. This data sheet contains limit values
extracted from the results of extensive characterization (temperature and voltage). The quality
and reliability of the ATtiny167 have been verified during regular product qualification as per
AEC-Q100 grade 1.
As indicated in the ordering information paragraph, the products are available in only one tem-
perature grade as listed in Table 1-1.

Table 1-1. Temperature Grade Identification for Automotive Products

Temperature Temperature
Identifier Comments

-40°C / +125°C Z Automotive Temperature Range
 2
7728A–AUTO–07/08

ATtiny167

 ATtiny167
1.3 Disclaimer
Typical values contained in this data sheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min. and Max
values will be available after the device is characterized.

1.4 Block Diagram

Figure 1-1. Block Diagram

PORT A (8) LIN / UARTPORT B (8)

SPI & USI

Timer/Counter-0Timer/Counter-1 A/D Conv.

 Internal
Voltage

References
Analog Comp.

SRAMFlash

EEPROM

Watchdog
Oscillator

Watchdog
Timer

Oscillator
Circuits /

Clock
Generation

Power
Supervision
POR / BOD &

RESET

V
C

C

G
N

D

PROGRAM
LOGIC

debugWIRE

AGND

AVCC

D
AT

A
B

U
S

PA[0..7]PB[0..7]

11

RESET
XTAL[1;2]

CPU

2

 3
7728A–AUTO–07/08

1.5 Pin Configuration

Figure 1-2. Pinout ATtiny167 - SOIC20 & TSSOP20

Figure 1-3. Pinout ATtiny167 - QFN32

1.6 Pin Description

1.6.1 Vcc
Supply voltage.

PB0 (PCINT8 / OC1AU / DI / SDA)
PB1 (PCINT9 / OC1BU / DO)
PB2 (PCINT10 / OC1AV / USCK / SCL)
PB3 (PCINT11 / OC1BV)
GND
VCC
PB4 (PCINT12 / OC1AW / XTAL1 / CLKI)
PB5 (PCINT13 / ADC8 / OC1BW / XTAL2 / CLKO)
PB6 (PCINT14 / ADC9 / OC1AX / INT0)
PB7 (PCINT15 / ADC10 / OC1BX / RESET / dW)

(RXLIN / RXD / ADC0 / PCINT0) PA0
 (TXLIN / TXD / ADC1 / PCINT1) PA1

(MISO / DO / OC0A / ADC2 / PCINT2) PA2
(INT1 / ISRC / ADC3 / PCINT3) PA3

AVCC
AGND

(MOSI / SDA / DI / ICP1 / ADC4 / PCINT4) PA4
(SCK / SCL / USCK / T1 / ADC5 / PCINT5) PA5

(SS / AIN0 / ADC6 / PCINT6) PA6
 (AREF / XREF / AIN1 / ADC7 / PCINT7) PA7

 1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

20-pin

top
view

(IN
T0

 /
O

C
1A

X
 /

A
D

C
9

/ P
C

IN
T1

4
) P

B
6

PB5 (PCINT13 / ADC8 / OC1BW / XTAL2 / CLKO)
PB4 (PCINT12 / OC1AW / XTAL1 / CLKI)
VCC
GND

1
2
3
4
5

21
20
19
18
17

32 30 29 2831
9 11 12 1310

32-lead

top view

P
B

2
(P

C
IN

T1
0

/ O
C

1A
V

 /
U

S
C

K
 /

S
C

L)
P

B
1

(P
C

IN
T9

 /
O

C
1B

U
 /

D
O

)
(d

W
 /

R
E

S
E

T
/ O

C
1B

X
 /

A
D

C
10

 /
P

C
IN

T1
5)

 P
B

7

(A
R

E
F

/ X
R

E
F

/ A
IN

1
/ A

D
C

7
/ P

C
IN

T7
) P

A
7

(S
S

 /
A

IN
0

/ A
D

C
6

/ P
C

IN
T6

) P
A

6
(S

C
K

 /
S

C
L

/ U
S

C
K

 /
T1

 /
A

D
C

5
/ P

C
IN

T5
) P

A
5

AGND
AVCC

 (INT1 / ISRC / ADC3 / PCINT3) PA3

P
A

1
(P

C
IN

T1
 /

A
D

C
1

/ T
X

D
 /

TX
LI

N
)

P
A

2
(P

C
IN

T2
 /

A
D

C
2

/ O
C

0A
 /

D
O

 /
M

IS
O

)
nc

nc nc

nc
nc
nc

nc
nc

nc
nc
nc nc

P
A

0
(P

C
IN

T0
 /

A
D

C
0

/ R
X

D
 /

R
X

LI
N

)

INDEX CORNER

Bottom pad should be
soldered to ground

6
7
8

14 15 16
P

B
3

(P
C

IN
T1

1
/ O

C
1B

V
)

24
23
22

27 2526

P
B

0
(P

C
IN

T8
 /

O
C

1A
U

 /
D

I /
 S

D
A

)

(M
O

S
I /

 S
D

A
 /

D
I /

 IC
P

1
/ A

D
C

4
/ P

C
IN

T4
) P

A
4

 4
7728A–AUTO–07/08

ATtiny167

 ATtiny167
1.6.2 GND
Ground.

1.6.3 AVcc
Analog supply voltage.

1.6.4 AGND
Analog ground.

1.6.5 Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the ATtiny167 as listed on Section
9.3.3 ”Alternate Functions of Port A” on page 73.

1.6.6 Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny167 as listed on Section
9.3.4 ”Alternate Functions of Port B” on page 78.

1.7 Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

1.8 About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.
 5
7728A–AUTO–07/08

2. AVR CPU Core

2.1 Overview
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 2-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the Program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the Program memory. This concept enables instructions to be executed
in every clock cycle. The Program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a
typical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

EEPROM

Data Bus 8-bit

I/O Lines

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

I/O Module 2

Analog
Comparator

I/O Module1

Watchdog
Timer

I/O Module n

Interrupt
Unit

A.D.C.
 6
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word
format. Every Program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F.

2.2 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

2.3 Status Register
The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.
 7
7728A–AUTO–07/08

2.3.1 SREG – AVR Status Register
The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 8
7728A–AUTO–07/08

ATtiny167

 ATtiny167
2.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input
Figure 2-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 2-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 2-2, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

2.4.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 2-3 on page 10.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
 9
7728A–AUTO–07/08

Figure 2-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

2.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present

2.5.1 SPH and SPL – Stack Pointer Register

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
 10
7728A–AUTO–07/08

ATtiny167

 ATtiny167
2.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 2-4 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per
cost, functions per clocks, and functions per power-unit.

Figure 2-4. The Parallel Instruction Fetches and Instruction Executions

Figure 2-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 2-5. Single Cycle ALU Operation

2.7 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt.

The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in Section 7. ”Interrupts” on page 57.
The list also determines the priority levels of the different interrupts. The lower the address the
higher is the priority level. RESET has the highest priority, and next is INT0 – the External Inter-
rupt Request 0.

clk

1st Instruction Fetch
1st Instruction Execute

2nd Instruction Fetch
2nd Instruction Execute

3rd Instruction Fetch
3rd Instruction Execute

4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
 11
7728A–AUTO–07/08

2.7.1 Interrupt behavior
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt
Vector in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */
 12
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

2.7.2 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the Program Vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
 13
7728A–AUTO–07/08

3. AVR Memories
This section describes the different memories in the ATtiny167. The AVR architecture has two
main memory spaces, the Data memory and the Program memory space. In addition, the
ATtiny167 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

Notes: 1. Byte address.
2. Word (16-bit) address.

3.1 In-System Re-programmable Flash Program Memory
The ATtiny167 contains On-chip In-System Reprogrammable Flash memory for program
storage (see “Flash size” in Table 3-1 on page 14). Since all AVR instructions are 16 or 32 bits
wide, the Flash is organized as 16 bits wide. ATtiny167 does not have separate Boot Loader and
Application Program sections, and the SPM instruction can be executed from the entire Flash.
See SELFPRGEN description in Section 20.2.1 ”Store Program Memory Control and Status
Register – SPMCSR” on page 210 for more details.

The Flash memory has an endurance of at least 10,000 write/erase cycles in automotive range.
The ATtiny167 Program Counter (PC) address the program memory locations. Section 21.
”Memory Programming” on page 216 contains a detailed description on Flash data serial down-
loading using the SPI pins.

Constant tables can be allocated within the entire Program memory address space (see the
LPM – Load Program memory instruction description).

Timing diagrams for instruction fetch and execution are presented in Section 2.6 ”Instruction
Execution Timing” on page 11.

Table 3-1. Memory Mapping.
Memory Mnemonic ATtiny167

Flash

Size Flash size 16 K bytes
Start Address -

End Address Flash end
0x3FFF(1)

0x1FFF(2)

32 Registers

Size - 32 bytes
Start Address - 0x0000
End Address - 0x001F

I/O
Registers

Size - 64 bytes
Start Address - 0x0020
End Address - 0x005F

Ext I/O
Registers

Size - 160 bytes
Start Address - 0x0060
End Address - 0x00FF

Internal
SRAM

Size ISRAM size 512 bytes
Start Address ISRAM start 0x0100
End Address ISRAM end 0x02FF

EEPROM

Size E2 size 512 bytes
Start Address - 0x0000
End Address E2 end 0x01FF
 14
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 3-1. Program Memory Map

3.2 SRAM Data Memory
Figure 3-2 shows how the ATtiny167 SRAM Memory is organized.

The ATtiny167 is a complex microcontroller with more peripheral units than can be supported
within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The data memory locations address both the Register File, the I/O memory, Extended I/O
memory, and the internal data SRAM. The first 32 locations address the Register File, the next
64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the next
locations address the internal data SRAM (see “ISRAM size” in Table 3-1 on page 14).

The five different addressing modes for the Data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers and the
internal data SRAM in the ATtiny167 are all accessible through all these addressing modes. The
Register File is described in ”General Purpose Register File” on page 9.

0x0000

Flash end

Program Memory
 15
7728A–AUTO–07/08

Figure 3-2. Data Memory Map

3.2.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 3-3.

Figure 3-3. On-chip Data SRAM Access Cycles

3.3 EEPROM Data Memory
The ATtiny167 contains EEPROM memory (see “E2 size” in Table 3-1 on page 14). It is orga-
nized as a separate data space, in which single bytes can be read and written. The EEPROM
has an endurance of at least 100,000 write/erase cycles in automotive range. The access
between the EEPROM and the CPU is described in the following, specifying the EEPROM
Address Registers, the EEPROM Data Register and the EEPROM Control Register.

Section 21. ”Memory Programming” on page 216 contains a detailed description on EEPROM
programming in SPI or Parallel Programming mode.

3.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

32 Registers
64 I/O Registers

Internal SRAM
(ISRAM size)

0x0000 - 0x001F
0x0020 - 0x005F

ISRAM end

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
ISRAM start

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction
 16
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The write access times for the EEPROM are given in Table 3-2. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, Vcc is likely to rise or fall slowly on Power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See ”Preventing EEPROM Corruption” on page 19 for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to ”Atomic Byte Programming” on page 17 and ”Split Byte Programming” on page 17 for
details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

3.3.2 Atomic Byte Programming
Using Atomic Byte Programming is the simplest mode. When writing a byte to the EEPROM, the
user must write the address into the EEARL Register and data into EEDR Register. If the
EEPMn bits are zero, writing EEPE (within four cycles after EEMPE is written) will trigger the
erase/write operation. Both the erase and write cycle are done in one operation and the total
programming time is given in Table 1. The EEPE bit remains set until the erase and write opera-
tions are completed. While the device is busy with programming, it is not possible to do any
other EEPROM operations.

3.3.3 Split Byte Programming
It is possible to split the erase and write cycle in two different operations. This may be useful if
the system requires short access time for some limited period of time (typically if the power
supply voltage falls). In order to take advantage of this method, it is required that the locations to
be written have been erased before the write operation. But since the erase and write operations
are split, it is possible to do the erase operations when the system allows doing time-critical
operations (typically after Power-up).

3.3.4 Erase
To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the
EEPE (within four cycles after EEMPE is written) will trigger the erase operation only (program-
ming time is given in Table 1). The EEPE bit remains set until the erase operation completes.
While the device is busy programming, it is not possible to do any other EEPROM operations.

3.3.5 Write
To write a location, the user must write the address into EEAR and the data into EEDR. If the
EEPMn bits are 0b10, writing the EEPE (within four cycles after EEMPE is written) will trigger
the write operation only (programming time is given in Table 1). The EEPE bit remains set until
the write operation completes. If the location to be written has not been erased before write, the
data that is stored must be considered as lost. While the device is busy with programming, it is
not possible to do any other EEPROM operations.

The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator fre-
quency is within the requirements described in ”OSCCAL – Oscillator Calibration Register” on
page 36.
 17
7728A–AUTO–07/08

The following code examples show one assembly and one C function for erase, write, or atomic
write of the EEPROM. The examples assume that interrupts are controlled (e.g., by disabling
interrupts globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR, r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

 18
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

3.3.6 Preventing EEPROM Corruption
During periods of low Vcc, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low Vcc reset protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned char ucAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

 19
7728A–AUTO–07/08

3.4 I/O Memory
The I/O space definition of the ATtiny167 is shown in Section 25. ”Register Summary” on page
257.

All ATtiny167 I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATtiny167 is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved
in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.

The I/O and Peripherals Control Registers are explained in later sections.

3.4.1 General Purpose I/O Registers
The ATtiny167 contains three General Purpose I/O Registers. These registers can be used for
storing any information, and they are particularly useful for storing global variables and Status
Flags.

The General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-acces-
sible using the SBI, CBI, SBIS, and SBIC instructions.

3.5 Register Description

3.5.1 EEARH and EEARL – EEPROM Address Register

• Bit 7:1 – Reserved Bits
These bits are reserved for future use and will always read as 0 in ATtiny167.

• Bits 8:0 – EEAR8:0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL – specifies the high EEPROM address
in the EEPROM space (see “E2 size” in Table 3-1 on page 14). The EEPROM data bytes are

Bit 7 6 5 4 3 2 1 0

- - - - - - - EEAR8 EEARH
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

Initial Value X X X X X X X X
 20
7728A–AUTO–07/08

ATtiny167

 ATtiny167
addressed linearly between 0 and “E2 size”. The initial value of EEAR is undefined. A proper
value must be written before the EEPROM may be accessed.

Note: For information only - ATtiny47: EEAR8 exists as register bit but it is not used for addressing.

3.5.2 EEDR – EEPROM Data Register

• Bits 7:0 – EEDR7:0: EEPROM Data
For the EEPROM write operation the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

3.5.3 EECR – EEPROM Control Register

• Bit 7,6 – Res: Reserved Bits
These bits are reserved for future use and will always read as 0 in ATtiny167. After reading,
mask out these bits. For compatibility with future AVR devices, always write these bits to zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bits setting defines which programming action that will be
triggered when writing EEPE. It is possible to program data in one atomic operation (erase the
old value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 3-2. While EEPE
is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready Interrupt generates a constant inter-
rupt when Non-volatile memory is ready for programming.

• Bit 2 – EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

Bit 7 6 5 4 3 2 1 0

EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

Table 3-2. EEPROM Mode Bits

EEPM1 EEPM0
Typical

Programming
Time

Operation

0 0 3.4 ms Erase and Write in one operation (Atomic Operation)

0 1 1.8 ms Erase Only

1 0 1.8 ms Write Only

1 1 – Reserved for future use
 21
7728A–AUTO–07/08

When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the
selected address. If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles.

• Bit 1 – EEPE: EEPROM Program Enable
The EEPROM Program Enable Signal EEPE is the programming enable signal to the EEPROM.
When EEPE is written, the EEPROM will be programmed according to the EEPMn bits setting.
The EEMPE bit must be written to one before a logical one is written to EEPE, otherwise no
EEPROM write takes place. When the write access time has elapsed, the EEPE bit is cleared by
hardware. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal – EERE – is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to one to trigger
the EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed. The user should poll the EEPE bit before starting the read opera-
tion. If a write operation is in progress, it is neither possible to read the EEPROM, nor to change
the EEAR Register.

3.5.4 General Purpose I/O Register 2 – GPIOR2

3.5.5 General Purpose I/O Register 1 – GPIOR1

3.5.6 General Purpose I/O Register 0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 GPIOR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 22
7728A–AUTO–07/08

ATtiny167

 ATtiny167
4. System Clock and Clock Options
The ATtiny167 provides a large number of clock sources. They can be divided into two catego-
ries: internal and external. Some external clock sources can be shared with the asynchronous
timer. After reset, the clock source is determined by the CKSEL Fuses. Once the device is run-
ning, software clock switching is possible to any other clock sources.
Hardware controls are provided for clock switching management but some specific procedures
must be observed. Clock switching should be performed with caution as some settings could
result in the device having an incorrect configuration.

4.1 Clock Systems and their Distribution
Figure 4-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
may not need to be active at any given time. In order to reduce power consumption, the clocks to
modules not being used can be halted by using different sleep modes or by using features of the
dynamic clock switch circuit (See ”Power Management and Sleep Modes” on page 41 and
”Dynamic Clock Switch” on page 30). The clock systems are detailed below.

Figure 4-1. Clock Distribution

Modules

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

clkFLASH

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Prescaler

Multiplexer

Watchdog Clock

Low-frequency
Crystal Oscillator

Crystal
OscillatorExternal Clock

clkADC

Asynchronous
Timer/Counter0 General I/O ADC CPU Core RAM Flash and

EEPROM

Calibrated RC
Oscillator

PB5 / XTAL2 / CLKOPB4 / XTAL1 / CLKI

CKOUT
Fuse

Clock Switch
 23
7728A–AUTO–07/08

4.1.1 CPU Clock – clkCPU
The CPU clock is routed to parts of the system concerned with the AVR core operation. Exam-
ples of such modules are the General Purpose Register File, the Status Register and the Data
memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing gen-
eral operations and calculations.

4.1.2 I/O Clock – clkI/O
The I/O clock is used by the majority of the I/O modules, like synchronous Timer/Counter. The
I/O clock is also used by the External Interrupt module, but note that some external interrupts
are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock
is halted.

4.1.3 Flash Clock – clkFLASH
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

4.1.4 Asynchronous Timer Clock – clkASY
The asynchronous timer clock allows the asynchronous Timer/Counter to be clocked directly
from an external clock or an external low frequency crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

4.1.5 ADC Clock – clkADC
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

4.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits (default) or by
the CLKSELR register (dynamic clock switch circuit) as shown below. The clock from the
selected source is input to the AVR clock generator, and routed to the appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
2. Flash Fuse bits.
3. CLKSELR register bits.

The various choices for each clocking option are given in the following sections.

Table 4-1. Device Clocking Options Select(1) vs. PB4 and PB5 Functionality

Device Clocking Option
 CKSEL3..0 (2)

CSEL3..0 (3) PB4 PB5

External Clock 0000 b CLKI CLKO - I/O

Calibrated Internal RC Oscillator 8.0 MHz 0010 b I/O CLKO - I/O

Watchdog Oscillator 128 kHz 0011 b I/O CLKO - I/O

External Low-frequency Oscillator 01xx b XTAL1 XTAL2

External Crystal/Ceramic Resonator (0.4 - 0.9 MHz) 100x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (0.9 - 3.0 MHz) 101x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (3.0 - 8.0 MHz) 110x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (8.0 - 16.0 MHz) 111x b XTAL1 XTAL2
 24
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When the CPU wakes up from Power-down or Power-save, or when a new clock source is
enabled by the dynamic clock switch circuit, the selected clock source is used to time the start-
up, ensuring stable oscillator operation before instruction execution starts.
When the CPU starts from reset, there is an additional delay allowing the power to reach a sta-
ble level before commencing normal operation. The Watchdog Oscillator is used for timing this
real-time part of the start-up sequence. The number of WDT Oscillator cycles used for each
time-out is shown in Table 4-2.

4.2.1 Default Clock Source
At reset, the CKSEL and SUT fuse settings are copied into the CLKSELR register. The device
will then use the clock source and the start-up timings defined by the CLKSELR bits (CSEL3..0
and CSUT1:0).

The device is shipped with CKSEL Fuses = 0010 b, SUT Fuses = 10 b, and CKDIV8 Fuse pro-
grammed. The default clock source setting is therefore the Internal RC Oscillator running at 8
MHz with the longest start-up time and an initial system clock divided by 8. This default setting
ensures that all users can make their desired clock source setting using an In-System or High-
voltage Programmer. This set-up must be taken into account when using ISP tools.

4.2.2 Calibrated Internal RC Oscillator
By default, the Internal RC Oscillator provides an approximate 8.0 MHz clock. Though voltage
and temperature dependent, this clock can be accurately calibrated by the user. See Table 22-1
on page 235 and Section 24.7 ”Internal Oscillator Speed” on page 254 for more details.

If selected, it can operate without external components. At reset, hardware loads the pre-pro-
grammed calibration value into the OSCCAL Register and thereby automatically configuring the
RC Oscillator. The accuracy of this calibration is shown as Factory calibration in Table 22-1 on
page 235.

By adjusting the OSCCAL register in software, see ”OSCCAL – Oscillator Calibration Register”
on page 36, it is possible to get a higher calibration accuracy than by using the factory calibra-
tion. The accuracy of this calibration is shown as User calibration in Table 22-1 on page 235.

The Watchdog Oscillator will still be used for the Watchdog Timer and for the Reset Time-out
even when this Oscillator is used as the device clock. For more information on the pre-pro-
grammed calibration value, see the section ”Calibration Byte” on page 218.

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on Vcc), the CKDIV8
fuse can be programmed in order to divide the internal frequency by 8.

2. The frequency ranges are guideline values.
3. The device is shipped with this CKSEL = “0010”.
4. Flash Fuse bits.

Table 4-2. Number of Watchdog Oscillator Cycles

Typ. Time-out (Vcc = 5.0V) Typ. Time-out (Vcc = 5.0V) Number of Cycles

4.1 ms 4.3 ms 512

65 ms 69 ms 8K (8,192)

Table 4-3. Internal Calibrated RC Oscillator Operating Modes(1)

Frequency Range(2) (MHz)
 CKSEL3..0(3)(4)

CSEL3..0(5)

7.6 - 8.4 0010
 25
7728A–AUTO–07/08

5. CLKSELR register bits.
When this Oscillator is selected, start-up times are determined by the SUT Fuses or by CSUT
field as shown in Table 4-4.

Notes: 1. Flash Fuse bits
2. CLKSELR register bits
3. This setting is only available if RSTDISBL fuse is not set
4. The device is shipped with this option selected.

4.2.3 128 KHz Internal Oscillator
The 128 KHz internal Oscillator is a low power Oscillator providing a clock of 128 KHz. The fre-
quency is nominal at 3V and 25°C. This clock may be selected as the system clock by
programming CKSEL Fuses or CSEL field as shown in Table 4-1 on page 24.

When this clock source is selected, start-up times are determined by the SUT Fuses or by CSUT
field as shown in Table 4-5.

Notes: 1. Flash Fuse bits
2. CLKSELR register bits
3. This setting is only available if RSTDISBL fuse is not set

4.2.4 Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 4-2. Either a quartz crystal or a
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 4-6. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Table 4-4. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay from
Reset (Vcc = 5.0V) Recommended Usage

00(3) 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10(4) 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

Table 4-5. Start-up Times for the 128 kHz Internal Oscillator

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay
from Reset (Vcc = 5.0V) Recommended Usage

00(3) 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved
 26
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 4-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by CKSEL3..1 fuses or by CSEL3..1 field as shown in
Table 4-6.

Notes: 1. Flash Fuse bits.
2. CLKSELR register bits.
3. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses or CSEL0 together with CSUT1..0 field
select the start-up times as shown in Table 4-7.

Table 4-6. Crystal Oscillator Operating Modes

CKSEL3..1(1)

CSEL3..1(2) Frequency Range (MHz) Recommended Range for Capacitors
C1 and C2 for Use with Crystals (pF)

100(3) 0.4 - 0.9 –

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 16.0 12 - 22

Table 4-7. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0(1)

CSEL0(2)
SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay
from Reset
(Vcc = 5.0V)

Recommended Usage

0 00 258 CK(3) 14CK + 4.1 ms Ceramic resonator, fast
rising power

0 01 258 CK(3) 14CK + 65 ms Ceramic resonator, slowly
rising power

0 10(5) 1K (1024) CK(4) 14CK Ceramic resonator, BOD
enabled

0 11 1K (1024)CK(4) 14CK + 4.1 ms Ceramic resonator, fast
rising power

1 00 1K (1024)CK(4) 14CK + 65 ms Ceramic resonator, slowly
rising power

XTAL2

XTAL1

GND

C2

C1
 27
7728A–AUTO–07/08

Notes: 1. Flash Fuse bits.
2. CLKSELR register bits.
3. These options should only be used when not operating close to the maximum frequency of the

device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

4. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

5. This setting is only available if RSTDISBL fuse is not set.

4.2.5 Low-frequency Crystal Oscillator
To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency crystal
oscillator must be selected by setting CKSEL fuses or CSEL field as shown in Table 4-1 on page
24. The crystal should be connected as shown in Figure 4-3. Refer to the 32.768 kHz Crystal
Oscillator Application Note for details on oscillator operation and how to choose appropriate val-
ues for C1 and C2.

The 32.768 kHz watch crystal oscillator can be used by the asynchronous timer if the (high-fre-
quency) Crystal Oscillator is not running or if the External Clock is not enabed (See
”Enable/Disable Clock Source” on page 31.). The asynchronous timer is then able to start itself
this low-frequency crystal oscillator.

Figure 4-3. Low-frequency Crystal Oscillator Connections

1 01(5) 16K (16384) CK 14CK Crystal Oscillator, BOD
enabled

1 10 16K (16384) CK 14CK + 4.1 ms Crystal Oscillator, fast
rising power

1 11 16K (16384) CK 14CK + 65 ms Crystal Oscillator, slowly
rising power

Table 4-7. Start-up Times for the Crystal Oscillator Clock Selection (Continued)

CKSEL0(1)

CSEL0(2)
SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay
from Reset
(Vcc = 5.0V)

Recommended Usage

XTAL2

XTAL1

GND

C1=12-22 pF

32.768 KHz

12-22 pF capacitors may be necessary if parasitic
impedance (pads, wires & PCB) is very low.

C2=12-22 pF
 28
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When this oscillator is selected, start-up times are determined by the SUT fuses or by CSUT
field as shown in Table 4-8.

Notes: 1. Flash Fuse bits.
2. CLKSELR register bits.
3. These options should only be used if frequency stability at start-up is not important for the

application.

4.2.6 External Clock
To drive the device from this external clock source, CLKI should be driven as shown in Figure 4-
4. To run the device on an external clock, the CKSEL Fuses or CSEL field must be programmed
as shown in Table 4-1 on page 24.

Figure 4-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses or CSUT
field as shown in Table 4-9.

This external clock can be used by the asynchronous timer if the high or low frequency Crystal
Oscillator is not running (See ”Enable/Disable Clock Source” on page 31.). The asynchronous
timer is then able to enable this input.

Notes: 1. Flash Fuse bits.
2. CLKSELR register bits.
3. Additional delay (+ 4ms) available if RSTDISBL fuse is set.

Table 4-8. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay from
Reset (Vcc = 5.0V) Recommended usage

00 1K (1024) CK(3) 4.1 ms Fast rising power or BOD enabled

01 1K (1024) CK(3) 65 ms Slowly rising power

10 32K (32768) CK 65 ms Stable frequency at start-up

11 Reserved

Table 4-9. Start-up Times for the External Clock Selection

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay from Reset
(Vcc = 5.0V) Recommended Usage

00 6 CK 14CK (+ 4.1 ms(3)) BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

(XTAL2)
(CLKO)

CLKI
 (XTAL1)

GND

~
 External

Clock
Signal
 29
7728A–AUTO–07/08

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to ”System Clock Prescaler” on page
36 for details.

4.2.7 Clock Output Buffer
If not using a crystal oscillator, the device can output the system clock on the CLKO pin. To
enable the output, the CKOUT Fuse or COUT bit of CLKSELR register has to be programmed.
This option is useful when the device clock is needed to drive other circuits on the system. Note
that the clock will not be output during reset and the normal operation of I/O pin will be overrid-
den when the fuses are programmed. If the System Clock Prescaler is used, it is the divided
system clock that is output.

4.3 Dynamic Clock Switch

4.3.1 Features
The ATtiny167 provides a powerful dynamic clock switch circuit that allows users to turn on and
off clocks of the device on the fly. The built-in de-glitching circuitry allows clocks to be enabled or
disabled asynchronously. This enables efficient power management schemes to be imple-
mented easily and quickly. In a safety application, the dynamic clock switch circuit allows
continuous monitoring of the external clock permitting a fallback scheme in case of clock failure.

The control of the dynamic clock switch circuit must be supervised by software. This operation is
facilitated by the following features:

• Safe commands, to avoid unintentional commands, a special write procedure must be
followed to change the CLKCSR register bits (See Section “4.5.3” on page 38.):

• Exclusive action, the actions are controlled by a decoding table (commands) written to the
CLKCSR register. This ensures that only one command operation can be launched at any
time. The main actions of the decoding table are:
– ‘Disable Clock Source’,
– ‘Enable Clock Source’,
– ‘Request Clock Availability’,
– ‘Clock Source Switching’,
– ‘Recover System Clock Source’,
– ‘Enable Watchdog in Automatic Reload Mode’.

• Command status return. The ‘Request Clock Availability ’ command returns status via the
CLKRDY bit in the CLKCSR register. The ‘Recover System Clock Source ’ command
returns a code of the current clock source in the CLKSELR register. This information is used
in the supervisory software routines as shown in Section 4.3.7 on page 32.

4.3.2 CLKSELR Register

4.3.2.1 Fuses Substitution
At reset, bits of the Low Fuse Byte are copied into the CLKSELR register. The content of this
register can subsequently be user modified to overwrite the default values from the Low Fuse
Byte. CKSEL3..0, SUT1..0 and CKOUT fuses correspond respectively to CSEL3..0, CSUT1:0
and ~(COUT) bits of the CLKSELR register as shown in Figure 4-5 on page 31.
 30
7728A–AUTO–07/08

ATtiny167

 ATtiny167
4.3.2.2 Source Selection
The available codes of clock source are given in Table 4-1 on page 24.

Figure 4-5. Fuses substitution and Clock Source Selection

The CLKSELR register contains the CSEL, CSUT and COUT values which will be used by the
‘Enable/Disable Clock Source’, ‘Request for Clock Availability’ or ‘Clock Source Switching’
commands.

4.3.2.3 Source Recovering
The ‘Recover System Clock Source’ command updates the CKSEL field of CLKSELR register
(See Section “4.3.6” on page 32.).

4.3.3 Enable/Disable Clock Source
The ‘Enable Clock Source’ command selects and enables a clock source configured by the set-
tings in the CLKSELR register. CSEL3..0 will select the clock source and CSUT1:0 will select the
start-up time (just as CKSEL and SUT fuse bits do). To be sure that a clock source is operating,
the ‘Request for Clock Availability ’ command must be executed after the ‘Enable Clock Source’
command. This will indicate via the CLKRDY bit in the CLKCSR register that a valid clock source
is available and operational.

The ‘Disable Clock Source’ command disables the clock source indicated by the settings of
CLKSELR register (only CSEL3..0). If the clock source indicated is currently the one that is used
to drive the system clock, the command is not executed.

Because the selected configuration is latched at clock source level, it is possible to enable many
clock sources at a given time (ex: the internal RC oscillator for system clock + an oscillator with
external crystal). The user (code) is responsible of this management.

4.3.4 COUT Command
The ‘CKOUT ’ command allows to drive the CLKO pin. Refer to Section 4.2.7 ”Clock Output
Buffer” on page 30 for using.

4.3.5 Clock Availability
‘Request for Clock Availability’ command enables a hardware oscillation cycle counter driven by
the selected source clock, CSEL3..0. The count limit value is determined by the settings of

C
LK

S
E

L[
3.

.0
]

S
U

T[
1.

.0
]

C
K

O
U

T

Register:
CLKSELR

Fuse:
Fuse Low Byte

C
S

E
L[

3.
.0

]
C

S
U

T[
1.

.0
]

C
O

U
T

D
ef

au
lt

R
/W

 R
eg

.

SE
L

D
ec

od
er SEL-1

SEL-0

SEL-2

SEL-n

CKSEL[3..0]

SUT[1..0]

SE
L

En
co

de
r

EN-1

EN-0

EN-2

EN-n

CKOUT

Reset

SCLKRq
(*)

SCLKRq
(*)

: Command of Clock Control & Status Register

In
te

rn
al

�
D

at
a

B
us

Selected
Configuration

Clock
Switch
Current

Configuration
 31
7728A–AUTO–07/08

CSUT1..0. The clock is declared ready (CLKRDY = 1) when the count limit value is reached.
The CLKRDY flag is reset when the count starts. Once set, this flag remains unchanged until a
new count is commanded. To perform this checking, the CKSEL and CSUT fields should not be
changed while the operation is running.

Note that once the new clock source is selected (‘Enable Clock Source’ command), the count
procedure is automatically started. The user (code) should wait for the setting of the CLKRDY
flag in CLKSCR register before using a newly selected clock.

At any time, the user (code) can ask for the availability of a clock source. The user (code) can
request it by writing the ‘Request for Clock Availability ’ command in the CLKSCR register. A full
polling of the status of clock sources can thus be done.

4.3.6 System Clock Source Recovering
The ‘Recover System Clock Source’ command returns the current clock source used to drive the
system clock as per Table 4-1 on page 24. The CKSEL field of CLKSELR register is then
updated with this returned value. There is no information on the SUT used or status on CKOUT.

4.3.7 Clock Switching
To drive the system clock, the user can switch from the current clock source to any other of the
following ones (one of them being the current clock source):

1. Calibrated internal RC oscillator 8.0 MHz,
2. Internal watchdog oscillator 128 kHz,
3. External clock,
4. External low-frequency oscillator,
5. External Crystal/Ceramic Resonator.
The clock switching is performed by a sequence of commands. First, the user (code) must make
sure that the new clock source is operating. Then the ‘Clock Source Switching’ command can be
issued. Once this command has been successfully completed using the ‘Recover System Clock
Source’ command, the user (code) may stop the previous clock source. It is strongly recom-
mended to run this sequence only once the interrupts have been disabled. The user (code) is
responsible for the correct implementation of the clock switching sequence.
 32
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Here is a “light” C-code that describes such a sequence of commands.

Warning:

In the ATtiny167, only one among the three external clock sources can be enabled at a
given time. Moreover, the enables of the external clock and of the external low-frequency
oscillator are shared with the asynchronous timer.

4.3.8 Clock Monitoring
A safe system needs to monitor its clock sources. Two domains need to be monitored:
- Clock sources for peripherals,
- Clocks sources for system clock generation.
In the first domain, the user (code) can easily check the validity of the clock(s) (See Section
“4.3.4” on page 31.).

C Code Example

void ClockSwiching (unsigned char clk_number, unsigned char sut) {

#define CLOCK_RECOVER 0x05
#define CLOCK_ENABLE 0x02
#define CLOCK_SWITCH 0x04
#define CLOCK_DISABLE 0x01

unsigned char previous_clk, temp;

// Disable interrupts
temp = SREG; asm ("cli");

// Save the current system clock source
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_RECOVER;
previous_clk = CLKSELR & 0x0F;

// Enable the new clock source
CLKSELR = ((sut << 4) & 0x30) | (clk_number & 0x0F);
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_ENABLE;

// Wait for clock validity
while ((CLKCSR & (1 << CLKRDY)) == 0);

// Switch clock source
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_SWITCH;

// Wait for effective switching
while (1){

CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_RECOVER;
if ((CLKSELR & 0x0F) == (clk_number & 0x0F)) break;

}
// Shut down unneeded clock source

if (previous_clk != (clk_number & 0x0F)) {
CLKSELR = previous_clk;
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_DISABLE;

}

// Re-enable interrupts
SREG = temp;

}

 33
7728A–AUTO–07/08

In the second domain, the lack of a clock results in the code not running. Thus, the presence of
the system clock needs to be monitored by hardware.

Using the on-chip watchdog allows this monitoring. Normally, the watchdog reloading is per-
formed only if the code reaches some specific software labels, reaching these labels proves that
the system clock is running. Otherwise the watchdog reset is enabled. This behavior can be con-
sidered as a clock monitoring.

If the standard watchdog functionality is not desired, the ATtiny167 watchdog permits the system
clock to be monitored without having to resort to the complexity of a full software watchdog han-
dler. The solution proposed in the ATtiny167 is to automate the watchdog reloading with only
one command, at the beginning of the session.

So, to monitor the system clock, the user will have two options:

1. Using the standard watchdog features (software reload),
2. Or using the automatic reloading (hardware reload).
The two options are exclusive.

Note: Warning:
These two options make sense ONLY if the clock source at RESET is an INTERNAL
SOURCE. The fuse settings determine this operation.

Figure 4-6. Watchdog Timer with Automatic Reloading.

The ‘Enable Watchdog in Automatic Reload Mode’ command has priority over the standard
watchdog enabling. In this mode, only the reset function of the watchdog is enabled (no more
watchdog interrupt). The WDP3..0 bits of the WDTCSR register always determine the watchdog
timer prescaling.

As the watchdog will not be active before executing the ‘Enable Watchdog in Automatic Reload
Mode’ command, it is recommended to activate this command before switching to an external
clock source (See note on page 34).

Note: 1. ONLY the reset (watchdog reset included) disables this function. The Watchdog System Reset
Flag (WDRF bit of MCUSR register) can be used to monitor the reset cause.

2. ONLY clock frequencies ≥ (4 * WatchDog Clock frequency) can be monitored.

Internal Bus

Register:
WDTCSR W

D
E

W
D

P
[3

..0
]

W
D

IF

W
D

IE

Checker

Reload

Enable
System CLK

Automatic
Reloading
Mode

WatchDog Clock

WD
Interrupt

WD
Reset

WatchDog

0 1
 34
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Here is a “light” C-code of a clock switching function using automatic clock monitoring.

C Code Example

void ClockSwiching (unsigned char clk_number, unsigned char sut) {

#define CLOCK_RECOVER 0x05
#define CLOCK_ENABLE 0x02
#define CLOCK_SWITCH 0x04
#define CLOCK_DISABLE 0x01
#define WD_ARL_ENABLE 0x06

#define WD_2048CYCLES 0x07

unsigned char previous_clk, temp;

// Disable interrupts
temp = SREG; asm ("cli");

// Save the current system clock source
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_RECOVER;
previous_clk = CLKSELR & 0x0F;

// Enable the new clock source
CLKSELR = ((sut << 4) & 0x30) | (clk_number & 0x0F);
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_ENABLE;

// Wait for clock validity
while ((CLKCSR & (1 << CLKRDY)) == 0);

// Switch clock source
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_SWITCH;

// Wait for effective switching
while (1){

CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_RECOVER;
if ((CLKSELR & 0x0F) == (clk_number & 0x0F)) break;

}
// Shut down unneeded clock source

if (previous_clk != (clk_number & 0x0F)) {
CLKSELR = previous_clk;
CLKCSR = 1 << CLKCCE;
CLKCSR = CLOCK_DISABLE;

}

// Re-enable interrupts
SREG = temp;

}

// Enable the watchdog in automatic reload mode
WDTCSR = (1 << WDCE) | (1 << WDE);
WDTCSR = (1 << WDE) | WD_2048CYCLES;
CLKCSR = 1 << CLKCCE;
CLKCSR = WD_ARL_ENABLE;
 35
7728A–AUTO–07/08

4.4 System Clock Prescaler

4.4.1 Features
The ATtiny167 system clock can be divided by setting the Clock Prescaler Register – CLKPR.
This feature can be used to decrease power consumption when the requirement for processing
power is low. This can be used with all clock source options, and it will affect the clock frequency
of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are divided by a
factor as shown in Table 4-10 on page 38.

4.4.2 Switching Time
When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system and that no intermediate frequency is higher than neither the
clock frequency corresponding to the previous setting, nor the clock frequency corresponding to
the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the
state of the prescaler – even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

4.5 Register Description

4.5.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. The factory-calibrated value is automat-
ically written to this register during chip reset, giving an oscillator frequency of 8.0 MHz at 25°C.
The application software can write this register to change the oscillator frequency. The oscillator
can be calibrated to any frequency in the range 7.3 - 8.1 MHz within ± 2% accuracy. Calibration
outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value
 36
7728A–AUTO–07/08

ATtiny167

 ATtiny167
range. Incrementing CAL6..0 by 1 will give a frequency increment of less than 2% in the fre-
quency range 7.3 - 8.1 MHz.

4.5.2 CLKPR – Clock Prescaler Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when the CLKPS bits are written. Rewriting
the CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 6:4 – Res: Reserved Bits
These bits are reserved bits in the ATtiny167 and will always read as zero.

• Bits 3:0 – CLKPS3:0: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 4-10.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.
Interrupts must be disabled when changing prescaler setting in order not to disturb the
procedure.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of eight at start up. This feature should be used if the selected
clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the
CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor is
chosen if the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. The device is shipped with the CKDIV8 Fuse
programmed.

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
 37
7728A–AUTO–07/08

4.5.3 CLKCSR – Clock Control & Status Register

• Bit 7 – CLKCCE: Clock Control Change Enable
The CLKCCE bit must be written to logic one to enable change of the CLKCSR bits. The
CLKCCE bit is only updated when the other bits in CLKCSR are simultaneously written to zero.
CLKCCE is cleared by hardware four cycles after it is written or when the CLKCSR bits are writ-
ten. Rewriting the CLKCCE bit within this time-out period does neither extend the time-out
period, nor clear the CLKCCE bit.

• Bits 6:5 – Res: Reserved Bits
These bits are reserved bits in the ATtiny167 and will always read as zero.

• Bits 4 – CLKRDY: Clock Ready Flag
This flag is the output of the ‘Clock Availability ’ logic.
This flag is cleared by the ‘Request for Clock Availability’ command or ‘Enable Clock Source’
command being entered.
It is set when ‘Clock Availability’ logic confirms that the (selected) clock is running and is stable.
The delay from the request and the flag setting is not fixed, it depends on the clock start-up time,
the clock frequency and, of course, if the clock is alive. The user’s code has to differentiate
between ‘no_clock_signal’ and ‘clock_signal_not_yet_available’ condition.

Table 4-10. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

Bit 7 6 5 4 3 2 1 0

CLKCCE – – CLKRDY CLKC3 CLKC2 CLKC1 CLKC0 CLKCSR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 38
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bits 3:0 – CLKC3:0: Clock Control Bits 3 - 0
These bits define the command to provide to the ‘Clock Switch’ module. The special write proce-
dure must be followed to change the CLKC3..0 bits (See ”Bit 7 – CLKCCE: Clock Control
Change Enable” on page 38.).

1. Write the Clock Control Change Enable (CLKCCE) bit to one and all other bits in
CLKCSR to zero.

2. Within 4 cycles, write the desired value to CLKCSR register while clearing CLKCCE bit.
Interrupts should be disabled when setting CLKCSR register in order not to disturb the
procedure.

4.5.4 CLKSELR - Clock Selection Register

• Bit 7– Res: Reserved Bit
This bit is reserved bit in the ATtiny167 and will always read as zero.

• Bit 6 – COUT: Clock Out
The COUT bit is initialized with ~(CKOUT) Fuse bit.
The COUT bit is only used in case of ‘CKOUT’ command. Refer to Section 4.2.7 ”Clock Output
Buffer” on page 30 for using.
In case of ‘Recover System Clock Source’ command, COUT it is not affected (no recovering of
this setting).

• Bits 5:4 – CSUT1:0: Clock Start-up Time
CSUT bits are initialized with the values of SUT Fuse bits.
In case of ‘Enable/Disable Clock Source’ command, CSUT field provides the code of the clock
start-up time. Refer to subdivisions of Section 4.2 ”Clock Sources” on page 24 for code of clock
start-up times.

Table 4-11. Clock command list.

Clock Command CLKC3..0

No command 0000 b

Disable clock source 0001 b

Enable clock source 0010 b

Request for clock availability 0011 b

Clock source switch 0100 b

Recover system clock source code 0101 b

Enable watchdog in automatic reload mode 0110 b

CKOUT command 0111 b

No command 1xxx b

Bit 7 6 5 4 3 2 1 0
- COUT CSUT1 CSUT0 CSEL3 CSEL2 CSEL1 CSEL0 CLKSELR

Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 ~ (CKOUT)

fuse
SUT1..0
fuses

CKSEL3..0
fuses
 39
7728A–AUTO–07/08

In case of ‘Recover System Clock Source’ command, CSUT field is not affected (no recovering
of SUT code).

• Bits 3:0 – CSEL3:0: Clock Source Select
CSEL bits are initialized with the values of CKSEL Fuse bits.
In case of ‘Enable/Disable Clock Source’, ‘Request for Clock Availability’ or ‘Clock Source
Switch’ command, CSEL field provides the code of the clock source. Refer to Table 4-1 on page
24 and subdivisions of Section 4.2 ”Clock Sources” on page 24 for clock source codes.
In case of ‘Recover System Clock Source’ command, CSEL field contains the code of the clock
source used to drive the Clock Control Unit as described in Figure 4-1 on page 23.
 40
7728A–AUTO–07/08

ATtiny167

 ATtiny167
5. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during
the sleep periods. To further save power, it is possible to disable the BOD in some sleep modes.
See ”BOD Disable” on page 41 for more details.

5.1 Sleep Modes
Figure 4-1 on page 23 presents the different clock systems in the ATtiny167, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode. Table 5-1 shows the different
sleep modes, their wake up sources and BOD disable ability.

Note: 1. For INT1 and INT0, only level interrupt.

To enter any of the four sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM1, and SM0 bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, or Power-save) will be activated by
the SLEEP instruction. See Table 5-2 on page 45 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

5.2 BOD Disable
When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses, Table 21-3 on page 217,
the BOD is actively monitoring the power supply voltage during a sleep period. To save power, it
is possible to disable the BOD by software for some of the sleep modes, see Table 5-1. The
sleep mode power consumption will then be at the same level as when BOD is globally disabled
by fuses. If BOD is disabled in software, the BOD function is turned off immediately after enter-

Table 5-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources

S
of

tw
ar

e
BO

D
 D

is
ab

le

Sleep Mode cl
k C

P
U

cl
k F

LA
S

H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
C

lo
ck

So

ur
ce

 E
na

bl
ed

Ti
m

er
0

O
sc

.
En

ab
le

IN
T1

, I
N

T0
 a

nd

Pi
n

C
ha

ng
e

S
P

M
/E

E
P

R
O

M

R
ea

dy

A
D

C

W
D

T

U
SI

 S
ta

rt
C

on
di

tio
n

Ti
m

er
0

O
th

er
 I/

O

Idle X X X X X X X X X X X X

ADC Noise
Reduction X X X X X(1) X X X X X

Power-down X(1) X X X

Power-Save X X X(1) X X X X
 41
7728A–AUTO–07/08

ing the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again. This
ensures safe operation in case the Vcc level has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60
µs to ensure that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by BODS bit (BOD Sleep) in the control register MCUCR, see
”MCUCR – MCU Control Register” on page 45. Setting it to one turns off the BOD in relevant
sleep modes, while a zero in this bit keeps BOD active. Default setting keeps BOD active, i.e.
BODS is cleared to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see ”MCUCR –
MCU Control Register” on page 45.

5.3 Idle Mode
When the SM1..0 bits are written to 00, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing the SPI, Analog Comparator, ADC, USI start condition, Asynchro-
nous Timer/Counter, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the SPI interrupts. If wake-up from the Analog Comparator interrupt is not required, the
Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator
Control and Status Register – ACSR. This will reduce power consumption in Idle mode. If the
ADC is enabled, a conversion starts automatically when this mode is entered.

5.4 ADC Noise Reduction Mode
When the SM1..0 bits are written to 01, the SLEEP instruction makes the MCU enter ADC Noise
Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI start
condition, the asynchronous Timer/Counter and the Watchdog to continue operating (if
enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other
clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog Interrupt, a Brown-out Reset, a USI start condition interrupt, an asynchronous
Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or
INT1 or a pin change interrupt can wake up the MCU from ADC Noise Reduction mode.

5.5 Power-down Mode
When the SM1..0 bits are written to 10, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition, and the Watchdog continue operating (if enabled). Only an External Reset, a
Watchdog System Reset, a Watchdog Interrupt, a Brown-out Reset, the USI start condition
interrupt, an external level interrupt on INT0 or INT1, or a pin change interrupt can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous
modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to Section 8. ”External Interrupts”
on page 59 for details.
 42
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in Section 4.2 ”Clock Sources” on page 24.

5.6 Power-save Mode
When the SM1..0 bits are written to 11, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter0 is clocked asynchronously, i.e., the AS0 bit in ASSR is set, Timer/Counter0
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter0 if the corresponding Timer/Counter0 interrupt enable bits are set in
TIMSK0, and the global interrupt enable bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if AS0 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asynchronous
modules, including Timer/Counter0 if clocked asynchronously.

5.7 Power Reduction Register
The Power Reduction Register (PRR), see ”PRR – Power Reduction Register” on page 46, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.

5.8 Minimizing Power Consumption
There are several possibilities to consider when trying to minimize the power consumption in an
AVR controlled system. In general, sleep modes should be used as much as possible, and the
sleep mode should be selected so that as few as possible of the device’s functions are operat-
ing. All functions not needed should be disabled. In particular, the following modules may need
special consideration when trying to achieve the lowest possible power consumption.

5.8.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to Section 17. ”ADC – Analog to Digital Con-
verter” on page 183 for details on ADC operation.

5.8.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
 43
7728A–AUTO–07/08

mode. Refer to Section 18. ”AnaComp - Analog Comparator” on page 202 for details on how to
configure the Analog Comparator.

5.8.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to Section 6.1.5 ”Brown-out Detection” on page
49 for details on how to configure the Brown-out Detector.

5.8.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to Section 6.2
”Internal Voltage Reference” on page 51 for details on the start-up time.

Output the internal voltage reference is not needed in the deeper sleep modes. This module
should be turned off to reduce significantly to the total current consumption. Refer to ”AMISCR –
Analog Miscellaneous Control Register” on page 201 for details on how to disable the internal
voltage reference output.

5.8.5 Internal Current Source
The Internal Current Source is not needed in the deeper sleep modes. This module should be
turned off to reduce significantly to the total current consumption. Refer to ”AMISCR – Analog
Miscellaneous Control Register” on page 182 for details on how to disable the Internal Current
Source.

5.8.6 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes and hence always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to Section 6.3 ”Watchdog Timer” on page 51 for details on how to configure the
Watchdog Timer.

5.8.7 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section Section 9.2.6 ”Digital Input Enable and Sleep Modes” on page 69
for details on which pins are enabled. If the input buffer is enabled and the input signal is left
floating or have an analog signal level close to Vcc/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vcc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to Section 17.11.6 ”DIDR1 – Digital Input Disable Register 1” on page 201 and
Section 17.11.5 ”DIDR0 – Digital Input Disable Register 0” on page 200 for details.
 44
7728A–AUTO–07/08

ATtiny167

 ATtiny167
5.8.8 On-chip Debug System
If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the
main clock source is enabled and hence always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.

5.9 Register Description

5.9.1 SMCR – Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

• Bits 7..3 Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bits 2..1 – SM1..0: Sleep Mode Select Bits 1, and 0
These bits select between the four available sleep modes as shown in Table 5-2.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

5.9.2 MCUCR – MCU Control Register

• Bit 6 – BODS: BOD Sleep
The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 5-1
on page 41. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first
be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to
zero within four clock cycles.

Bit 7 6 5 4 3 2 1 0

– – – – – SM1 SM0 SE SMCR
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 5-2. Sleep Mode Select

SM1 SM0 Sleep Mode

0 0 Idle

0 1 ADC Noise Reduction

1 0 Power-down

1 1 Power-save

Bit 7 6 5 4 3 2 1 0

– BODS BODSE PUD – – – – MCUCR
Read/Write R R/W R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0
 45
7728A–AUTO–07/08

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is
automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable
BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable
is controlled by a timed sequence.

5.9.3 PRR – Power Reduction Register

• Bit 7 - Res: Reserved bit
This bit is reserved in ATtiny167 and will always read as zero.

• Bit 6 - Res: Reserved bit
This bit is reserved in ATtiny167 and will always read as zero.

• Bit5 - PRLIN: Power Reduction LIN / UART controller
Writing a logic one to this bit shuts down the LIN by stopping the clock to the module. When
waking up the LIN again, the LIN should be re initialized to ensure proper operation.

• Bit 4 - PRSPI: Power Reduction Serial Peripheral Interface
If using debugWIRE On-chip Debug System, this bit should not be written to one.

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

• Bit 2 - PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module in synchronous mode (AS0
is 0). When the Timer/Counter0 is enabled, operation will continue like before the shutdown.

• Bit 1 - PRUSI: Power Reduction USI
Writing a logic one to this bit shuts down the USI by stopping the clock to the module. When
waking up the USI again, the USI should be re-initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Bit 7 6 5 4 3 2 1 0

– – PRLIN PRSPI PRTIM1 PRTIM0 PRUSI PRADC PRR
Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 46
7728A–AUTO–07/08

ATtiny167

 ATtiny167
6. System Control and Reset

6.1 Reset

6.1.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be an RJMP – Relative
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. The circuit diagram in Figure 6-1 shows the reset circuit. Tables in Section 22.5
”RESET Characteristics” on page 236 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in Section 4.2 ”Clock Sources” on page 24.

6.1.2 Reset Sources
The ATtiny167 has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog System Reset mode is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage Vcc is below the Brown-out
Reset threshold (VBOT) and the Brown-out Detector is enabled.
 47
7728A–AUTO–07/08

Figure 6-1. Reset Circuit

6.1.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 22-4 on page 236. The POR is activated whenever Vcc is below the detection
level. The POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in
supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after Vcc rise. The RESET signal is activated again, without any delay,
when Vcc decreases below the detection level.

Figure 6-2. MCU Start-up, RESET Tied to Vcc

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK TIMEOUT

W
D

R
F

B
O

R
F

E
X

TR
F

P
O

R
F

DATA BUS

Clock
Generator

Spike
Filter

Pull-up Resistor

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit

RSTDISBL

V

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VPORMAX

VPORMIN

CC

VCCRR
 48
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 6-3. MCU Start-up, RESET Extended Externally

6.1.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 22-3 on page 236) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal
reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the
MCU after the Time-out period – tTOUT – has expired. The External Reset can be disabled by the
RSTDISBL fuse, see Table 21-4 on page 217.

Figure 6-4. External Reset During Operation

6.1.5 Brown-out Detection
ATtiny167 has an On-chip Brown-out Detection (BOD) circuit for monitoring the Vcc level during
operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected
by the BODLEVEL Fuses (See ”BODLEVEL Fuse Coding” on page 237.). The trigger level has
a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level
should be interpreted as VBOT+ = VBOT + VHYST / 2 and VBOT– = VBOT - VHYST / 2.

When the BOD is enabled, and Vcc decreases to a value below the trigger level (VBOT– in Figure
6-5), the Brown-out Reset is immediately activated. When Vcc increases above the trigger level
(VBOT+ in Figure 6-5), the delay counter starts the MCU after the Time-out period tTOUT has
expired.

The BOD circuit will only detect a drop in Vcc if the voltage stays below the trigger level for
longer than tBOD given in Table 22-6 on page 237.

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VRST

VPOR
CC

VCCRR

CC
 49
7728A–AUTO–07/08

Figure 6-5. Brown-out Reset During Operation

6.1.6 Watchdog System Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 51 for details on operation of the Watchdog Timer.

Figure 6-6. Watchdog System Reset During Operation

6.1.7 MCU Status Register – MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 7..4 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 3 – WDRF: Watchdog System Reset Flag
This bit is set if a Watchdog System Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – – WDRF BORF EXTRF PORF MCUSR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
 50
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

6.2 Internal Voltage Reference
ATtiny167 features an internal bandgap reference. This reference is used for Brown-out Detec-
tion, and it can be used as an input to the Analog Comparator or the ADC.

6.2.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 22-7 on page 237. To save power, the reference is not always
turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).
2. When the bandgap reference is connected to the Analog Comparator (by setting the

ACIRS bit in ACSR).
3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACIRS bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode or in Power-save, the user
can avoid the three conditions above to ensure that the reference is turned off before entering in
these power reduction modes.

6.3 Watchdog Timer
ATtiny167 has an Enhanced Watchdog Timer (WDT). The main features are:

• Clocked from separate On-chip Oscillator
• 4 Operating modes

– Interrupt
– System Reset
– Interrupt and System Reset
– Clock Monitoring

• Selectable Time-out period from 16ms to 8s
• Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

6.3.1 Watchdog Timer Behavior
The Watchdog Timer (WDT) is a timer counting cycles of a separate on-chip 128 KHz oscillator.
 51
7728A–AUTO–07/08

Figure 6-7. Watchdog Timer

The WDT gives an interrupt or a system reset when the counter reaches a given time-out value.
In normal operation mode, it is required that the system uses the WDR - Watchdog Timer Reset
- instruction to restart the counter before the time-out value is reached. If the system doesn't
restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to
System Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Inter-
rupt mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security,
alterations to the Watchdog set-up must follow timed sequences. The sequence for clearing
WDE and changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

MCU
RESET

WATCHDOG
RESET

CLOCK
MONITORING

INTERRUPT

WDE

WDIF

WDIE

WDP0
WDP1
WDP2
WDP3

O
SC

 /
10

24
K

O
SC

 /
51

2K

O
SC

 /
4K

O
SC

 /
2K

O
SC

 /
25

6K
O

SC
 /

12
8K

O
SC

 /
64

K
O

SC
 /

32
K

O
SC

 /
16

K
O

SC
 /

8K

WATCHDOG
PRESCALER

~128 KHz
OSCILLATOR
 52
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.

Note: 1. See ”About Code Examples” on page 5.
Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is not in use.

Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (0xff & (0<<WDRF))

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

lds r16, WDTCR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCR, r16

; Turn off WDT

ldi r16, (0<<WDE)

sts WDTCR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

__enable_interrupt();

}

 53
7728A–AUTO–07/08

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Note: 1. See ”About Code Examples” on page 5.
2. The Watchdog Timer should be reset before any change of the WDP bits, since a change in

the WDP bits can result in a time-out when switching to a shorter time-out period.

6.3.2 Clock monitoring
The Watchdog Timer can be used to detect a loss of system clock. This configuration is driven
by the dynamic clock switch circuit. Please refer to Section 4.3.8 ”Clock Monitoring” on page 33
for more information.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed sequence */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

 54
7728A–AUTO–07/08

ATtiny167

 ATtiny167
6.3.3 Watchdog Timer Control Register - WDTCR

• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is
useful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a
System Reset will be applied.

If the Watchdog Timer is used as clock monitor (c.f. Section • ”Bits 3:0 – CLKC3:0: Clock Control
Bits 3 - 0” on page 39), the System Reset Mode is enabled and the Interrupt Mode is automati-
cally disabled.

Note: 1. At least one of these three enables (WDTON, WDE & WDIE) equal to 1.

• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

Bit 7 6 5 4 3 2 1 0

WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 6-1. Watchdog Timer Configuration

Clock
Monitor WDTON WDE WDIE Mode Action on Time-out

x 0 0 0 Stopped None

On y(1) y(1) y(1) System Reset Mode Reset

Off

0 0 1 Interrupt Mode Interrupt

0 1 0 System Reset Mode Reset

0 1 1 Interrupt and System Reset
Mode

Interrupt, then go to System
Reset Mode

1 x x System Reset Mode Reset
 55
7728A–AUTO–07/08

• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 6-2 on page 56.

Table 6-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0 Number of
WDT Oscillator Cycles

Typical Time-out
at Vcc = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32 ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125 s

0 1 0 0 32K (32768) cycles 0.25 s

0 1 0 1 64K (65536) cycles 0.5 s

0 1 1 0 128K (131072) cycles 1.0 s

0 1 1 1 256K (262144) cycles 2.0 s

1 0 0 0 512K (524288) cycles 4.0 s

1 0 0 1 1024K (1048576) cycles 8.0 s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
 56
7728A–AUTO–07/08

ATtiny167

 ATtiny167
7. Interrupts
This section describes the specifics of the interrupt handling as performed in ATtiny167. For a
general explanation of the AVR interrupt handling, refer to ”Reset and Interrupt Handling” on
page 11.

7.1 Interrupt Vectors in ATtiny167

7.2 Program Setup in ATtiny167
The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATtiny167 is (4-byte step - using “jmp” instruction):

Address(1) Label Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp INT0addr ; IRQ0 Handler

0x0004 jmp INT1addr ; IRQ1 Handler

0x0006 jmp PCINT0addr ; PCINT0 Handler

Table 7-1. Reset and Interrupt Vectors in ATtiny167

Vector
Nb.

Program Address
Source Interrupt Definition

ATtiny167

1 0x0000 RESET External Pin, Power-on Reset, Brown-out Reset and
Watchdog System Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A WDT Watchdog Time-out Interrupt

7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0010 TIMER1 COMPB Timer/Coutner1 Compare Match B

10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMER0 COMPA Timer/Counter0 Compare Match A

12 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x0018 LIN TC LIN/UART Transfer Complete

14 0x001A LIN ERR LIN/UART Error

15 0x001C SPI, STC SPI Serial Transfer Complete

16 0x001E ADC ADC Conversion Complete

17 0x0020 EE READY EEPROM Ready

18 0x0022 ANALOG COMP Analog Comparator

19 0x0024 USI START USI Start Condition Detection

20 0x0026 USI OVF USI Counter Overflow
 57
7728A–AUTO–07/08

0x0008 jmp PCINT1addr ; PCINT1 Handler

0x000A jmp WDTaddr ; Watchdog Timer Handler

0x000C jmp ICP1addr ; Timer1 Capture Handler

0x000E jmp OC1Aaddr ; Timer1 Compare A Handler

0x0010 jmp OC1Baddr ; Timer1 Compare B Handler

0x0012 jmp OVF1addr ; Timer1 Overflow Handler

0x0014 jmp OC0Aaddr ; Timer0 Compare A Handler

0x0016 jmp OVF0addr ; Timer0 Overflow Handler

0x0018 jmp LINTCaddr ; LIN Transfer Complete Handler

0x001A jmp LINERRaddr ; LIN Error Handler

0x001C jmp SPIaddr ; SPI Transfer Complete Handler

0x001E jmp ADCCaddr ; ADC Conversion Complete Handler

0x0020 jmp ERDYaddr ; EEPROM Ready Handler

0x0022 jmp ACIaddr ; Analog Comparator Handler

0x0024 jmp USISTARTaddr ; USI Start Condition Handler

0x0026 jmp USIOVFaddr ; USI Overflow Handler

0x0028 RESET: ldi r16, high(RAMEND); Main program start

0x0029 out SPH,r16 ; Set Stack Pointer to top of RAM

0x002A ldi r16, low(RAMEND)

0x002B out SPL,r16

0x002C sei ; Enable interrupts

0x002D <instr> xxx

Note: 1. 16-bit address
 58
7728A–AUTO–07/08

ATtiny167

 ATtiny167
8. External Interrupts

8.1 Overview
The External Interrupts are triggered by the INT1..0 pins or any of the PCINT15..0 pins. Observe
that, if enabled, the interrupts will trigger even if the INT1..0 or PCINT15..0 pins are configured
as outputs. This feature provides a way of generating a software interrupt.

The pin change interrupt PCINT1 will trigger if any enabled PCINT15..8 pin toggles. The pin
change interrupt PCINT0 will trigger if any enabled PCINT7..0 pin toggles. The PCMSK1 and
PCMSK0 Registers control which pins contribute to the pin change interrupts. Pin change inter-
rupts on PCINT15..0 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode.

The INT1..0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as
indicated in the specification for the External Interrupt Control Register A – EICRA. When the
INT1..0 interrupts are enabled and are configured as level triggered, the interrupts will trigger as
long as the pin is held low. The recognition of falling or rising edge interrupts on INT1..0 requires
the presence of an I/O clock, described in ”Clock Systems and their Distribution” on page 23.
Low level interrupts and the edge interrupt on INT1..0 are detected asynchronously. This implies
that these interrupts can be used for waking the part also from sleep modes other than Idle
mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down or Power-save, the
required level must be held long enough for the MCU to complete the wake-up to trigger the
level interrupt. If the level disappears before the end of the Start-up Time, the MCU will still wake
up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses
as described in ”Clock Systems and their Distribution” on page 23.

8.2 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 8-1.

Figure 8-1. Timing of pin change interrupts

LE

D Q D Q

clk

pin_lat pin_sync pcint_in[i]PCINT[i]�
pin

PCINT[i] bit�
(of PCMSKn)

D Q D Q D Q

clk

pcint_sync pcint_set/flag
0

7

PCIFn�
 (interrupt flag)

PCINT[i] pin

pin_lat

pin_sync

clk

pcint_in[i]

pcint_syn

pcint_set/flag

PCIFn
 59
7728A–AUTO–07/08

8.3 External Interrupts Register Description

8.3.1 External Interrupt Control Register A – EICRA
The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 7..4 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0
The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT1 pin that activate the
interrupt are defined in Table 8-1. The value on the INT1 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 8-1. The value on the INT0 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

8.3.2 External Interrupt Mask Register – EIMSK

• Bit 7, 2 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 1 – INT1: External Interrupt Request 1 Enable

Bit 7 6 5 4 3 2 1 0

– – – – ISC11 ISC10 ISC01 ISC00 EICRA
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 8-1. Interrupt Sense Control

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request.

1 0 The falling edge of INTn generates an interrupt request.

1 1 The rising edge of INTn generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

– – – – – – INT1 INT0 EIMSK
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 60
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the
External Interrupt Control Register A (EICRA) define whether the external interrupt is activated
on rising and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT1 is configured as an output. The corresponding interrupt of External
Interrupt Request 1 is executed from the INT1 Interrupt Vector.

• Bit 0 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the
External Interrupt Control Register A (EICRA) define whether the external interrupt is activated
on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of External
Interrupt Request 0 is executed from the INT0 Interrupt Vector.

8.3.3 External Interrupt Flag Register – EIFR

• Bit 7, 2 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 1 – INTF1: External Interrupt Flag 1
When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

8.3.4 Pin Change Interrupt Control Register – PCICR

• Bit 7, 2 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-

Bit 7 6 5 4 3 2 1 0

– – – – – – INTF1 INTF0 EIFR
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – PCIE1 PCIE0 PCICR
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 61
7728A–AUTO–07/08

rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT15..8 pins are enabled individually by the PCMSK1 Register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Inter-
rupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

8.3.5 Pin Change Interrupt Flag Register – PCIFR

• Bit 7, 2 – Res: Reserved Bits
These bits are unused bits in the ATtiny167, and will always read as zero.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

8.3.6 Pin Change Mask Register 1 – PCMSK1

• Bit 7..0 – PCINT15..8: Pin Change Enable Mask 15..8
Each PCINT15..8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15..8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT15..8 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

8.3.7 Pin Change Mask Register 0 – PCMSK0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Bit 7 6 5 4 3 2 1 0

– – – – – – PCIF1 PCIF0 PCIFR
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 62
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT7..0 is set and the PCIE0 bit in EIMSK is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin
is disabled.
 63
7728A–AUTO–07/08

9. I/O-Ports

9.1 Introduction
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when
changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if
configured as input). Each output buffer has symmetrical drive characteristics with both high sink
and source capability. The pin driver is strong enough to drive LED displays directly. All port pins
have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O
pins have protection diodes to both Vcc and Ground as indicated in Figure 9-1. Refer to
”Electrical Characteristics” on page 233 for a complete list of parameters.

Figure 9-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x”
represents the numbering letter for the port, and a lower case “n” represents the bit number.
However, when using the register or bit defines in a program, the precise form must be used. For
example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical
I/O Registers and bit locations are listed in ”Register Description for I/O Ports” on page 82.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR or PUDx in
PORTCR disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in ”Ports as General Digital I/O” on page
65. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in ”Alternate Port
Functions” on page 70. Refer to the individual module sections for a full description of the
alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
 64
7728A–AUTO–07/08

ATtiny167

 ATtiny167
9.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 9-2 shows a
functional description of one I/O-port pin, here generically called Pxn.

Figure 9-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

9.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in ”Register
Description for I/O Ports” on page 82, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER
 65
7728A–AUTO–07/08

9.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI assembler instruction can be used to toggle one single bit in a port.

9.2.3 Break-Before-Make Switching
In the Break-Before-Make mode when switching the DDRxn bit from input to output an
immediate tri-state period lasting one system clock cycle is introduced as indicated in Figure 9-3.
For example, if the system clock is 4 MHz and the DDRxn is written to make an output, the
immediate tri-state period of 250 ns is introduced, before the value of PORTxn is seen on the
port pin. To avoid glitches it is recommended that the maximum DDRxn toggle frequency is two
system clock cycles. The Break-Before-Make is a port-wise mode and it is activated by the port-
wise BBMx enable bits. For further information about the BBMx bits, see ”Port Control Register –
PORTCR” on page 72. When switching the DDRxn bit from output to input there is no immediate
tri-state period introduced.

Figure 9-3. Break Before Make, switching between input and output

9.2.4 Switching Between Input and Output
When sw i t ch ing be tween t r i - s ta te ({DDxn , PORTxn} = 0 , 0) and ou tpu t h igh
({DDxn , PORTxn} = 1 , 1) , an in te rmed ia te s ta te w i th e i the r pu l l -up enab led
{DDxn, PORTxn} = 0, 1) or output low ({DDxn, PORTxn} = 1, 0) must occur. Normally, the pull-
up enabled state is fully acceptable, as a high-impedant environment will not notice the
difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the
MCUCR Register or the PUDx bit in PORTCR Register can be set to disable all pull-ups in the
port.

Switching between input with pull-up and output low generates the same problem. The user
must use e i ther the t r i -s ta te ({DDxn, PORTxn} = 0 , 0) or the output h igh s ta te
({DDxn, PORTxn} = 1, 1) as an intermediate step.

tri-state

tri-state tri-state

0x02

0x020x01 0x01

0x01

0x55

nop

immediate tri-state cycle

out DDRx, r16

SYSTEM CLOCK

R 16

R 17

INSTRUCTIONS

PORTx

DDRx

Px0

Px1

out DDRx, r17

immediate tri-state cycle
 66
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Table 9-1 summarizes the control signals for the pin value.

Note: 1. Or port-wise PUDx bit in PORTCR register.

9.2.5 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 9-2, the PINxn Register bit and the preceding latch
constitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 9-4 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Figure 9-4. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be
delayed between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 9-5. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Table 9-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) (1) I/O Pull-up
Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min
 67
7728A–AUTO–07/08

Figure 9-5. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

t pd
 68
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

9.2.6 Digital Input Enable and Sleep Modes
As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down or Power-save mode to avoid high power consumption if some input signals are left
floating, or have an analog signal level close to Vcc/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in ”Alternate Port Functions” on page 70.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

9.2.7 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above,

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...
 69
7728A–AUTO–07/08

floating inputs should be avoided to reduce current consumption in all other modes where the
digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to Vcc or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

9.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 9-6 shows
how the port pin control signals from the simplified Figure 9-2 can be overridden by alternate
functions. The overriding signals may not be present in all port pins, but the figure serves as a
generic description applicable to all port pins in the AVR microcontroller family.

Figure 9-6. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx
 70
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from
Figure 9-6 are not shown in the succeeding tables. The overriding signals are generated
internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 9-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, (PUD or PDUx)} = 0, 1, 0.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn, PUD
and PUDx Register bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is enabled
by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE Port Toggle Override
Enable If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable is
determined by MCU state (Normal mode, sleep mode).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled when DIEOV
is set/cleared, regardless of the MCU state (Normal mode, sleep
mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the Schmitt Trigger but before
the synchronizer. Unless the Digital Input is used as a clock
source, the module with the alternate function will use its own
synchronizer.

AIO Analog Input/Output
This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.
 71
7728A–AUTO–07/08

9.3.1 MCU Control Register – MCUCR

• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0, 1). See ”Config-
uring the Pin” on page 65 for more details about this feature.

9.3.2 Port Control Register – PORTCR

• Bits 5, 4 – BBMx: Break-Before-Make Mode Enable
When these bits are written to one, the port-wise Break-Before-Make mode is activated. The
intermediate tri-state cycle is then inserted when writing DDRxn to make an output. For further
information, see ”Break-Before-Make Switching” on page 66.

• Bits 1, 0 – PUDx: Port-Wise Pull-up Disable
When these bits are written to one, the port-wise pull-ups in the defined I/O ports are disabled
even i f the DDxn and PORTxn Registers are conf igured to enable the pul l -ups
({DDxn, PORTxn} = 0, 1). The Port-Wise Pull-up Disable bits are ORed with the global Pull-up
Disable bit (PUD) from the MCUCR register. See ”Configuring the Pin” on page 65 for more
details about this feature.

Bit 7 6 5 4 3 2 1 0

– BODS BODSE PUD – – – – MCUCR
Read/Write R R/W R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - BBMB BBMA - - PUDB PUDA PORTCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 72
7728A–AUTO–07/08

ATtiny167

 ATtiny167
9.3.3 Alternate Functions of Port A
The Port A pins with alternate functions are shown in Table 9-3.

The alternate pin configuration is as follows:

• PCINT7/ADC7/AIN1/XREF/AREF – Port A, Bit7

Table 9-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7

PCINT7 (Pin Change Interrupt 7)
ADC7 (ADC Input Channel 7)
AIN1 (Analog Comparator Positive Input)
XREF (Internal Voltage Reference Output)
AREF (External Voltage Reference Input)

PA6

PCINT6 (Pin Change Interrupt 6)
ADC6 (ADC Input Channel 6)
AIN0 (Analog Comparator Negative Input)
SS (SPI Slave Select Input)

PA5

PCINT5 (Pin Change Interrupt 5)
ADC5 (ADC Input Channel 5)
T1 (Timer/Counter1 Clock Input)
USCK (Three-wire Mode USI Alternate Clock Input)
SCL (Two-wire Mode USI Alternate Clock Input)
SCK (SPI Master Clock)

PA4

PCINT4 (Pin Change Interrupt 4)
ADC4 (ADC Input Channel 4)
ICP1 (Timer/Counter1 Input Capture Trigger)
DI (Three-wire Mode USI Alternate Data Input)
SDA (Two-wire Mode USI Alternate Data Input / Output)
MOSI (SPI Master Output / Slave Input)

PA3

PCINT3 (Pin Change Interrupt 3)
ADC3 (ADC Input Channel 3)
ISRC (Current Source Pin)
INT1 (External Interrupt1 Input)

PA2

PCINT2 (Pin Change Interrupt 2)
ADC2 (ADC Input Channel 2)
OC0A (Output Compare and PWM Output A for Timer/Counter0)
DO (Three-wire Mode USI Alternate Data Output)
MISO (SPI Master Input / Slave Output)

PA1

PCINT1 (Pin Change Interrupt 1)
ADC1 (ADC Input Channel 1)
TXD (UART Transmit Pin)
TXLIN (LIN Transmit Pin)

PA0

PCINT0 (Pin Change Interrupt 0)
ADC0 (ADC Input Channel 0)
RXD (UART Receive Pin)
RXLIN (LIN Receive Pin)
 73
7728A–AUTO–07/08

PCINT7: Pin Change Interrupt, source 7.
ADC7: Analog to Digital Converter, channel 7.
AIN1: Analog Comparator Positive Input. This pin is directly connected to the positive input of

the Analog Comparator.
XREF: Internal Voltage Reference Output. The internal voltage reference 2.56V or 1.1V is out-

put when XREFEN is set and if either 2.56V or 1.1V is used as reference for ADC con-
version. When XREF output is enabled, the pin port pull-up and digital output driver are
turned off.

AREF: External Voltage Reference Input for ADC. The pin port pull-up and digital output driver
are disabled when the pin is used as an external voltage reference input for ADC or as
when the pin is only used to connect a bypass capacitor for the voltage reference of the
ADC.

• PCINT6/ADC6/AIN0/SS – Port A, Bit6
PCINT6: Pin Change Interrupt, source 6.
ADC6: Analog to Digital Converter, channel 6.
AIN0: Analog Comparator Negative Input. This pin is directly connected to the negative input

of the Analog Comparator.
SS: SPI Slave Select Input. When the SPI is enabled as a slave, this pin is configured as an

input regardless of the setting of DDA6. As a slave, the SPI is activated when this pin is
driven low. When the SPI is enabled as a master, the data direction of this pin is con-
trolled by DDA6. When the pin is forced to be an input, the pull-up can still be controlled
by the PORTA6 bit.

• PCINT5/ADC5/T1/USCK/SCL/SCK – Port A, Bit5
PCINT5: Pin Change Interrupt, source 5.
ADC5: Analog to Digital Converter, channel 5.
T1: Timer/Counter1 Clock Input.
USCK: Three-wire Mode USI Clock Input.
SCL: Two-wire Mode USI Clock Input.
SCK: SPI Master Clock output, Slave Clock input pin. When the SPI is enabled as a slave, this

pin is configured as an input regardless of the setting of DDA5. When the SPI is enabled
as a master, the data direction of this pin is controlled by DDA5. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTA5 bit.

• PCINT4/ADC4/ICP1/DI/SDA/MOSI – Port A, Bit 4
PCINT4: Pin Change Interrupt, source 4.
ADC4: Analog to Digital Converter, channel 4.
ICP1: Timer/Counter1 Input Capture Trigger. The PA3 pin can act as an Input Capture pin for

Timer/Counter1.
DI: Three-wire Mode USI Data Input. USI Three-wire mode does not override normal port

functions, so pin must be configure as an input for DI function.
SDA: Two-wire Mode Serial Interface (USI) Data Input / Output.
MOSI: SPI Master Output / Slave Input. When the SPI is enabled as a Slave, this pin is config-

ured as an input regardless of the setting of DDA3. When the SPI is enabled as a Mas-
ter, the data direction of this pin is controlled by DDA3. When the pin is forced by the SPI
to be an input, the pull-up can still be controlled by the PORTA3 bit.

• PCINT3/ADC3/ISRC/INT1 – Port A, Bit 3
 74
7728A–AUTO–07/08

ATtiny167

 ATtiny167
PCINT3: Pin Change Interrupt, source 3.
ADC3: Analog to Digital Converter, channel 3.
ISCR: Current Source Output pin. While current is sourced by the Current Source module, the

user can use the Analog to Digital Converter channel 4 (ADC4) to measure the pin volt-
age.

INT1: External Interrupt, source 1. The PA4 pin can serve as an external interrupt source.

• PCINT2/ADC2/OC0A/DO/MISO – Port A, Bit 2
PCINT2: Pin Change Interrupt, source 2.
ADC2: Analog to Digital Converter, channel 2.
OC0A: Output Compare Match A or output PWM A for Timer/Counter0. The pin has to be con-

figured as an output (DDA2 set (one)) to serve these functions.
DO: Three-wire Mode USI Data Output. Three-wire mode data output overrides PORTA2 and

it is driven to the port when the data direction bit DDA2 is set. PORTA2 still enables the
pull-up, if the direction is input and PORTA2 is set (one).

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as
a Master, this pin is configured as an input regardless of the setting of DDA2. When the
SPI is enabled as a Salve, the data direction of this pin is controlled by DDA2. When the
pin is forced to be an input, the pull-up can still be controlled by PORTA2.

• PCINT1/ADC1/TXD/TXLIN – Port A, Bit 1
PCINT1: Pin Change Interrupt, source 1.
ADC1: Analog to Digital Converter, channel 1.
TXD: UART Transmit pin. When the UART transmitter is enabled, this pin is configured as an

output regardless the value of DDA1. PORTA1 still enables the pull-up, if the direction is
input and PORTA2 is set (one).

TXLIN: LIN Transmit pin. When the LIN is enabled, this pin is configured as an output regard-
less the value of DDA1. PORTA1 still enables the pull-up, if the direction is input and
PORTA2 is set (one).

• PCINT0/ADC0/RXD/RXLIN – Port A, Bit 0
PCINT0: Pin Change Interrupt, source 0.
ADC0: Analog to Digital Converter, channel 0.
RXD: UART Receive pin. When the UART receiver is enabled, this pin is configured as an

input regardless of the value of DDA0. When the pin is forced to be an input, a logical
one in PORTA0 will turn on the internal pull-up.

RXLIN: LIN Receive pin. When the LIN is enabled, this pin is configured as an input regardless
of the value of DDA0. When the pin is forced to be an input, a logical one in PORTA0 will
turn on the internal pull-up.

Table 9-4 and Table 9-5 relate the alternate functions of Port A to the overriding signals shown
in Figure 9-6 on page 70.
 75
7728A–AUTO–07/08

Table 9-4. Overriding Signals for Alternate Functions in PA7..PA4

Signal
Name

PA7/PCINT7/
ADC7/AIN1
/XREF/AREF

PA6/PCINT6/
ADC6/AIN0/SS

PA5/PCINT5/ADC5/
T1/USCK/SCL/SCK

PA4/PCINT4/ADC4/
ICP1/DI/SDA/MOSI

PUOE 0 SPE & MSTR SPE & MSTR SPE & MSTR

PUOV 0 PORTA6 & PUD PORTA5 & PUD PORTA4 & PUD

DDOE 0 SPE & MSTR (SPE & MSTR) |
(USI_2_WIRE & USIPOS)

(SPE & MSTR) |
(USI_2_WIRE & USIPOS)

DDOV 0 0 (USI_SCL_HOLD | PORTA5)
& DDRA6

{ (SPE & MSTR) ?
(0) :

(USI_SHIFTOUT | PORTA4)
& DDRA4) }

PVOE 0 0
(SPE & MSTR) |

(USI_2_WIRE & USIPOS
& DDRA5)

(SPE & MSTR) |
(USI_2_WIRE & USIPOS

& DDRA4)

PVOV 0 0

{ (SPE & MSTR) ?
(SCK_OUTPUT) :

~ (USI_2_WIRE & USIPOS
& DDRA5) }

{ (SPE & MSTR) ?
(MOSI_OUTPUT) :

~ (USI_2_WIRE & USIPOS
& DDRA4) }

PTOE 0 0 USI_PTOE & USIPOS 0

DIEOE
ADC7D |

(PCIE0 & PCMSK07)
ADC6D |

(PCIE0 & PCMSK06)

ADC5D |
(USISIE & USIPOS) |
(PCIE0 & PCMSK05)

ADC4D |
(USISIE & USIPOS) |
(PCIE0 & PCMSK04)

DIEOV PCIE0 & PCMSK07 PCIE0 & PCMSK06 (USISIE & USIPOS) |
(PCIE0 & PCMSK05)

(USISIE & USIPOS) |
(PCIE0 & PCMSK04)

DI PCINT7 PCINT6 -/- SS PCINT5 -/- T1
-/- USCK -/- SCL -/- SCK

PCINT4 -/- ICP1
-/- DI -/- SDA -/- MOSI

AIO ADC7 -/- AIN1 -/-
XREF -/- AREF ADC6 -/- AIN0 ADC5 ADC4
 76
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Table 9-5. Overriding Signals for Alternate Functions in PA3..PA0
Signal
Name

PA3/PCINT3/ADC3/
ISRC/INT1

PA2/PCINT2/ADC2/
OC0A/DO/MISO

PA1/PCINT1/ADC1/
TXD/TXLIN

PA0/PCINT0/ADC0/
RXD/RXLIN

PUOE 0 SPE & MSTR LIN_TX_ENABLE LIN_RX_ENABLE

PUOV PORTA3 & PUD PORTA2 & PUD
{ (LIN_TX_ENABLE) ?
(0) : (PORTA1 & PUD) }

PORTA0 & PUD

DDOE 0 SPE & MSTR LIN_TX_ENABLE LIN_RX_ENABLE

DDOV 0 0 LIN_TX_ENABLE 0

PVOE 0

(SPE & MSTR) |
(USI_2_WIRE & USI_3_WIRE

& USIPOS) |
OC0A

LIN_TX_ENABLE 0

PVOV 0

{ (SPE & MSTR) ?
(MISO_OUTPUT) :

((USI_2_WIRE & USI_3_WIRE
& USIPOS) ?

(USI_SHIFTOUT) : (OC0A)) }

{ (LIN_TX_ENABLE) ?
(LIN_TX) : (0) }

0

PTOE 0 0 0 0

DIEOE
ADC3D |

INT1_ENABLE |
(PCIE0 & PCMSK03)

ADC2D |
(PCIE0 & PCMSK02)

ADC1D |
(PCIE0 & PCMSK01)

ADC0D |
(PCIE0 & PCMSK00)

DIEOV
INT1_ENABLE |

(PCIE0 & PCMSK03)
PCIE0 & PCMSK02 PCIE0 & PCMSK01 PCIE0 & PCMSK00

DI PCINT3 -/- INT1 PCINT2 -/- MISO PCINT1 PCINT0

AIO ADC3 -/- ISRC ADC2 ADC1 ADC0
 77
7728A–AUTO–07/08

9.3.4 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 9-6.

The alternate pin configuration is as follows:

• PCINT15/ADC10/OC1BX/RESET/dW – Port B, Bit 7
PCINT15: Pin Change Interrupt, source 15.
ADC10: Analog to Digital Converter, channel 10.
OC1BX: Output Compare and PWM Output B-X for Timer/Counter1. The PB7 pin has to be

configured as an output (DDB7 set (one)) to serve this function. The OC1BX pin is also
the output pin for the PWM mode timer function (c.f. OC1BX bit of TCCR1D register).

RESET: Reset input pin. When the RSTDISBL Fuse is programmed, this pin functions as a
normal I/O pin, and the part will have to rely on Power-on Reset and Brown-out Reset as

Table 9-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7

PCINT15 (Pin Change Interrupt 15)
ADC10 (ADC Input Channel 10)
OC1BX (Output Compare and PWM Output B-X for Timer/Counter1)
RESET (Reset input pin)
dW (debugWIRE I/O)

PB6

PCINT14 (Pin Change Interrupt 14)
ADC9 (ADC Input Channel 9)
OC1AX (Output Compare and PWM Output A-X for Timer/Counter1)
INT0 (External Interrupt0 Input)

PB5

PCINT13 (Pin Change Interrupt 13)
ADC8 (ADC Input Channel 8)
OC1BW (Output Compare and PWM Output B-W for Timer/Counter1)
XTAL2 (Chip clock Oscillator pin 2)
CLKO (System clock output)

PB4

PCINT12 (Pin Change Interrupt 12)
OC1AW (Output Compare and PWM Output A-W for Timer/Counter1)
XTAL1 (Chip clock Oscillator pin 1)
CLKI (External clock input)

PB3
PCINT11 (Pin Change Interrupt 11)
OC1BV (Output Compare and PWM Output B-V for Timer/Counter1)

PB2

PCINT10 (Pin Change Interrupt 10)
OC1AV (Output Compare and PWM Output A-V for Timer/Counter1)
USCK (Three-wire Mode USI Default Clock Input)
SCL (Two-wire Mode USI Default Clock Input)

PB1
PCINT9 (Pin Change Interrupt 9)
OC1BU (Output Compare and PWM Output B-U for Timer/Counter1)
DO (Three-wire Mode USI Default Data Output)

PB0

PCINT8 (Pin Change Interrupt 8)
OC1AU (Output Compare and PWM Output A-U for Timer/Counter1)
DI (Three-wire Mode USI Default Data Input)
SDA (Two-wire Mode USI Default Data Input / Output)
 78
7728A–AUTO–07/08

ATtiny167

 ATtiny167
its reset sources. When the RSTDISBL Fuse is unprogrammed, the reset circuitry is
connected to the pin, and the pin can not be used as an I/O pin.
If PB7 is used as a reset pin, DDB7, PORTB7 and PINB7 will all read 0.

dW: When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unpro-
grammed, the RESET port pin is configured as a wire-AND (open-drain) bi-directional
I/O pin with pull-up enabled and becomes the communication gateway between target
and emulator.

• PCINT14/ADC9/OC1AX/INT0 – Port B, Bit 6
PCINT14: Pin Change Interrupt, source 14.
ADC9: Analog to Digital Converter, channel 9.
OC1AX: Output Compare and PWM Output A-X for Timer/Counter1. The PB6 pin has to be

configured as an output (DDB6 set (one)) to serve this function. The OC1AX pin is also
the output pin for the PWM mode timer function (c.f. OC1AX bit of TCCR1D register).

INT0: External Interrupt0 Input. The PB6 pin can serve as an external interrupt source.

• PCINT13/ADC8/OC1BW/XTAL2/CLKO – Port B, Bit 5
PCINT13: Pin Change Interrupt, source 13.
ADC8: Analog to Digital Converter, channel 8.
OC1BW: Output Compare and PWM Output B-W for Timer/Counter1. The PB5 pin has to be

configured as an output (DDB5 set (one)) to serve this function. The OC1BW pin is also
the output pin for the PWM mode timer function (c.f. OC1BW bit of TCCR1D register).

XTAL2: Chip clock Oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency
crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

CLKO: Divided system clock output. The divided system clock can be output on the PB5 pin.
The divided system clock will be output if the CKOUT Fuse is programmed, regardless
of the PORTB5 and DDB5 settings. It will also be output during reset.

• PCINT12/OC1AW/XTAL1/CLKI – Port B, Bit 4
PCINT12: Pin Change Interrupt, source 12.
OC1AW: Output Compare and PWM Output A-W for Timer/Counter1. The PB4 pin has to be

configured as an output (DDB4 set (one)) to serve this function. The OC1AW pin is also
the output pin for the PWM mode timer function (c.f. OC1AW bit of TCCR1D register).

XTAL1: Chip clock Oscillator pin 1. Used for all chip clock sources except internal calibrated
RC Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

CLKI: External clock input. When used as a clock pin, the pin can not be used as an I/O pin.
Note: If PB4 is used as a clock pin (XTAL1 or CLKI), DDB4, PORTB4 and PINB4 will all read 0.

•PCINT11/OC1BV – Port B, Bit 3
PCINT11: Pin Change Interrupt, source 11.
OC1BV: Output Compare and PWM Output B-V for Timer/Counter1. The PB3 pin has to be

configured as an output (DDB3 set (one)) to serve this function. The OC1BV pin is also
the output pin for the PWM mode timer function (c.f. OC1BV bit of TCCR1D register).

• PCINT10/OC1AV/USCK/SCL – Port B, Bit 2
PCINT10: Pin Change Interrupt, source 10.
OC1AV: Output Compare and PWM Output A-V for Timer/Counter1. The PB2 pin has to be

configured as an output (DDB2 set (one)) to serve this function. The OC1AV pin is also
the output pin for the PWM mode timer function (c.f. OC1AV bit of TCCR1D register).

USCK: Three-wire Mode USI Clock Input.
 79
7728A–AUTO–07/08

SCL: Two-wire Mode USI Clock Input.

• PCINT9/OC1BU/DO – Port B, Bit 1
PCINT9: Pin Change Interrupt, source 9.
OC1BU: Output Compare and PWM Output B-U for Timer/Counter1. The PB1 pin has to be

configured as an output (DDB1 set (one)) to serve this function. The OC1BU pin is also
the output pin for the PWM mode timer function (c.f. OC1BU bit of TCCR1D register).

DO: Three-wire Mode USI Data Output. Three-wire mode data output overrides PORTB1 and
it is driven to the port when the data direction bit DDB1 is set. PORTB1 still enables the
pull-up, if the direction is input and PORTB1 is set (one).

• PCINT8/OC1AU/DI/SDA – Port B, Bit 0
IPCINT8: Pin Change Interrupt, source 8.
OC1AU: Output Compare and PWM Output A-U for Timer/Counter1. The PB0 pin has to be

configured as an output (DDB0 set (one)) to serve this function. The OC1AU pin is also
the output pin for the PWM mode timer function (c.f. OC1AU bit of TCCR1D register).

DI: Three-wire Mode USI Data Input. USI Three-wire mode does not override normal port
functions, so pin must be configure as an input for DI function.

SDA: Two-wire Mode Serial Interface (USI) Data Input / Output.

Table 9-7 and Table 9-8 relate the alternate functions of Port B to the overriding signals shown
in Figure 9-6 on page 70.

Table 9-7. Overriding Signals for Alternate Functions in PB7..PB4
Signal
Name

PB7/PCINT15/ADC10/
OC1BX/RESET/dW

PB6/PCINT14/ADC9/
OC1AX/INT0

PB5/PCINT13/ADC8/
OC1BW/XTAL2/CLKO

PB4/PCINT12/
OC1AW/XTAL1/CLKI

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC1B_ENABLE &
OC1BX

OC1A_ENABLE &
OC1AX

OC1B_ENABLE &
OC1BW

OC1A_ENABLE &
OC1AW

PVOV OC1B OC1A OC1B OC1A

PTOE 0 0 0 0

DIEOE
ADC10D |

(PCIE1 & PCMSK15)

ADC9D |
INT0_ENABLE |

(PCIE1 & PCMSK14)

ADC8D |
(PCIE1 & PCMSK13)

(PCIE1 & PCMSK13)

DIEOV PCIE1 & PCMSK15
INT0_ENABLE |

(PCIE1 & PCMSK14)
PCIE1 & PCMSK13 1

DI PCINT15 PCINT14 -/- INT1 PCINT13 PCINT12

AIO RESET -/- ADC10 -/- ADC9 -/- ISRC ADC8 -/- XTAL2 XTAL1 -/- CLKI
 80
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Table 9-8. Overriding Signals for Alternate Functions in PB3..PB0
Signal
Name

PB3/PCINT11/
OC1BV

PB2/PCINT10/
OC1AV/USCK/SCL

PB1/PCINT9/
OC1BU/DO

PB0/IPCINT8/
OC1AU/DI/SDA

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 (USI_2_WIRE & USIPOS) 0
(USI_2_WIRE &

USIPOS)

DDOV 0
(USI_SCL_HOLD |

PORTB2)
& DDRB2

0
(USI_SHIFTOUT |

PORTB0) & DDRB0)

PVOE OC1B_ENABLE &
OC1BV

(USI_2_WIRE &
USIPOS &
DDRB2) |

(OC1A_ENABLE &
OC1AV)

(USI_2_WIRE &
USI_3_WIRE &

USIPOS) |
(OC1B_ENABLE &

OC1BU)

(USI_2_WIRE &
USIPOS &
DDRB0) |

(OC1A_ENABLE &
OC1AU)

PVOV OC1B

{ (USI_2_WIRE &
USIPOS &
DDRB2) ?

(0) : (OC1A) }

{ (USI_2_WIRE &
USI_3_WIRE &

USIPOS) ?
(USI_SHIFTOUT) :

(OC1B) }

{ (USI_2_WIRE &
USIPOS &
DDRB0) ?

(0) : (OC1A) }

PTOE 0 USI_PTOE & USIPOS 0 0

DIEOE PCIE1 & PCMSK11 (USISIE & USIPOS) |
(PCIE1 & PCMSK10) PCIE1 & PCMSK9 (USISIE & USIPOS) |

(PCIE1 & PCMSK8)

DIEOV 1 (USISIE & USIPOS) |
(PCIE1 & PCMSK10) 1 (USISIE & USIPOS) |

(PCIE1 & PCMSK8)

DI PCINT11 PCINT10 -/- USCK -/- SCL PCINT9 PCINT8 -/- DI -/- SDA

AIO 0 0 0 0
 81
7728A–AUTO–07/08

9.4 Register Description for I/O Ports

9.4.1 Port A Data Register – PORTA

9.4.2 Port A Data Direction Register – DDRA

9.4.3 Port A Input Pins Register – PINA

9.4.4 Port B Data Register – PORTB

9.4.5 Port B Data Direction Register – DDRB

9.4.6 Port B Input Pins Register – PINB

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/(W) R/(W) R/(W) R/(W) R/(W) R/(W) R/(W) R/(W)

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R/(W) R/(W) R/(W) R/(W) R/(W) R/(W) R/(W) R/(W)

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
 82
7728A–AUTO–07/08

ATtiny167

 ATtiny167
10. 8-bit Timer/Counter0 and Asynchronous Operation
Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

10.1 Features
• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)
• Allows Clocking from External Crystal (i.e. 32 kHz Watch Crystal) Independent of the I/O Clock

10.2 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 0. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNT0 for
accessing Timer/Counter0 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A. However, when
using the register or bit defines in a program, the precise form must be used, i.e., OCR0A for
accessing Timer/Counter0 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 10-1. For the actual
placement of I/O pins, refer to ”Pin Configuration” on page 4. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the ”8-bit Timer/Counter Register Description” on page 96.
 83
7728A–AUTO–07/08

Figure 10-1. 8-bit Timer/Counter0 Block Diagram

The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK0).
TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the XTAL1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT0).

The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC0A). See ”Output
Compare Unit” on page 86. for details. The compare match event will also set the compare flag
(OCF0A) which can be used to generate an Output Compare interrupt request.

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation OCnx

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCnx
(Int.Req.)

Synchronization Unit

OCRnx

TCCRnx

ASSRn
Status flags

clk I/O

clk ASY

Synchronized Status flags

asynchronous mode
select (ASn)

XTAL2

Oscillator

XTAL1
Prescaler

clkTn

clk I/O
 84
7728A–AUTO–07/08

ATtiny167

 ATtiny167
10.2.1 Definitions
The following definitions are used extensively throughout the section:

10.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source is selected by the clock select logic which is controlled by the
clock select (CS02:0) bits located in the Timer/Counter control register (TCCR0).The clock
source clkT0 is by default equal to the MCU clock, clkI/O. When the AS0 bit in the ASSR Register
is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to
XTAL1 and XTAL2 or directly from XTAL1. For details on asynchronous operation, see ”Asyn-
chronous Status Register – ASSR” on page 99. For details on clock sources and prescaler, see
”Timer/Counter0 Prescaler” on page 96.

10.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
10-2 shows a block diagram of the counter and its surrounding environment.

Figure 10-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Selects between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkT0 Timer/Counter0 clock.

top Signalizes that TCNT0 has reached maximum value.

bottom Signalizes that TCNT0 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

XTAL2

Oscillator

XTAL1
Prescaler

clkI/O

clk Tn clkTnS
 85
7728A–AUTO–07/08

timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC0A. For more details about advanced counting sequences and waveform generation, see
”Modes of Operation” on page 88.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

10.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Register
(OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match will set
the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled (OCIE0A = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF0A flag is automatically
cleared when the interrupt is executed. Alternatively, the OCF0A flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the WGM01:0 bits and Compare Output
mode (COM0A1:0) bits. The max and bottom signals are used by the Waveform Generator for
handling the special cases of the extreme values in some modes of operation (”Modes of Oper-
ation” on page 88).

Figure 10-3 shows a block diagram of the Output Compare unit.

Figure 10-3. Output Compare Unit, Block Diagram

The OCR0A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR0A Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom
 86
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The OCR0A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR0A Buffer Register, and if double buffering is
disabled the CPU will access the OCR0A directly.

10.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0A) bit. Forcing compare match will not set the
OCF0A flag or reload/clear the timer, but the OC0A pin will be updated as if a real compare
match had occurred (the COM0A1:0 bits settings define whether the OC0A pin is set, cleared or
toggled).

10.5.2 Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0A to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

10.5.3 Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC0A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0A value is to use the Force Output
Compare (FOC0A) strobe bit in Normal mode. The OC0A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare value.
Changing the COM0A1:0 bits will take effect immediately.

10.6 Compare Match Output Unit
The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator
uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare
match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 10-4 shows a sim-
plified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the
OC0A state, the reference is for the internal OC0A Register, not the OC0A pin.
 87
7728A–AUTO–07/08

Figure 10-4. Compare Match Output Logic

10.6.1 Compare Output Function
The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform
Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direc-
tion Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is
visible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0A state before the
output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of
operation. See ”8-bit Timer/Counter Register Description” on page 96.

10.6.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0A1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on the
OC0A Register is to be performed on the next compare match. For compare output actions in
the non-PWM modes refer to Table 10-1 on page 97. For fast PWM mode, refer to Table 10-2 on
page 97, and for phase correct PWM refer to Table 10-3 on page 97.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0A strobe bits.

10.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output
mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See ”Compare Match Output Unit” on page 87.).

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 92.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D QWaveform
Generator

COMnx1
COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O
 88
7728A–AUTO–07/08

ATtiny167

 ATtiny167
10.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the
bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the
same timer clock cycle as the TCNT0 becomes zero. The TOV0 flag in this case behaves like a
ninth bit, except that it is only set, not cleared. However, combined with the timer overflow inter-
rupt that automatically clears the TOV0 flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

10.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 10-5. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

Figure 10-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is
running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR0A is lower than the
current value of TCNT0, the counter will miss the compare match. The counter will then have to
count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)
 89
7728A–AUTO–07/08

the pin is set to output. The waveform generated will have a maximum frequency of fOC0A =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV0 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

10.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its
single-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM.
In non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare
match between TCNT0 and OCR0A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 10-6. The TCNT0 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0A and TCNT0.

Figure 10-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCnx
fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

TCNTn

OCRnx Update and�
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7
 90
7728A–AUTO–07/08

ATtiny167

 ATtiny167
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin.
Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0A1:0 to three (See Table 10-2 on page 97). The actual
OC0A value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by setting (or clearing) the OC0A Register at the
compare match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the
timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform
generated will have a maximum frequency of foc0A = fclk_I/O/2 when OCR0A is set to zero. This
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.

10.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match
between TCNT0 and OCR0A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 10-7.
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

fOCnxPWM
fclk_I/O
N 256⋅
------------------=
 91
7728A–AUTO–07/08

Figure 10-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0A1:0 to three (See Table 10-3 on page 97).
The actual OC0A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the
compare match between OCR0A and TCNT0 when the counter increments, and setting (or
clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

10.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT0)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when interrupt flags are
set. Figure 10-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

fOCnxPCPWM
fclk_I/O
N 510⋅
------------------=
 92
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 10-8. Timer/Counter Timing Diagram, no Prescaling

Figure 10-9 shows the same timing data, but with the prescaler enabled.

Figure 10-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 10-10 shows the setting of OCF0A in all modes except CTC mode.

Figure 10-10. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
 93
7728A–AUTO–07/08

Figure 10-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode.

Figure 10-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

10.9 Asynchronous Operation of Timer/Counter0
When Timer/Counter0 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter0, the timer registers TCNT0, OCR0A, and TCCR0A might be corrupted. A
safe procedure for switching clock source is:
a. Disable the Timer/Counter0 interrupts by clearing OCIE0A and TOIE0.
b. Select clock source by setting AS0 and EXCLK as appropriate.
c. Write new values to TCNT0, OCR0A, and TCCR0A.
d. To switch to asynchronous operation: Wait for TCN0UB, OCR0UB, and TCR0UB.
e. Clear the Timer/Counter0 interrupt flags.
f. Enable interrupts, if needed.

• If an 32.768 kHz watch crystal is used, the CPU main clock frequency must be more than
four times the Oscillator or external clock frequency.

• When writing to one of the registers TCNT0, OCR0A, or TCCR0A, the value is transferred to
a temporary register, and latched after two positive edges on TOSC1. The user should not
write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that e.g. writing to TCNT0 does not disturb an OCR0A write in progress. To
detect that a transfer to the destination register has taken place, the Asynchronous Status
Register – ASSR has been implemented.

• When entering Power-save mode after having written to TCNT0, OCR0A, or TCCR0A, the
user must wait until the written register has been updated if Timer/Counter0 is used to wake
up the device. Otherwise, the MCU will enter sleep mode before the changes are effective.
This is particularly important if the Output Compare0 interrupt is used to wake up the device,
since the Output Compare function is disabled during writing to OCR0A or TCNT0. If the
write cycle is not finished, and the MCU enters sleep mode before the OCR0UB bit returns
to zero, the device will never receive a compare match interrupt, and the MCU will not wake
up.

• If Timer/Counter0 is used to wake the device up from Power-save mode, precautions must
be taken if the user wants to re-enter one of these modes: The interrupt logic needs one

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
 94
7728A–AUTO–07/08

ATtiny167

 ATtiny167
TOSC1 cycle to be reset. If the time between wake-up and re-entering sleep mode is less
than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the
user is in doubt whether the time before re-entering Power-save mode is sufficient, the
following algorithm can be used to ensure that one TOSC1 cycle has elapsed:
a. Write a value to TCCR0A, TCNT0, or OCR0A.
b. Wait until the corresponding Update Busy flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the oscillator for Timer/Counter0 is always
running, except in Power-down mode. After a Power-up Reset or wake-up from Power-down
mode, the user should be aware of the fact that this oscillator might take as long as one
second to stabilize. The user is advised to wait for at least one second before using
Timer/Counter0 after power-up or wake-up from Power-down mode. The contents of all
Timer/Counter0 Registers must be considered lost after a wake-up from Power-down mode
due to unstable clock signal upon start-up, no matter whether the oscillator is in use or a
clock signal is applied to the XTAL1 pin.

• Description of wake up from Power-save mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of
the timer clock, that is, the timer is always advanced by at least one before the processor
can read the counter value. After wake-up, the MCU is halted for four cycles, it executes the
interrupt routine, and resumes execution from the instruction following SLEEP.

• Reading of the TCNT0 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT0 is clocked on the asynchronous clock, reading TCNT0 must
be done through a register synchronized to the internal I/O clock domain (CPU main clock).
Synchronization takes place for every rising XTAL1 edge. When waking up from Power-save
mode, and the I/O clock (clkI/O) again becomes active, TCNT0 will read as the previous
value (before entering sleep) until the next rising XTAL1 edge. The phase of the XTAL1
clock after waking up from Power-save mode is essentially unpredictable, as it depends on
the wake-up time. The recommended procedure for reading TCNT0 is thus as follows:
a. Write any value to either of the registers OCR0A or TCCR0A.
b. Wait for the corresponding Update Busy Flag to be cleared.
c. Read TCNT0.

• During asynchronous operation, the synchronization of the interrupt flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting
of the interrupt flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.
 95
7728A–AUTO–07/08

10.10 Timer/Counter0 Prescaler

Figure 10-12. Prescaler for Timer/Counter0

The clock source for Timer/Counter0 is named clkT0S. clkT0S is by default connected to the main
system I/O clock clkIO. By setting the AS0 bit in ASSR, Timer/Counter0 is asynchronously
clocked from the XTAL oscillator or XTAL1 pin. This enables use of Timer/Counter0 as a Real
Time Counter (RTC).

A crystal can then be connected between the XTAL1 and XTAL2 pins to serve as an indepen-
dent clock source for Timer/Counter0.

A external clock can also be used using XTAL1 as input. Setting AS0 and EXCLK enables this
configuration.

For Timer/Counter0, the possible prescaled selections are: clkT0S/8, clkT0S/32, clkT0S/64,
clkT0S/128, clkT0S/256, and clkT0S/1024. Additionally, clkT0S as well as 0 (stop) may be selected.
Setting the PSR0 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

10.11 8-bit Timer/Counter Register Description

10.11.1 Timer/Counter0 Control Register A – TCCR0A

• Bit 7:6 – COM0A1:0: Compare Match Output Mode A
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to OC0A pin must be
set in order to enable the output driver.

10-BIT T/C PRESCALER

TIMER/COUNTERn CLOCK SOURCE

clkI/O
clkTnS

ASn

CSn0
CSn1
CSn2

cl
k Tn

S
/8

cl
k Tn

S
/6

4

cl
k Tn

S
/1

28

cl
k Tn

S
/1

02
4

cl
k Tn

S
/2

56

cl
k Tn

S
/3

2

0
PSRn

Clear

clkTn

0

1

XTAL2

EXCLK

0

1

Oscillator

XTAL1

Bit 7 6 5 4 3 2 1 0

COM0A1 COM0A0 – – – – WGM01 WGM00 TCCR0A
Read/Write R/W R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 96
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM01:0 bit setting. Table 10-1 shows the COM0A1:0 bit functionality when the WGM01:0 bits
are set to a normal or CTC mode (non-PWM).

Table 10-2 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 90
for more details.

Table 10-3 shows the COM01:0 bit functionality when the WGM01:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 91 for more details.

• Bit 5:2 – Res: Reserved Bits
These bits are reserved in the ATtiny167 and will always read as zero.

Table 10-1. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match.

1 0 Clear OC0A on Compare Match.

1 1 Set OC0A on Compare Match.

Table 10-2. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0
Normal port operation, OC0A disconnected.

0 1

1 0
Clear OC0A on Compare Match.
Set OC0A at BOTTOM (non-inverting mode).

1 1
Set OC0A on Compare Match.
Clear OC0A at BOTTOM (inverting mode).

Table 10-3. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0
Normal port operation, OC0A disconnected.

0 1

1 0
Clear OC0A on Compare Match when up-counting.
Set OC0A on Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting.
Clear OC0A on Compare Match when down-counting.
 97
7728A–AUTO–07/08

• Bit 6, 3 – WGM01:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used, see Table 10-4. Modes of
operation supported by the Timer/Counter unit are: Normal mode (Counter), Clear Timer on
Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (See
”Modes of Operation” on page 88.).

Notes: 1. MAX = 0xFF,
2. BOTTOM = 0x00.

10.11.2 Timer/Counter0 Control Register B – TCCR0B

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6:3 – Res: Reserved Bits
These bits are reserved in the ATtiny167 and will always read as zero.

• Bit 2:0 – CS02:0: Clock Select

Table 10-4. Waveform Generation Mode Bit Description

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter
Mode of Operation TOP

Update of
OCR0A at

TOV0 Flag
Set on(1)(2)

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Bit 7 6 5 4 3 2 1 0

FOC0A – – – – CS02 CS01 CS00 TCCR0B
Read/Write W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 98
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
10-5.

10.11.3 Timer/Counter0 Register – TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Register.

10.11.4 Output Compare Register A – OCR0A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

10.11.5 Asynchronous Status Register – ASSR

• Bit 7 – Res: Reserved Bit
This bit is reserved in the ATtiny167 and will always read as zero.

• Bit 6 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input
buffer is enabled and an external clock can be input on XTAL1 pin instead of an external crystal.
Writing to EXCLK should be done before asynchronous operation is selected. Note that the
crystal oscillator will only run when this bit is zero.

Table 10-5. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT0S (No prescaling)

0 1 0 clkT0S/8 (From prescaler)

0 1 1 clkT0S/32 (From prescaler)

1 0 0 clkT0S/64 (From prescaler)

1 0 1 clkT0S/128 (From prescaler)

1 1 0 clkT0S/256 (From prescaler)

1 1 1 clkT0S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 TCNT0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 OCR0A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– EXCLK AS0 TCN0UB OCR0AUB – TCR0AUB TCR0BUB ASSR
Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
 99
7728A–AUTO–07/08

• Bit 5 – AS0: Asynchronous Timer/Counter0
When AS0 is written to zero, Timer/Counter0 is clocked from the I/O clock, clkI/O and the
Timer/Counter0 acts as a synchronous peripheral.
When AS0 is written to one, Timer/Counter0 is clocked from the low-frequency crystal oscillator
(See ”Low-frequency Crystal Oscillator” on page 28.) or from external clock on XTAL1 pin (See
”External Clock” on page 29.) depending on EXCLK setting. When the value of AS0 is changed,
the contents of TCNT0, OCR0A, and TCCR0A might be corrupted.

AS0 also acts as a flag: Timer/Counter0 is clocked from the low-frequency crystal or from exter-
nal clock ONLY IF the calibrated internal RC oscillator or the internal watchdog oscillator is used
to drive the system clock. After setting AS0, if the switching is available, AS0 remains to 1, else
it is forced to 0.

• Bit 4 – TCN0UB: Timer/Counter0 Update Busy
When Timer/Counter0 operates asynchronously and TCNT0 is written, this bit becomes set.
When TCNT0 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT0 is ready to be updated with a new value.

• Bit 3 – OCR0AUB: Output Compare 0 Register A Update Busy
When Timer/Counter0 operates asynchronously and OCR0A is written, this bit becomes set.
When OCR0A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR0A is ready to be updated with a new value.

• Bit 2 – Res: Reserved Bit
This bit is reserved in the ATtiny167 and will always read as zero.

• Bit 1 – TCR0AUB: Timer/Counter0 Control Register A Update Busy
When Timer/Counter0 operates asynchronously and TCCR0A is written, this bit becomes set.
When TCCR0A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR0A is ready to be updated with a new
value.

• Bit 0 – TCR0BUB: Timer/Counter0 Control Register B Update Busy
When Timer/Counter0 operates asynchronously and TCCR0B is written, this bit becomes set.
When TCCR0B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR0B is ready to be updated with a new
value.

If a write is performed to any of the four Timer/Counter0 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT0, OCR0A, TCCR0A and TCCR0B are different. When
reading TCNT0, the actual timer value is read. When reading OCR0A, TCCR0A or TCCR0B the
value in the temporary storage register is read.

10.11.6 Timer/Counter0 Interrupt Mask Register – TIMSK0
Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE0A TOIE0 TIMSK0
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 100
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bit 7:2 – Res: Reserved Bits
These bits are reserved in the ATtiny167 and will always read as zero.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter0 Interrupt
Flag Register – TIFR0.

10.11.7 Timer/Counter0 Interrupt Flag Register – TIFR0

• Bit 7:2 – Res: Reserved Bits
These bits are reserved in the ATtiny167 and will always read as zero.

• Bit 1 – OCF0A: Output Compare Flag 0 A
The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE0 (Timer/Counter0 Compare match Interrupt
Enable), and OCF0A are set (one), the Timer/Counter0 Compare match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The TOV0 bit is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE0A (Timer/Counter0 Overflow Inter-
rupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter0 changes counting direction at 0x00.

10.11.8 General Timer/Counter Control Register – GTCCR

• Bit 1 – PSR0: Prescaler Reset Timer/Counter0
When this bit is one, the Timer/Counter0 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter0 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the ”Bit 7 – TSM: Timer/Counter Syn-
chronization Mode” on page 103 for a description of the Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF0A TOV0 TIFR0
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSR0 PSR1 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 101
7728A–AUTO–07/08

11. Timer/Counter1 Prescaler

11.1 Overview
Most bit references in this section are written in general form. A lower case “n” replaces the
Timer/Counter number.

11.1.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256,
or fCLK_I/O/1024.

11.1.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter. Since the prescaler is not affected by the Timer/Counter’s clock select, the state
of the prescaler will have implications for situations where a prescaled clock is used. One
example of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler
(6 > CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first
count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8,
64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

11.1.3 External Clock Source
An external clock source applied to the T1 pin can be used as Timer/Counter clock (clkT1). The
T1 pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector. Figure 11-1 shows a functional
equivalent block diagram of the T1 synchronization and edge detector logic. The registers are
clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the
high period of the internal system clock.

The edge detector generates one clkT1 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 11-1. T1 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1 pin to the counter is updated.

Tn_sync
(To Clock

Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O
 102
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Enabling and disabling of the clock input must be done when T1 has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the
system clock frequency (fExtClk < fclk_I/O/2) given a 50/50 % duty cycle. Since the edge detector
uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 11-2. Prescaler for Timer/Counter1 (1)

Note: 1. The synchronization logic on the input pin (T1) is shown in Figure 11-1.

11.2 Timer/Counter1 Prescalers Register Description

11.2.1 General Timer/Counter Control Register – GTCCR

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR0 and PSR1 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit is written to zero, the PSR0 and PSR1 bits are cleared by hardware, and
the Timer/Counters start counting simultaneously.

• Bit 0 – PSR1: Prescaler Reset Timer/Counter1
When this bit is one, Timer/Counter1 prescaler will be reset. This bit is normally cleared immedi-
ately by hardware, except if the TSM bit is set.

10-BIT T/C PRESCALER

C
K

/8

C
K

/6
4

C
K

/2
56

C
K

/1
02

4

clkTn
TIMER/COUNTERn CLOCK SOURCE

0

CSn2

CSn0

CLKI/O

CSn1

PSRn

Tn

Clear

Synchronization

Bit 7 6 5 4 3 2 1 0
TSM – – – – – PSR0 PSR1 GTCCR

Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
 103
7728A–AUTO–07/08

12. 16-bit Timer/Counter1
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

12.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Four Controlled Output Pins per Output Compare Unit
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

12.2 Overview
Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 1. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for
accessing Timer/Counter1 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A or B. However,
when using the register or bit defines in a program, the precise form must be used, i.e.,
OCR1A for accessing Timer/Counter1 output compare channel A value and so on.

• A lower case “i” replaces the index of the Output Compare output pin, in this case U, V, W or
X. However, when using the register or bit defines in a program, the precise form must be
used.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 12-1. For the actual
placement of I/O pins, refer to ”Pin Configuration” on page 4. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the ”16-bit Timer/Counter Register Description” on page 125.
 104
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 12-1. 16-bit Timer/Counter1 Block Diagram(1)

Note: 1. Refer to Figure 1-2 on page 4, Table 9-6 on page 78, and Table 9-3 on page 73 for
Timer/Counter1 pin placement and description.

12.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section ”Accessing 16-bit Registers” on
page 106. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

ICFn (Int.Req.)

TOVn
(Int.Req.)

Clock Select

Timer/Counter
DA

TA
BU

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnAU

OCnAV

OCnAW

OCnBU

OCnBV

OCnBW

Noise
Canceler

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

OCFnA
(Int.Req.)

OCFnB
(Int.Req.)

TCCRnA TCCRnB TCCRnC

ICPn

(From Analog Comparator Ouput)

TnEdge
Detector

(From Prescaler)

clkTn

OCnBX

OCnAX
 105
7728A–AUTO–07/08

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCR1A/B) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare pins See ”Output
Compare Units” on page 113.. The compare match event will also set the Compare Match Flag
(OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
”AnaComp - Analog Comparator” on page 202.). The Input Capture unit includes a digital filter-
ing unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

12.2.2 Definitions
The following definitions are used extensively throughout the section:

12.3 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65,535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is
dependent of the mode of operation.
 106
7728A–AUTO–07/08

ATtiny167

 ATtiny167
12.3.1 Code Examples
The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the
interrupts during the 16-bit access.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

sts TCNT1H,r17
sts TCNT1L,r16
; Read TCNT1 into r17:r16
lds r16,TCNT1L
lds r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
 107
7728A–AUTO–07/08

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

lds r16,TCNT1L

lds r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

 108
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:r16 register pair contains the value to be
written to TCNT1.

12.3.2 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

12.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter1 Prescaler” on page 102.

Assembly Code Example(1)

TIM16_WriteTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

sts TCNT1H,r17

sts TCNT1L,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */

TCNT1 = i;

/* Restore global interrupt flag */

SREG = sreg;

}

 109
7728A–AUTO–07/08

12.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1A/B. For more details about advanced
counting sequences and waveform generation, see ”Modes of Operation” on page 116.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

TnEdge
Detector

(From Prescaler)

clkTn
 110
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

12.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the
signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 12-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded.

Figure 12-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ICF1n (Int.Req.)Noise
Canceler

Edge
Detector

ACIC ICNCn ICESn

ICPn

Analog
Comparator

ACO
 111
7728A–AUTO–07/08

Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 106.

12.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Only
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 11-1 on page 102). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

12.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

12.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 flag is not required (if an interrupt handler is used).
 112
7728A–AUTO–07/08

ATtiny167

 ATtiny167
12.7 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1A/B). If TCNT equals OCR1A/B the comparator signals a match. A match will set the
Output Compare Flag (OCF1A/B) at the next timer clock cycle. If enabled (OCIE1A/B = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF1A/B flag is automati-
cally cleared when the interrupt is executed. Alternatively the OCF1A/B flag can be cleared by
software by writing a logical one to its I/O bit locations. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the Waveform Generation
mode (WGM13:0) bits and Compare Output mode (COM1A/B1:0) bits. The TOP and BOTTOM
signals are used by the Waveform Generator for handling the special cases of the extreme
values in some modes of operation (See Section “12.9” on page 116.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 12-4 shows a block diagram of the Output Compare unit. The elements of the block
diagram that are not directly a part of the Output Compare unit are gray shaded.

Figure 12-4. Output Compare Unit, Block Diagram

The OCR1A/B Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1A/B
Compare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the
output glitch-free.

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf.(8-bit)

OCnxV

OCnxU

OCnxW

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf.(8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM

OCnxX
 113
7728A–AUTO–07/08

The OCR1A/B Register access may seem complex, but this is not case. When the double buff-
ering is enabled, the CPU has access to the OCR1A/B Buffer Register, and if double buffering is
disabled the CPU will access the OCR1A/B directly. The content of the OCR1A/B (Buffer or
Compare) Register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 Register). Therefore OCR1A/B is not read via the
high byte temporary register (TEMP). However, it is a good practice to read the low byte first as
when accessing other 16-bit registers. Writing the OCR1A/B Registers must be done via the
TEMP Register since the compare of all 16 bits is done continuously. The high byte
(OCR1A/BH) has to be written first. When the high byte I/O location is written by the CPU, the
TEMP Register will be updated by the value written. Then when the low byte (OCR1A/BL) is
written to the lower eight bits, the high byte will be copied into the upper 8-bits of either the
OCR1A/B buffer or OCR1A/B Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 106.

12.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1A/B) bit. Forcing compare match will not set
the OCF1A/B flag or reload/clear the timer, but the OC1A/Bi pins will be updated as if a real
compare match had occurred (the COM1A/B1:0 bits settings define whether the OC1A/Bi pins
are set, cleared or toggled - if the respective OCnxi bit is set).

12.7.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1A/B to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

12.7.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1A/B value, the compare match will be missed, resulting in incorrect
waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1A/B should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1A/B value is to use the Force Output
Compare (FOC1A/B) strobe bits in Normal mode. The OC1A/B Register keeps its value even
when changing between Waveform Generation modes.

Be aware that the COM1A/B1:0 bits are not double buffered together with the compare value.
Changing the COM1A/B1:0 bits will take effect immediately.

12.8 Compare Match Output Unit
The Compare Output mode (COM1A/B1:0) bits have two functions. The Waveform Generator
uses the COM1A/B1:0 bits for defining the Output Compare (OC1A/B) state at the next compare
match. Secondly the COM1A/B1:0 and OCnxi bits control the OC1A/Bi pin output source. Figure
12-6 shows a simplified schematic of the logic affected by the COM1A/B1:0 and OCnxi bit set-
ting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
 114
7728A–AUTO–07/08

ATtiny167

 ATtiny167
general I/O port control registers (DDR and PORT) that are affected by the COM1A/B1:0 and
OCnxi bits are shown. When referring to the OC1A/B state, the reference is for the internal
OC1A/B Register, not the OC1A/Bi pin. If a system reset occur, the OC1A/B Register is reset to
“0”.

Figure 12-5. Compare Match Output

19 PB1 / OC1BU

DDB1

PINB1
1

0PORTB1

OC1BU(*)

(*) OC1xi: TCCR1D register bit

17 PB3 / OC1BV

DDB3

1

0PORTB3

COM1B0
COM1B1 OC1BV(*)

13 PB5 / OC1BW

DDB5

1

0PORTB5

COM1A0
COM1A1

OCF1A

OC1BW(*)

PINB3

PINB5

11 PB7 / OC1BX

DDB7

1

0PORTB7

OC1BX(*)
PINB7

Waveform
Generation

Waveform
Generation

WGM13
FOC1B

Top

Bottom

FOC1A

WGM12
WGM11
WGM10

12 PB6 / OC1AX

DDB6

1

0PORTB6

OC1AX(*)
PINB6

14 PB4 / OC1AW

DDB4

1

0PORTB4

OC1AW(*)
PINB4

18 PB2 / OC1AV

DDB2

1

0PORTB2

OC1AV(*)
PINB2

20 PB0 / OC1AU

DDB0

1

0PORTB0

OC1AU(*)
PINB0

Count

Clear
TCNT1

16-bit Counter

=

Direction

OCR1A
16-bit Register

=

OCR1B
16-bit Register

OCF1B
 115
7728A–AUTO–07/08

Figure 12-6. Compare Match Output Logic

12.8.1 Compare Output Function
The general I/O port function is overridden by the Output Compare (OC1A/B) from the Wave-
form Generator if either of the COM1A/B1:0 bits are set and if OCnxi respective bit is set in
TCCR1D register. However, the OC1A/Bi pin direction (input or output) is still controlled by the
Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC1A/Bi
pin (DDR_OC1A/Bi) must be set as output before the OC1A/B value is visible on the pin. The
port override function is generally independent of the Waveform Generation mode, but there are
some exceptions. Refer to Table 12-1, Table 12-2 and Table 12-3 for details.

The design of the Output Compare pin logic allows initialization of the OC1A/B state before the
output is enabled. Note that some COM1A/B1:0 bit settings are reserved for certain modes of
operation. See Section “12.11” on page 125.

The COM1A/B1:0 bits have no effect on the Input Capture unit.

12.8.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1A/B1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1A/B1:0 = 0 tells the Waveform Generator that no action
on the OC1A/B Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 12-1 on page 126. For fast PWM mode refer to
Table 12-2 on page 126, and for phase correct and phase and frequency correct PWM refer to
Table 12-3 on page 126.

A change of the COM1A/B1:0 bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC1A/B strobe bits.

12.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Output
mode (COM1A/B1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM1A/B1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM1A/B1:0 bits control whether the output should be set, cleared or toggle at a

PORT

D Q

D Q

OCnxi
PinOCnx

D QWaveform
Generator

COMnx1

OCnxi

COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O

DDR
 116
7728A–AUTO–07/08

ATtiny167

 ATtiny167
compare match (See ”Compare Match Output Unit” on page 114.). The OCnxi bits over control
the setting of the COM1A/B1:0 bits as shown in Figure 12-6 on page 116.

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 124.

12.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

12.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-7. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.

Figure 12-7. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 flag according to the register used to define the TOP value. If the inter-

TCNTn

OCnAi
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)
 117
7728A–AUTO–07/08

rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering
feature. If the new value written to OCR1A or ICR1 is lower than the current value of TCNT1, the
counter will miss the compare match. The counter will then have to count to its maximum value
(0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1) and OC1Ai is set. The waveform generated will have a
maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform fre-
quency is defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

12.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1A/B) is set on
the compare match between TCNT1 and OCR1A/B, and cleared at TOP. In inverting Compare
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 12-8. The figure
shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=

RFPWM
TOP 1+()log

2()log-----------------------------------=
 118
7728A–AUTO–07/08

ATtiny167

 ATtiny167
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1A/B and TCNT1. The OC1A/B interrupt flag
will be set when a compare match occurs.

Figure 12-8. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 flag is set at the same timer clock cycle as TOV1 is set when either OCR1A or
ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt
handler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1A/B.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1A/B Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1A/B pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1A/B1:0 to three (see Table 12-2 on page 126). The actual

TCNTn

OCRnx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnxi

OCnxi

(COMnx1:0 = 2)

(COMnx1:0 = 3)
 119
7728A–AUTO–07/08

OC1A/B value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1A/B) and OC1A/Bi is set. The PWM waveform is generated by setting (or
clearing) the OC1A/B Register at the compare match between OCR1A/B and TCNT1, and clear-
ing (or setting) the OC1A/B Register at the timer clock cycle the counter is cleared (changes
from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1A/B Register represents special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR1A/B is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCR1A/B equal to TOP will result in a constant high or low output (depending on the polarity of
the output set by the COM1A/B1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). The waveform
generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero
(0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer
feature of the Output Compare unit is enabled in the fast PWM mode.

12.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1A/B) is
cleared on the compare match between TCNT1 and OCR1A/B while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-9. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=

RPCPWM
TOP 1+()log

2()log-----------------------------------=
 120
7728A–AUTO–07/08

ATtiny167

 ATtiny167
the TCNT1 slopes represent compare matches between OCR1A/B and TCNT1. The OC1A/B
interrupt flag will be set when a compare match occurs.

Figure 12-9. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag is set accord-
ingly at the same timer clock cycle as the OCR1A/B Registers are updated with the double
buffer value (at TOP). The interrupt flags can be used to generate an interrupt each time the
counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1A/B.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1A/B Registers are written. As the third period shown in Figure 12-9 illustrates, changing
the TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1A/B
Register. Since the OCR1A/B update occurs at TOP, the PWM period starts and ends at TOP.
This implies that the length of the falling slope is determined by the previous TOP value, while
the length of the rising slope is determined by the new TOP value. When these two values differ
the two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1A/B pins. Setting the COM1A/B1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1A/B1:0 to three (See Table on
page 126). The actual OC1A/B value will only be visible on the port pin if the data direction for
the port pin is set as output (DDR_OC1A/B) and OC1A/Bi is set. The PWM waveform is gener-
ated by setting (or clearing) the OC1A/B Register at the compare match between OCR1A/B and

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnxi

OCnxi

(COMnx1:0 = 2)

(COMnx1:0 = 3)
 121
7728A–AUTO–07/08

TCNT1 when the counter increments, and clearing (or setting) the OC1A/B Register at compare
match between OCR1A/B and TCNT1 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1A/B Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1A/B is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

12.9.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1A/B) is cleared on the compare match between TCNT1 and OCR1A/B
while upcounting, and set on the compare match while downcounting. In inverting Compare
Output mode, the operation is inverted. The dual-slope operation gives a lower maximum opera-
tion frequency compared to the single-slope operation. However, due to the symmetric feature
of the dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1A/B Register is updated by the OCR1A/B Buffer Register, (see
Figure 12-9 and Figure 12-10).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 12-10. The figure shows phase and frequency correct
PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1A/B and TCNT1. The OC1A/B interrupt flag will be
set when a compare match occurs.

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

RPFCPWM
TOP 1+()log

2()log-----------------------------------=
 122
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 12-10. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1A/B
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 flag set when TCNT1 has reached TOP.
The interrupt flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1A/B.

As Figure 12-10 shows the output generated is, in contrast to the phase correct mode, symmet-
rical in all periods. Since the OCR1A/B Registers are updated at BOTTOM, the length of the
rising and the falling slopes will always be equal. This gives symmetrical output pulses and is
therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1A/B pins. Setting the COM1A/B1:0 bits to two will produce a non-inverted
PWM and an inverted PWM output can be generated by setting the COM1A/B1:0 to three (See
Table on page 126). The actual OC1A/B value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1A/B) and OC1A/Bi is set. The PWM wave-
form is generated by setting (or clearing) the OC1A/B Register at the compare match between
OCR1A/B and TCNT1 when the counter increments, and clearing (or setting) the OC1A/B Reg-
ister at compare match between OCR1A/B and TCNT1 when the counter decrements. The
PWM frequency for the output when using phase and frequency correct PWM can be calculated
by the following equation:

OCRnx/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnxi

OCnxi

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
 123
7728A–AUTO–07/08

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1A/B Register represents special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR1A/B is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be set to
high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

12.10 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set, and when the OCR1A/B Register is updated with the OCR1A/B buffer value (only
for modes utilizing double buffering). Figure 12-11 shows a timing diagram for the setting of
OCF1A/B.

Figure 12-11. Timer/Counter Timing Diagram, Setting of OCF1A/B, no Prescaling

Figure 12-12 shows the same timing data, but with the prescaler enabled.

Figure 12-12. Timer/Counter Timing Diagram, Setting of OCF1A/B, with Prescaler (fclk_I/O/8)

Figure 12-13 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1A/B Register is updated at BOTTOM. The timing dia-
grams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and
so on. The same renaming applies for modes that set the TOV1 flag at BOTTOM.

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
 124
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 12-13. Timer/Counter Timing Diagram, no Prescaling

Figure 12-14 shows the same timing data, but with the prescaler enabled.

Figure 12-14. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

12.11 16-bit Timer/Counter Register Description

12.11.1 Timer/Counter1 Control Register A – TCCR1A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B
The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1Ai and OC1Bi respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1Ai output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1Bi output overrides the normal port functionality of the

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A
Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 125
7728A–AUTO–07/08

I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit and OC1xi bit
(TCCR1D) corresponding to the OC1Ai or OC1Bi pin must be set in order to enable the output
driver.

When the OC1Ai or OC1Bi is connected to the pin, the function of the COM1A/B1:0 bits is
dependent of the WGM13:0 bits setting. Table 12-1 shows the COM1A/B1:0 bit functionality
when the WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 12-2 shows the COM1A/B1:0 bit functionality when the WGM13:0 bits are set to the fast
PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at TOP. See Section
“12.9.3” on page 118. for more details.

Table 12-3 shows the COM1A/B1:0 bit functionality when the WGM13:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Table 12-1. Compare Output Mode, non-PWM

OC1Ai
OC1Bi

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 x x
Normal port operation, OC1A/OC1B disconnected.

1

0 0

0 1 Toggle OC1A/OC1B on Compare Match.

1 0 Clear OC1A/OC1B on Compare Match (Set output to low level).

1 1 Set OC1A/OC1B on Compare Match (Set output to high level).

Table 12-2. Compare Output Mode, Fast PWM (1)

OC1Ai
OC1Bi

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 x x
Normal port operation, OC1A/OC1B disconnected.

1 0 0

1 0 1
WGM13=0: Normal port operation, OC1A/OC1B disconnected.
WGM13=1: Toggle OC1A on Compare Match, OC1B reserved.

1 1 0
Clear OC1A/OC1B on Compare Match
Set OC1A/OC1B at TOP

1 1 1
Set OC1A/OC1B on Compare Match
Clear OC1A/OC1B at TOP

Table 12-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

OC1Ai
OC1Bi

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 x x
Normal port operation, OC1A/OC1B disconnected.

1 0 0
 126
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Note: 1. A special case occurs when OC1A/OC1B equals TOP and COM1A1/COM1B1 is set. See
Section “12.9.4” on page 120. for more details.

• Bit 3:2 – Reserved Bits
These bits are reserved for future use.

• Bit 1:0 – WGM11:0: Waveform Generation Mode
Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 12-4. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See Section “12.9” on page 116.).

1 0 1
WGM13=0: Normal port operation, OC1A/OC1B disconnected.
WGM13=1: Toggle OC1A on Compare Match, OC1B reserved.

1 1 0
Clear OC1A/OC1B on Compare Match when up-counting.
Set OC1A/OC1B on Compare Match when downcounting.

1 1 1
Set OC1A/OC1B on Compare Match when up-counting.
Clear OC1A/OC1B on Compare Match when downcounting.

Table 12-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

OC1Ai
OC1Bi

COM1A1
COM1B1

COM1A0
COM1B0 Description

Table 12-4. Waveform Generation Mode Bit Description (1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter
Mode of Operation TOP Update of

OCR1A/B at
TOV1 Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-
bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, Phase and
Frequency Correct ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and
Frequency Correct OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX
 127
7728A–AUTO–07/08

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

12.11.2 Timer/Counter1 Control Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input
Capture function is disabled.

• Bit 5 – Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A TOP TOP

Table 12-4. Waveform Generation Mode Bit Description (1) (Continued)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter
Mode of Operation TOP Update of

OCR1A/B at
TOV1 Flag
Set on

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 128
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
12-11 and Figure 12-12.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.11.3 Timer/Counter1 Control Register C – TCCR1C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B
The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1nx output is changed according to its COM1A/B1:0 and OC1nx bits setting. Note that
the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1A/B1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

12.11.4 Timer/Counter1 Control Register D – TCCR1D

• Bit 7:4 – OC1Bi: Output Compare Pin Enable for Channel B
The OC1Bi bits enable the Output Compare pins of Channel B as shown in Figure 12-6 on page
116.

Table 12-5. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B – – – – – – TCCR1C
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OC1BX OC1BW OC1BV OC1BU OC1AX OC1AW OC1AV OC1AU TCCR1D
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
 129
7728A–AUTO–07/08

• Bit 3:0 – OC1Ai: Output Compare Pin Enable for Channel A
The OC1Ai bits enable the Output Compare pins of Channel A as shown in Figure 12-6 on page
116.

12.11.5 Timer/Counter1 – TCNT1H and TCNT1L

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section “12.3” on
page 106.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a
compare match between TCNT1 and one of the OCR1A/B Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

12.11.6 Output Compare Register A – OCR1AH and OCR1AL

12.11.7 Output Compare Register B – OCR1BH and OCR1BL

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1A/B pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See Section “12.3” on page 106.

12.11.8 Input Capture Register – ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H
ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 130
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See Section “12.3” on page 106.

12.11.9 Timer/Counter1 Interrupt Mask Register – TIMSK1

• Bit 7..6 – Reserved Bits
These bits are reserved for future use.

• Bit 5 – ICIE1: Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (See ”Interrupt Vectors in ATtiny167” on page 57.) is executed when the ICF1 flag,
located in TIFR1, is set.

• Bit 4..3 – Reserved Bits
These bits are reserved for future use.

• Bit 2 – OCIE1B: Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (See ”Interrupt Vectors in ATtiny167” on page 57.) is executed when the OCF1B
flag, located in TIFR1, is set.

• Bit 1 – OCIE1A: Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (See ”Interrupt Vectors in ATtiny167” on page 57.) is executed when the OCF1A
flag, located in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See ”Interrupt Vectors in ATtiny167” on page 57.) is executed when the TOV1 flag, located in
TIFR1, is set.

12.11.10 Timer/Counter1 Interrupt Flag Register – TIFR1

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1
Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICF1 – – OCF1B OCF1A TOV1 TIFR1
Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 131
7728A–AUTO–07/08

• Bit 7..6 – Reserved Bits
These bits are reserved for future use.

• Bit 5 – ICF1: Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 flag is set when the
counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4..3 – Reserved Bits
These bits are reserved for future use.

• Bit 2 – OCF1B: Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter Overflow Flag
The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,
the TOV1 flag is set when the timer overflows. Refer to Table 12-4 on page 127 for the TOV1
flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.
 132
7728A–AUTO–07/08

ATtiny167

 ATtiny167
13. SPI - Serial Peripheral Interface
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATtiny167 and peripheral devices or between several AVR devices. The ATtiny167 SPI includes
the following features:

13.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 13-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1.5 on page 4, and Table 9-3 on page 73 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 13-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

clk IO
 133
7728A–AUTO–07/08

communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 13-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed fclkio/4.

SHIFT
ENABLE
 134
7728A–AUTO–07/08

ATtiny167

 ATtiny167
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 13-1. For more details on automatic port overrides, refer to ”Alternate Port
Functions” on page 70.

Note: 1. See ”Alternate Functions of Port B” on page 78 for a detailed description of how to define the
direction of the user defined SPI pins.

Table 13-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
 135
7728A–AUTO–07/08

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the
SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits
for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI with DDB2 and DDR_SPI
with DDRB.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

in r17,SPSR

sbrs r17,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)));

}

 136
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. The example code assumes that the part specific header file is included.

13.2 SS Pin Functionality

13.2.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)));

/* Return data register */

return SPDR;

}

 137
7728A–AUTO–07/08

means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

13.2.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

13.2.3 SPI Control Register – SPCR

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the
Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 138
7728A–AUTO–07/08

ATtiny167

 ATtiny167
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 13-3 and Figure 13-4 for an example. The CPOL functionality is sum-
marized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 13-3 and Figure 13-4 for an example. The CPOL
functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the clkIO frequency fclkio is shown in
the following table:

13.2.4 SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

Table 13-2. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 13-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 13-4. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fclkio/4
0 0 1 fclkio/16

0 1 0 fclkio/64

0 1 1 fclkio/128

1 0 0 fclkio/2
1 0 1 fclkio/8
1 1 0 fclkio/32

1 1 1 fclkio/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
 139
7728A–AUTO–07/08

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits
These bits are reserved bits in the ATtiny167 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 13-4). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fclkio/4
or lower.

The SPI interface on the ATtiny167 is also used for program memory and EEPROM download-
ing or uploading. See ”Serial Downloading” on page 228 for serial programming and verification.

13.2.5 SPI Data Register – SPDR

• Bits 7:0 - SPD7:0: SPI Data
The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

13.3 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
13-3 and Figure 13-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 13-2 and Table 13-3, as done below:

Bit 7 6 5 4 3 2 1 0

SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

Table 13-5. CPOL Functionality

Leading Edge Trailing Edge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3
 140
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 13-3. SPI Transfer Format with CPHA = 0

Figure 13-4. SPI Transfer Format with CPHA = 1

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
 141
7728A–AUTO–07/08

14. USI – Universal Serial Interface

14.1 Features
• Two-wire Synchronous Data Transfer (Master or Slave)
• Three-wire Synchronous Data Transfer (Master or Slave)
• Data Received Interrupt
• Wakeup from Idle Mode
• In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
• Two-wire Start Condition Detector with Interrupt Capability

14.2 Overview
The Universal Serial Interface, or USI, provides the basic hardware resources needed for serial
communication. Combined with a minimum of control software, the USI allows significantly
higher transfer rates and uses less code space than solutions based on software only. Interrupts
are included to minimize the processor load.

A simplified block diagram of the USI is shown on Figure 14-1 For the actual placement of I/O
pins, refer to ”Pin Configuration” on page 4. CPU accessible I/O Registers, including I/O bits and
I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the
”Register Descriptions” on page 149.

Figure 14-1. Universal Serial Interface, Block Diagram

The 8-bit USI Data Register is directly accessible via the data bus and contains the incoming
and outgoing data. The register has no buffering so the data must be read as quickly as possible
to ensure that no data is lost. The USI Data Register is a serial shift register and the most signif-
icant bit that is the output of the serial shift register is connected to one of two output pins
depending of the wire mode configuration. A transparent latch is inserted between the USI Data
Register Output and output pin, which delays the change of data output to the opposite clock

D
A

T
A

 B
U

S

U
S

IP
F

U
S

IT
C

U
S

IC
LK

U
S

IC
S

0

U
S

IC
S

1

U
S

IO
IF

U
S

IO
IE

U
S

ID
C

U
S

IS
IF

U
S

IW
M

0

U
S

IW
M

1

U
S

IS
IE

B
it7

Two-wire Clock
Control Unit

DO (Output only)

DI/SDA (Input/Open Drain)

USCK/SCL (Input/Open Drain)
4-bit Counter

USIDR

USISR

D Q
LE

USICR

CLOCK
HOLD

TIM0 COMP

B
it0

[1]

3

0
1

2

3

0
1

2

0

1

2

USIDB
 142
7728A–AUTO–07/08

ATtiny167

 ATtiny167
edge of the data input sampling. The serial input is always sampled from the Data Input (DI) pin
independent of the configuration.

The 4-bit counter can be both read and written via the data bus, and can generate an overflow
interrupt. Both the USI Data Register and the counter are clocked simultaneously by the same
clock source. This allows the counter to count the number of bits received or transmitted and
generate an interrupt when the transfer is complete. Note that when an external clock source is
selected the counter counts both clock edges. In this case the counter counts the number of
edges, and not the number of bits. The clock can be selected from three different sources: The
USCK pin, Timer/Counter0 Compare Match or from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on
the Two-wire bus. It can also generate wait states by holding the clock pin low after a start con-
dition is detected, or after the counter overflows.

14.3 Functional Descriptions

14.3.1 Three-wire Mode
The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0 and 1, but
does not have the slave select (SS) pin functionality. However, this feature can be implemented
in software if necessary. Pin names used by this mode are: DI, DO, and USCK.

Figure 14-2. Three-wire Mode Operation, Simplified Diagram

Figure 14-2 shows two USI units operating in Three-wire mode, one as Master and one as
Slave. The two USI Data Register are interconnected in such way that after eight USCK clocks,
the data in each register are interchanged. The same clock also increments the USI’s 4-bit
counter. The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used to determine
when a transfer is completed. The clock is generated by the Master device software by toggling
the USCK pin via the PORT Register or by writing a one to the USITC bit in USICR.

SLAVE

MASTER

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

PORTxn
 143
7728A–AUTO–07/08

Figure 14-3. Three-wire Mode, Timing Diagram

The Three-wire mode timing is shown in Figure 14-3 At the top of the figure is a USCK cycle ref-
erence. One bit is shifted into the USI Data Register (USIDR) for each of these cycles. The
USCK timing is shown for both external clock modes. In External Clock mode 0 (USICS0 = 0), DI
is sampled at positive edges, and DO is changed (Data Register is shifted by one) at negative
edges. External Clock mode 1 (USICS0 = 1) uses the opposite edges versus mode 0, i.e.,
samples data at negative and changes the output at positive edges. The USI clock modes corre-
sponds to the SPI data mode 0 and 1.

Referring to the timing diagram (Figure 14-3), a bus transfer involves the following steps:

1. The Slave device and Master device sets up its data output and, depending on the proto-
col used, enables its output driver (mark A and B). The output is set up by writing the
data to be transmitted to the USI Data Register. Enabling of the output is done by setting
the corresponding bit in the port Data Direction Register. Note that point A and B does
not have any specific order, but both must be at least one half USCK cycle before point C
where the data is sampled. This must be done to ensure that the data setup requirement
is satisfied. The 4-bit counter is reset to zero.

2. The Master generates a clock pulse by software toggling the USCK line twice (C and D).
The bit value on the slave and master’s data input (DI) pin is sampled by the USI on the
first edge (C), and the data output is changed on the opposite edge (D). The 4-bit counter
will count both edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.
4. After eight clock pulses (i.e., 16 clock edges) the counter will overflow and indicate that

the transfer is completed. The data bytes transferred must now be processed before a
new transfer can be initiated. The overflow interrupt will wake up the processor if it is set
to Idle mode. Depending of the protocol used the slave device can now set its output to
high impedance.

14.3.2 SPI Master Operation Example
The following code demonstrates how to use the USI module as a SPI Master:

SPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

ldi r16,(1<<USIWM0)|(1<<USICS1)|(1<<USICLK)|(1<<USITC)

SPITransfer_loop:

sts USICR,r16

lds r16, USISR

sbrs r16, USIOIF

MSB

MSB

6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8

6 5 4 3 2 1 LSB

USCK

USCK

DO

DI

DCBA E

CYCLE (Reference)
 144
7728A–AUTO–07/08

ATtiny167

 ATtiny167
rjmp SPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO and USCK pins are enabled as output in the DDRA or DDRB Register. The value stored
in register r16 prior to the function is called is transferred to the Slave device, and when the
transfer is completed the data received from the Slave is stored back into the r16 Register.

The second and third instructions clears the USI Counter Overflow Flag and the USI counter
value. The fourth and fifth instruction set Three-wire mode, positive edge Shift Register clock,
count at USITC strobe, and toggle USCK. The loop is repeated 16 times.

The following code demonstrates how to use the USI module as a SPI Master with maximum
speed (fsck = fck/4):

SPITransfer_Fast:

sts USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16 ; LSB

sts USICR,r17

lds r16,USIDR

ret
 145
7728A–AUTO–07/08

14.3.3 SPI Slave Operation Example
The following code demonstrates how to use the USI module as a SPI Slave:

init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

sts USICR,r16

...

SlaveSPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

SlaveSPITransfer_loop:

lds r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO is configured as output and USCK pin is configured as input in the DDR Register. The
value stored in register r16 prior to the function is called is transferred to the master device, and
when the transfer is completed the data received from the Master is stored back into the r16
Register.

Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge USI Data Register clock. The
loop is repeated until the USI Counter Overflow Flag is set.

14.3.4 Two-wire Mode
The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-
iting on outputs and input noise filtering. Pin names used by this mode are SCL and SDA.
 146
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 14-4. Two-wire Mode Operation, Simplified Diagram

Figure 14-4 shows two USI units operating in Two-wire mode, one as Master and one as Slave.
It is only the physical layer that is shown since the system operation is highly dependent of the
communication scheme used. The main differences between the Master and Slave operation at
this level, is the serial clock generation which is always done by the Master, and only the Slave
uses the clock control unit. Clock generation must be implemented in software, but the shift
operation is done automatically by both devices. Note that only clocking on negative edge for
shifting data is of practical use in this mode. The slave can insert wait states at start or end of
transfer by forcing the SCL clock low. This means that the Master must always check if the SCL
line was actually released after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate that the
transfer is completed. The clock is generated by the master by toggling the USCK pin via the
PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the TWI-
bus, must be implemented to control the data flow.

Figure 14-5. Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 14-5), a bus transfer involves the following steps:

MASTER

SLAVE

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SDA

SCL

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Two-wire Clock
Control Unit

HOLD
SCL

PORTxn

SDA

SCL

VCC

PS ADDRESS

1 - 7 8 9

R/W ACK ACK

1 - 8 9

DATA ACK

1 - 8 9

DATA

SDA

SCL

A B D EC F
 147
7728A–AUTO–07/08

1. The a start condition is generated by the Master by forcing the SDA low line while the
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
USI Data Register bit must be set to one for the output to be enabled. The slave device’s
start detector logic (Figure 14-6.) detects the start condition and sets the USISIF Flag.
The flag can generate an interrupt if necessary.

2. In addition, the start detector will hold the SCL line low after the Master has forced an
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the USI Data Register to receive the address. This is
done by clearing the start condition flag and reset the counter.

3. The Master set the first bit to be transferred and releases the SCL line (C). The Slave
samples the data and shift it into the USI Data Register at the positive edge of the SCL
clock.

4. After eight bits are transferred containing slave address and data direction (read or
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.

5. If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
before holding the SCL line low again (i.e., the Counter Register must be set to 14 before
releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its output. If
the bit is set, a master read operation is in progress (i.e., the slave drives the SDA line)
The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the Master does a read operation it must terminate the operation by force the
acknowledge bit low after the last byte transmitted.

Figure 14-6. Start Condition Detector, Logic Diagram

14.3.5 Start Condition Detector
The start condition detector is shown in Figure 14-6. The SDA line is delayed (in the range of 50
to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is only enabled
in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the processor
from the Power-down sleep mode. However, the protocol used might have restrictions on the
SCL hold time. Therefore, when using this feature in this case the Oscillator start-up time set by
the CKSEL Fuses (see ”Clock Systems and their Distribution” on page 23) must also be taken
into the consideration. Refer to the USISIF bit description on page 150 for further details.

SDA

SCL
Write(USISIF)

CLOCK
HOLD

USISIF

D Q

CLR

D Q

CLR
 148
7728A–AUTO–07/08

ATtiny167

 ATtiny167
14.4 Alternative USI Usage
When the USI unit is not used for serial communication, it can be set up to do alternative tasks
due to its flexible design.

14.4.1 Half-duplex Asynchronous Data Transfer
By utilizing the USI Data Register in Three-wire mode, it is possible to implement a more
compact and higher performance UART than by software only.

14.4.2 4-bit Counter
The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the
counter is clocked externally, both clock edges will generate an increment.

14.4.3 12-bit Timer/Counter
Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit
counter.

14.4.4 Edge Triggered External Interrupt
By setting the counter to maximum value (F) it can function as an additional external interrupt.
The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature
is selected by the USICS1 bit.

14.4.5 Software Interrupt
The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

14.5 Register Descriptions

14.5.1 USIDR – USI Data Register

• Bits 7:0 – USID7..0: USI Data
When accessing the USI Data Register (USIDR) the Serial Register can be accessed directly. If
a serial clock occurs at the same cycle the register is written, the register will contain the value
written and no shift is performed. A (left) shift operation is performed depending of the
USICS1..0 bits setting. The shift operation can be controlled by an external clock edge, by a
Timer/Counter0 Compare Match, or directly by software using the USICLK strobe bit. Note that
even when no wire mode is selected (USIWM1..0 = 0) both the external data input (DI/SDA) and
the external clock input (USCK/SCL) can still be used by the USI Data Register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the output latch
to the most significant bit (bit 7) of the Data Register. The output latch is open (transparent)
during the first half of a serial clock cycle when an external clock source is selected
(USICS1 = 1), and constantly open when an internal clock source is used (USICS1 = 0). The
output will be changed immediately when a new MSB written as long as the latch is open. The
latch ensures that data input is sampled and data output is changed on opposite clock edges.

Bit 7 6 5 4 3 2 1 0

USID7 USID6 USID5 USID4 USID3 USID2 USID1 USID0 USIDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 149
7728A–AUTO–07/08

Note that the corresponding Data Direction Register to the pin must be set to one for enabling
data output from the USI Data Register.

14.5.2 USIBR – USI Buffer Register

• Bits 7:0 – USID7..0: USI Buffer
The content of the Serial Register is loaded to the USI Buffer Register when the transfer is com-
pleted, and instead of accessing the USI Data Register (the Serial Register) the USI Data Buffer
can be accessed when the CPU reads the received data. This gives the CPU time to handle
other program tasks too as the controlling of the USI is not so timing critical. The USI flags as set
same as when reading the USIDR register.

14.5.3 USISR – USI Status Register
The Status Register contains Interrupt Flags, line Status Flags and the counter value.

• Bit 7 – USISIF: Start Condition Interrupt Flag
When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition is
detected. When output disable mode or Three-wire mode is selected and (USICSx = 11b &
USICLK = 0) or (USICS = 10b & USICLK = 0), any edge on the SCK pin sets the flag.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one to the USISIF
bit. Clearing this bit will release the start detection hold of USCL in Two-wire mode.

A start condition interrupt will wakeup the processor from all sleep modes.

• Bit 6 – USIOIF: Counter Overflow Interrupt Flag
This flag is set (one) when the 4-bit counter overflows (i.e., at the transition from 15 to 0). An
interrupt will be generated when the flag is set while the USIOIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared if a one is written to the USIOIF bit.
Clearing this bit will release the counter overflow hold of SCL in Two-wire mode.

A counter overflow interrupt will wakeup the processor from Idle sleep mode.

• Bit 5 – USIPF: Stop Condition Flag
When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is detected.
The flag is cleared by writing a one to this bit. Note that this is not an Interrupt Flag. This signal is
useful when implementing Two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Collision
This bit is logical one when bit 7 in the USI Data Register differs from the physical pin value. The
flag is only valid when Two-wire mode is used. This signal is useful when implementing Two-
wire bus master arbitration.

Bit 7 6 5 4 3 2 1 0

USIB7 USIB6 USIB5 USIB4 USIB3 USIB2 USIB1 USIB0 USIBR
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 150
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bits 3:0 – USICNT3..0: Counter Value
These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or
written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge
detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe
bits. The clock source depends of the setting of the USICS1..0 bits. For external clock operation
a special feature is added that allows the clock to be generated by writing to the USITC strobe
bit. This feature is enabled by write a one to the USICLK bit while setting an external clock
source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

14.5.4 USICR – USI Control Register

The Control Register includes interrupt enable control, wire mode setting, Clock Select setting,
and clock strobe.

• Bit 7 – USISIE: Start Condition Interrupt Enable
Setting this bit to one enables the Start Condition detector interrupt. If there is a pending inter-
rupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will immediately be
executed. Refer to the USISIF bit description on page 150 for further details.

• Bit 6 – USIOIE: Counter Overflow Interrupt Enable
Setting this bit to one enables the Counter Overflow interrupt. If there is a pending interrupt when
the USIOIE and the Global Interrupt Enable Flag is set to one, this will immediately be executed.
Refer to the USIOIF bit description on page 150 for further details.

• Bit 5:4 – USIWM1:0: Wire Mode
These bits set the type of wire mode to be used. Basically only the function of the outputs are
affected by these bits. Data and clock inputs are not affected by the mode selected and will
always have the same function. The counter and USI Data Register can therefore be clocked
externally, and data input sampled, even when outputs are disabled. The relations between
USIWM1:0 and the USI operation is summarized in Table 14-1.

Bit 7 6 5 4 3 2 1 0

USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR
Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0
 151
7728A–AUTO–07/08

Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively
to avoid confusion between the modes of operation.

• Bit 3:2 – USICS1:0: Clock Source Select
These bits set the clock source for the USI Data Register and counter. The data output latch
ensures that the output is changed at the opposite edge of the sampling of the data input
(DI/SDA) when using external clock source (USCK/SCL). When software strobe or
Timer/Counter0 Compare Match clock option is selected, the output latch is transparent and
therefore the output is changed immediately. Clearing the USICS1:0 bits enables software
strobe option. When using this option, writing a one to the USICLK bit clocks both the USI Data
Register and the counter. For external clock source (USICS1 = 1), the USICLK bit is no longer
used as a strobe, but selects between external clocking and software clocking by the USITC
strobe bit.

Table 14-2 on page 153 shows the relationship between the USICS1..0 and USICLK setting and
clock source used for the USI Data Register and the 4-bit counter.

Table 14-1. Relations between USIWM1..0 and the USI Operation

USIWM1 USIWM0 Description

0 0 Outputs, clock hold, and start detector disabled. Port pins operates as normal.

0 1

Three-wire mode. Uses DO, DI, and USCK pins.
The Data Output (DO) pin overrides the corresponding bit in the PORT Register
in this mode. However, the corresponding DDR bit still controls the data
direction. When the port pin is set as input the pins pull-up is controlled by the
PORT bit.
The Data Input (DI) and Serial Clock (USCK) pins do not affect the normal port
operation. When operating as master, clock pulses are software generated by
toggling the PORT Register, while the data direction is set to output. The USITC
bit in the USICR Register can be used for this purpose.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).
The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and
uses open-collector output drives. The output drivers are enabled by setting the
corresponding bit for SDA and SCL in the DDR Register.
When the output driver is enabled for the SDA pin, the output driver will force
the line SDA low if the output of the USI Data Register or the corresponding bit
in the PORT Register is zero. Otherwise the SDA line will not be driven (i.e., it is
released). When the SCL pin output driver is enabled the SCL line will be forced
low if the corresponding bit in the PORT Register is zero, or by the start
detector. Otherwise the SCL line will not be driven.
The SCL line is held low when a start detector detects a start condition and the
output is enabled. Clearing the Start Condition Flag (USISIF) releases the line.
The SDA and SCL pin inputs is not affected by enabling this mode. Pull-ups on
the SDA and SCL port pin are disabled in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.
Same operation as for the Two-wire mode described above, except that the
SCL line is also held low when a counter overflow occurs, and is held low until
the Counter Overflow Flag (USIOIF) is cleared.
 152
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bit 1 – USICLK: Clock Strobe
Writing a one to this bit location strobes the USI Data Register to shift one step and the counter
to increment by one, provided that the USICS1..0 bits are set to zero and by doing so the soft-
ware clock strobe option is selected. The output will change immediately when the clock strobe
is executed, i.e., in the same instruction cycle. The value shifted into the USI Data Register is
sampled the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 14-2).

• Bit 0 – USITC: Toggle Clock Port Pin
Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDB2 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one,
writing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection
of when the transfer is done when operating as a master device.

Table 14-2. Relations between the USICS1..0 and USICLK Setting

USICS1 USICS0 USICLK USI Data Register Clock
Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1 Software clock strobe
(USICLK)

Software clock strobe
(USICLK)

0 1 X Timer/Counter0 Compare
Match

Timer/Counter0 Compare
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)
 153
7728A–AUTO–07/08

14.5.5 USIPP – USI Pin Position

• Bits 7:1 – Res: Reserved Bits
These bits are reserved bits in the ATtiny167 and always reads as zero.

• Bit 0 – USIPOS: USI Pin Position
Setting or clearing this bit changes the USI pin position.

Bit 7 6 5 4 3 2 1 0

- - - - - - - USIPOS USIPP
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-3. USI Pin Position

USIPOS USI Pin Position

0
PortB

(Default)

DI, SDA PB0 - (PCINT8/OC1AU)

DO PB1 - (PCINT9/OC1BU)

USCK, SCL PB2 - (PCINT10/OC1AV)

1 Port A
(Alternate)

DI, SDA PA4 - (PCINT4/ADC4/ICP1/MOSI)

DO PA2 - (PCINT2/ADC2/OC0A/MISO)

USCK, SCL PA5 - (PCINT5/ADC5/T1/SCK)
 154
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15. LIN / UART - Local Interconnect Network Controller or UART
The LIN (Local Interconnect Network) is a serial communications protocol which efficiently sup-
ports the control of mechatronics nodes in distributed automotive applications. The main
properties of the LIN bus are:

• Single master with multiple slaves concept
• Low cost silicon implementation based on common UART/SCI interface
• Self synchronization with on-chip oscillator in slave node
• Deterministic signal transmission with signal propagation time computable in advance
• Low cost single-wire implementation
• Speed up to 20 Kbit/s.

LIN provides a cost efficient bus communication where the bandwidth and versatility of CAN are
not required. The specification of the line driver/receiver needs to match the ISO9141 NRZ-
standard.

If LIN is not required, the controller alternatively can be programmed as Universal Asynchronous
serial Receiver and Transmitter (UART).

15.1 LIN Features
• Hardware Implementation of LIN 2.1 (LIN 1.3 Compatibility)
• Small, CPU Efficient and Independent Master/Slave Routines Based on “LIN Work Flow Concept”

of LIN 2.1 Specification
• Automatic LIN Header Handling and Filtering of Irrelevant LIN Frames
• Automatic LIN Response Handling
• Extended LIN Error Detection and Signaling
• Hardware Frame Time-out Detection
• “Break-in-data” Support Capability
• Automatic Re-synchronization to Ensure Proper Frame Integrity
• Fully Flexible Extended Frames Support Capabilities

15.2 UART Features
• Full Duplex Operation (Independent Serial Receive and Transmit Processes)
• Asynchronous Operation
• High Resolution Baud Rate Generator
• Hardware Support of 8 Data Bits, Odd/Even/No Parity Bit, 1 Stop Bit Frames
• Data Over-Run and Framing Error Detection
 155
7728A–AUTO–07/08

15.3 LIN Protocol

15.3.1 Master and Slave
A LIN cluster consists of one master task and several slave tasks. A master node contains the
master task as well as a slave task. All other nodes contain a slave task only.

Figure 15-1. LIN cluster with one master node and “n” slave nodes

The master task decides when and which frame shall be transferred on the bus. The slave tasks
provide the data transported by each frame. Both the master task and the slave task are parts of
the Frame handler

15.3.2 Frames
A frame consists of a header (provided by the master task) and a response (provided by a slave
task).

The header consists of a BREAK and SYNC pattern followed by a PROTECTED IDENTIFIER.
The identifier uniquely defines the purpose of the frame. The slave task appointed for providing
the response associated with the identifier transmits it. The response consists of a DATA field
and a CHECKSUM field.

Figure 15-2. Master and slave tasks behavior in LIN frame

The slave tasks waiting for the data associated with the identifier receives the response and
uses the data transported after verifying the checksum.

Figure 15-3. Structure of a LIN frame

master task

slave task

master node

slave task

slave node
1

slave task

slave node
n

LIN bus

Master Task

Slave Task 1

Slave Task 2

HEADER

RESPONSE

HEADER

RESPONSE

BREAK
Field

SYNC
Field

CHECKSUM
Field

DATA-0
FieldField

IDENTIFIER
PROTECTED

DATA-n
Field

Break Delimiter Response Space Inter-Byte Space Inter-Frame Space

RESPONSEHEADER

FRAME SLOT

Each byte field is transmitted as a serial byte, LSB first.
 156
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.3.3 Data Transport
Two types of data may be transported in a frame; signals or diagnostic messages.

• Signals
Signals are scalar values or byte arrays that are packed into the data field of a frame. A sig-
nal is always present at the same position in the data field for all frames with the same iden-
tifier.

• Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The interpreta-
tion of the data field depends on the data field itself as well as the state of the communicat-
ing nodes.

15.3.4 Schedule Table
The master task (in the master node) transmits frame headers based on a schedule table. The
schedule table specifies the identifiers for each header and the interval between the start of a
frame and the start of the following frame. The master application may use different schedule
tables and select among them.

15.3.5 Compatibility with LIN 1.3
LIN 2.1 is a super-set of LIN 1.3.

A LIN 2.1 master node can handle clusters consisting of both LIN 1.3 slaves and/or LIN 2.1
slaves. The master will then avoid requesting the new LIN 2.1 features from a LIN 1.3 slave:

• Enhanced checksum,
• Re-configuration and diagnostics,
• Automatic baud rate detection,
• "Response error" status monitoring.
LIN 2.1 slave nodes can not operate with a LIN 1.3 master node (e.g. the LIN1.3 master does
not support the enhanced checksum).

The LIN 2.1 physical layer is backwards compatible with the LIN1.3 physical layer. But not the
other way around. The LIN 2.1 physical layer sets greater requirements, i.e. a master node
using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.

15.4 LIN / UART Controller
The LIN/UART controller is divided in three main functions:
• Tx LIN Header function,
• Rx LIN Header function,
• LIN Response function.

These functions mainly use two services:
• Rx service,
• Tx service.
Because these two services are basically UART services, the controller is also able to switch
into an UART function.

15.4.1 LIN Overview
The LIN/UART controller is designed to match as closely as possible to the LIN software appli-
cation structure. The LIN software application is developed as independent tasks, several slave
tasks and one master task (c.f. Section 15.3.4 on page 157). The ATtiny167 conforms to this
 157
7728A–AUTO–07/08

perspective. The only link between the master task and the slave task will be at the cross-over
point where the interrupt routine is called once a new identifier is available. Thus, in a master
node, housing both master and slave task, the Tx LIN Header function will alert the slave task of
an identifier presence. In the same way, in a slave node, the Rx LIN Header function will alert
the slave task of an identifier presence.

When the slave task is warned of an identifier presence, it has first to analyze it to know what to
do with the response. Hardware flags identify the presence of one of the specific identifiers from
60 (0x3C) up to 63 (0x3F).

For LIN communication, only four interrupts need to be managed:
• LIDOK: New LIN identifier available,
• LRXOK: LIN response received,
• LTXOK: LIN response transmitted,
• LERR: LIN Error(s).
The wake-up management can be automated using the UART wake-up capability and a node
sending a minimum of 5 low bits (0xF0) for LIN 2.1 and 8 low bits (0x80) for LIN 1.3. Pin change
interrupt on LIN wake-up signal can be also used to exit the device of one of its sleep modes.

Extended frame identifiers 62 (0x3E) and 63 (0x3F) are reserved to allow the embedding of
user-defined message formats and future LIN formats. The byte transfer mode offered by the
UART will ensure the upwards compatibility of LIN slaves with accommodation of the LIN
protocol.

15.4.2 UART Overview
The LIN/UART controller can also function as a conventional UART. By default, the UART oper-
ates as a full duplex controller. It has local loop back circuitry for test purposes. The UART has
the ability to buffer one character for transmit and two for receive. The receive buffer is made of
one 8-bit serial register followed by one 8-bit independent buffer register. Automatic flag man-
agement is implemented when the application puts or gets characters, thus reducing the
software overhead. Because transmit and receive services are independent, the user can save
one device pin when one of the two services is not used. The UART has an enhanced baud rate
generator providing a maximum error of 2% whatever the clock frequency and the targeted baud
rate.
 158
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.4.3 LIN/UART Controller Structure

Figure 15-4. LIN/UART Controller Block Diagram

15.4.4 LIN/UART Command Overview

Figure 15-5. LIN/UART Command Dependencies

BUFFER

FSM

RX
 Get Byte

 Frame Time-out

 Synchronization

 Monitoring

RxD
TX

 Put Byte

 Finite State Machine

TxD

BAUD_RATE
 Prescaler
 Sample /bit

CLK IO

 Data FIFO

IDOK

RXOK

Recommended
Way

TXOK

Tx Header

Rx Header
or

LIN Abort

Byte
Transfer

Rx
Byte

Tx
Byte

LIN

UART

Full
Duplex

DISABLE

Automatic
Return

Possible
Way

Response
Tx

Response
Rx
 159
7728A–AUTO–07/08

15.4.5 Enable / Disable
Setting the LENA bit in LINCR register enables the LIN/UART controller. To disable the
LIN/UART controller, LENA bit must be written to 0. No wait states are implemented, so, the
disable command is taken into account immediately.

15.4.6 LIN Commands
Clearing the LCMD[2] bit in LINCR register enables LIN commands.

As shown in Table 15-1 on page 160, four functions controlled by the LCMD[1..0] bits of LINCR
register are available (c.f. Figure 15-5 on page 159).

15.4.6.1 Rx Header / LIN Abort Function
This function (or state) is mainly the withdrawal mode of the controller.

When the controller has to execute a master task, this state is the start point before enabling a
Tx Header command.

When the controller has only to execute slave tasks, LIN header detection/acquisition is enabled
as background function. At the end of such an acquisition (Rx Header function), automatically
the appropriate flags are set, and in LIN 1.3, the LINDLR register is set with the uncoded length
value.

This state is also the start point before enabling the Tx or the Rx Response command.

A running function (i.e. Tx Header, Tx or Rx Response) can be aborted by clearing LCMD[1..0]
bits in LINCR register (See ”Break-in-data” on page 169.). In this case, an abort flag - LABORT -
in LINERR register will be set to inform the other software tasks. No wait states are imple-
mented, so, the abort command is taken into account immediately.

Rx Header function is responsible for:
• The BREAK field detection,
• The hardware re-synchronization analyzing the SYNCH field,
• The reception of the PROTECTED IDENTIFIER field, the parity control and the update of

the LINDLR register in case of LIN 1.3,
• The starting of the Frame_Time_Out,
• The checking of the LIN communication integrity.

Table 15-1. LIN/UART Command List

LENA LCMD[2] LCMD[1] LCMD[0] Command Comment

0 x x x Disable peripheral

1

0

0
0 Rx Header - LIN Abort LIN Withdrawal

1 Tx Header LCMD[2..0]=000 after Tx

1
0 Rx Response LCMD[2..0]=000 after Rx

1 Tx Response LCMD[2..0]=000 after Tx

1

0 0 Byte transfer
no CRC, no Time out

LTXDL=LRXDL=0
(LINDLR: read only register)

1 0 Rx Byte

0 1 Tx Byte

1 1 Full duplex
 160
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.4.6.2 Tx Header Function
In accordance with the LIN protocol, only the master task must enable this function. The header
is sent in the appropriate timed slots at the programmed baud rate (c.f. LINBRR & LINBTR
registers).

The controller is responsible for:
• The transmission of the BREAK field - 13 dominant bits,
• The transmission of the SYNCH field - character 0x55,
• The transmission of the PROTECTED IDENTIFIER field. It is the full content of the LINIDR

register (automatic check bits included).
At the end of this transmission, the controller automatically returns to Rx Header / LIN Abort
state (i.e. LCMD[1..0] = 00) after setting the appropriate flags. This function leaves the controller
in the same setting as after the Rx Header function. This means that, in LIN 1.3, the LINDLR
register is set with the uncoded length value at the end of the Tx Header function.

During this function, the controller is also responsible for:
• The starting of the Frame_Time_Out,
• The checking of the LIN communication integrity.

15.4.6.3 Rx & TX Response Functions
These functions are initiated by the slave task of a LIN node. They must be used after sending
an header (master task) or after receiving an header (considered as belonging to the slave task).
When the TX Response order is sent, the transmission begins. A Rx Response order can be
sent up to the reception of the last serial bit of the first byte (before the stop-bit).

In LIN 1.3, the header slot configures the LINDLR register. In LIN 2.1, the user must configure
the LINDLR register, either LRXDL[3..0] for Rx Response either LTXDL[3..0] for Tx Response.

When the command starts, the controller checks the LIN13 bit of the LINCR register to apply the
right rule for computing the checksum. Checksum calculation over the DATA bytes and the
PROTECTED IDENTIFIER byte is called enhanced checksum and it is used for communication
with LIN 2.1 slaves. Checksum calculation over the DATA bytes only is called classic checksum
and it is used for communication with LIN 1.3 slaves. Note that identifiers 60 (0x3C) to 63 (0x3F)
shall always use classic checksum.

At the end of this reception or transmission, the controller automatically returns to Rx Header /
LIN Abort state (i.e. LCMD[1..0] = 00) after setting the appropriate flags.

If an LIN error occurs, the reception or the transmission is stopped, the appropriate flags are set
and the LIN bus is left to recessive state.

During these functions, the controller is responsible for:
• The initialization of the checksum operator,
• The transmission or the reception of ‘n’ data with the update of the checksum calculation,
• The transmission or the checking of the CHECKSUM field,
• The checking of the Frame_Time_Out,
• The checking of the LIN communication integrity.
While the controller is sending or receiving a response, BREAK and SYNCH fields can be
detected and the identifier of this new header will be recorded. Of course, specific errors on the
previous response will be maintained with this identifier reception.
 161
7728A–AUTO–07/08

15.4.6.4 Handling Data of LIN response
A FIFO data buffer is used for data of the LIN response. After setting all parameters in the
LINSEL register, repeated accesses to the LINDAT register perform data read or data write (c.f.
”Data Management” on page 171).

Note that LRXDL[3..0] and LTXDL[3..0] are not linked to the data access.

15.4.7 UART Commands
Setting the LCMD[2] bit in LINENR register enables UART commands.
Tx Byte and Rx Byte services are independent as shown in Table 15-1 on page 160.
• Byte Transfer: the UART is selected but both Rx and Tx services are disabled,
• Rx Byte: only the Rx service is enable but Tx service is disabled,
• Tx Byte: only the Tx service is enable but Rx service is disabled,
• Full Duplex: the UART is selected and both Rx and Tx services are enabled.
This combination of services is controlled by the LCMD[1..0] bits of LINENR register (c.f. Figure
15-5 on page 159).

15.4.7.1 Data Handling
The FIFO used for LIN communication is disabled during UART accesses. LRXDL[3..0] and
LTXDL[3..0] values of LINDLR register are then irrelevant. LINDAT register is then used as data
register and LINSEL register is not relevant.

15.4.7.2 Rx Service
Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of
LINSIR register. Reading LINDAT register automatically clears the flag and makes free the
second stage of the buffer. If the user considers that the in-coming character is irrelevant without
reading it, he directly can clear the flag (see specific flag management described in Section
15.6.2 on page 174).

The intrinsic structure of the Rx service offers a 2-byte buffer. The fist one is used for serial to
parallel conversion, the second one receives the result of the conversion. This second buffer
byte is reached reading LINDAT register. If the 2-byte buffer is full, a new in-coming character
will overwrite the second one already recorded. An OVRERR error in LINERR register will then
accompany this character when read.

A FERR error in LINERR register will be set in case of framing error.

15.4.7.3 Tx Service
If this service is enabled, the user sends a character by writing in LINDAT register. Automatically
the LTXOK flag of LINSIR register is cleared. It will rise at the end of the serial transmission. If
no new character has to be sent, LTXOK flag can be cleared separately (see specific flag man-
agement described in Section 15.6.2 on page 174).

There is no transmit buffering.

No error is detected by this service.
 162
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.5 LIN / UART Description

15.5.1 Reset
The AVR core reset logic signal also resets the LIN/UART controller. Another form of reset
exists, a software reset controlled by LSWRES bit in LINCR register. This self-reset bit performs
a partial reset as shown in Table 15-2.

15.5.2 Clock
The I/O clock signal (clki/o) also clocks the LIN/UART controller. It is its unique clock.

15.5.3 LIN Protocol Selection
LIN13 bit in LINCR register is used to select the LIN protocol:
• LIN13 = 0 (default): LIN 2.1 protocol,
• LIN13 = 1: LIN 1.3 protocol.
The controller checks the LIN13 bit in computing the checksum (enhanced checksum in LIN2.1 /
classic checksum in LIN 1.3).

This bit is irrelevant for UART commands.

15.5.4 Configuration
Depending on the mode (LIN or UART), LCONF[1..0] bits of the LINCR register set the controller
in the following configuration (Table 15-3):

Table 15-2. Reset of LIN/UART Registers

Register Name Reset Value LSWRES Value Comment

LIN Control Reg. LINCR 0000 0000 b 0000 0000 b

x=unknown

u=unchanged

LIN Status & Interrupt Reg. LINSIR 0000 0000 b 0000 0000 b

LIN Enable Interrupt Reg. LINENIR 0000 0000 b xxxx 0000 b

LIN Error Reg. LINERR 0000 0000 b 0000 0000 b

LIN Bit Timing Reg. LINBTR 0010 0000 b 0010 0000 b

LIN Baud Rate Reg. Low LINBRRL 0000 0000 b uuuu uuuu b

LIN Baud Rate Reg. High LINBRRH 0000 0000 b xxxx uuuu b

LIN Data Length Reg. LINDLR 0000 0000 b 0000 0000 b

LIN Identifier Reg. LINIDR 1000 0000 b 1000 0000 b

LIN Data Buffer Selection LINSEL 0000 0000 b xxxx 0000 b

LIN Data LINDAT 0000 0000 b 0000 0000 b

Table 15-3. Configuration Table versus Mode

Mode LCONF[1..0] Configuration

LIN

00 b LIN standard configuration (default)

01 b No CRC field detection or transmission

10 b Frame_Time_Out disable

11 b Listening mode
 163
7728A–AUTO–07/08

The LIN configuration is independent of the programmed LIN protocol.

The listening mode connects the internal Tx LIN and the internal Rx LIN together. In this mode,
the TXLIN output pin is disabled and the RXLIN input pin is always enabled. The same scheme
is available in UART mode.

Figure 15-6. Listening Mode

15.5.5 Busy Signal
LBUSY bit flag in LINSIR register is the image of the BUSY signal. It is set and cleared by hard-
ware. It signals that the controller is busy with LIN or UART communication.

15.5.5.1 Busy Signal in LIN Mode

Figure 15-7. Busy Signal in LIN Mode

When the busy signal is set, some registers are locked, user writing is not allowed:
• “LIN Control Register” - LINCR - except LCMD[2..0], LENA & LSWRES,
• “LIN Baud Rate Registers” - LINBRRL & LINBRRH,
• “LIN Data Length Register” - LINDLR,
• “LIN Identifier Register” - LINIDR,
• “LIN Data Register” - LINDAT.
If the busy signal is set, the only available commands are:
• LCMD[1..0] = 00 b, the abort command is taken into account at the end of the byte,
• LENA = 0 and/or LCMD[2] = 0, the kill command is taken into account immediately,
• LSWRES = 1, the reset command is taken into account immediately.

UART

00 b 8-bit data, no parity & 1 stop-bit

01 b 8-bit data, even parity & 1 stop-bit

10 b 8-bit data, odd parity & 1 stop-bit

11 b Listening mode, 8-bit data, no parity & 1 stop-bit

Table 15-3. Configuration Table versus Mode (Continued)

Mode LCONF[1..0] Configuration

1

0

TXLIN

RXLIN

internal
Tx LIN

internal
Rx LIN

LISTEN

BREAK
Field

SYNC
Field

CHECKSUM
Field

DATA-0
FieldField

IDENTIFIER
PROTECTED

DATA-n
Field

RESPONSEHEADER

FRAME SLOT

LIN bus

LIDOK

Node providing the master task

Node providing a slave task

LCMD=Tx Header LTXOK or LRXOKLCMD=Tx or Rx Response

1) LBUSY

3) LBUSY

2) LBUSY

Node providing neither the master task, neither a slave task
 164
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Note that, if another command is entered during busy signal, the new command is not validated
and the LOVRERR bit flag of the LINERR register is set. The on-going transfer is not
interrupted.

15.5.5.2 Busy Signal in UART Mode
During the byte transmission, the busy signal is set. This locks some registers from being
written:
• “LIN Control Register” - LINCR - except LCMD[2..0], LENA & LSWRES,
• “LIN Data Register” - LINDAT.
The busy signal is not generated during a byte reception.

15.5.6 Bit Timing

15.5.6.1 Baud rate Generator
The baud rate is defined to be the transfer rate in bits per second (bps):

• BAUD: Baud rate (in bps),
• fclki/o: System I/O clock frequency,
• LDIV[11..0]: Contents of LINBRRH & LINBRRL registers - (0-4095), the pre-scaler receives

clki/o as input clock.
• LBT[5..0]: Least significant bits of - LINBTR register- (0-63) is the number of samplings in a

LIN or UART bit (default value 32).
Equation for calculating baud rate:

BAUD = fclki/o / LBT[5..0] x (LDIV[11..0] + 1)

Equation for setting LINDIV value:

LDIV[11..0] = (fclki/o / LBT[5..0] x BAUD) - 1

Note that in reception a majority vote on three samplings is made.

15.5.6.2 Re-synchronization in LIN Mode
When waiting for Rx Header, LBT[5..0] = 32 in LINBTR register. The re-synchronization begins
when the BREAK is detected. If the BREAK size is not in the range (10.5 bits min., 28 bits max.
— 13 bits nominal), the BREAK is refused. The re-synchronization is done by adjusting
LBT[5..0] value to the SYNCH field of the received header (0x55). Then the PROTECTED IDEN-
TIFIER is sampled using the new value of LBT[5..0]. The re-synchronization implemented in the
controller tolerates a clock deviation of ± 20% and adjusts the baud rate in a ± 2% range.

The new LBT[5..0] value will be used up to the end of the response. Then, the LBT[5..0] will be
reset to 32 for the next header.

The LINBTR register can be used to (software) re-calibrate the clock oscillator.

The re-synchronization is not performed if the LIN node is enabled as a master.

15.5.6.3 Handling LBT[5..0]
LDISR bit of LINBTR register is used to:

• Disable the re-synchronization (for instance in the case of LIN MASTER node),
• To enable the setting of LBT[5..0] (to manually adjust the baud rate especially in the case of

UART mode). A minimum of 8 is required for LBT[5..0] due to the sampling operation.
 165
7728A–AUTO–07/08

Note that the LENA bit of LINCR register is important for this handling (see Figure 15-8 on page
166).

Figure 15-8. Handling LBT[5..0]

15.5.7 Data Length
Section 15.4.6 ”LIN Commands” on page 160 describes how to set or how are automatically set
the LRXDL[3..0] or LTXDL[3..0] fields of LINDLR register before receiving or transmitting a
response.

In the case of Tx Response the LRXDL[3..0] will be used by the hardware to count the number of
bytes already successfully sent.

In the case of Rx Response the LTXDL[3..0] will be used by the hardware to count the number of
bytes already successfully received.

If an error occurs, this information is useful to the programmer to recover the LIN messages.

15.5.7.1 Data Length in LIN 2.1
• If LTXDL[3..0]=0 only the CHECKSUM will be sent,
• If LRXDL[3..0]=0 the first byte received will be interpreted as the CHECKSUM,
• If LTXDL[3..0] or LRXDL[3..0] >8, values will be forced to 8 after the command setting and

before sending or receiving of the first byte.

15.5.7.2 Data Length in LIN 1.3
• LRXDL and LTXDL fields are both hardware updated before setting LIDOK by decoding the

data length code contained in the received PROTECTED IDENTIFIER (LRXDL = LTXDL).
• Via the above mechanism, a length of 0 or >8 is not possible.

Write in LINBTR register

LENA ?
(LINCR bit 4)

LDISR
to write

=0

=0

=1

LBT[5..0] forced to 0x20
LDISR forced to 0

Enable re-synch. in LIN mode

LBT[5..0] = LBT[5..0] to write
(LBT[5..0]min=8)

LDISR forced to 1
Disable re-synch. in LIN mode

=1
 166
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.5.7.3 Data Length in Rx Response

Figure 15-9. LIN2.1 - Rx Response - No error

• The user initializes LRXDL field before setting the Rx Response command,
• After setting the Rx Response command, LTXDL is reset by hardware,
• LRXDL field will remain unchanged during Rx (during busy signal),
• LTXDL field will count the number of received bytes (during busy signal),
• If an error occurs, Rx stops, the corresponding error flag is set and LTXDL will give the num-

ber of received bytes without error,
• If no error occurs, LRXOK is set after the reception of the CHECKSUM, LRXDL will be

unchanged (and LTXDL = LRXDL).

15.5.7.4 Data Length in Tx Response

Figure 15-10. LIN1.3 - Tx Response - No error

• The user initializes LTXDL field before setting the Tx Response command,
• After setting the Tx Response command, LRXDL is reset by hardware,
• LTXDL will remain unchanged during Tx (during busy signal),
• LRXDL will count the number of transmitted bytes (during busy signal),
• If an error occurs, Tx stops, the corresponding error flag is set and LRXDL will give the num-

ber of transmitted bytes without error,
• If no error occurs, LTXOK is set after the transmission of the CHECKSUM, LTXDL will be

unchanged (and LRXDL = LTXDL).

DATA-0 DATA-1 DATA-2 DATA-3 CHECKSUM

LINDLR=0x?4
LCMD2..0=000b

LIN bus

LRXDL (*) 4

1? 0

LBUSY

LTXDL (*) 2 3 4

1st Byte 2 nd Byte 3 rd Byte 4 th Byte
LIDOK LRXOK

LCMD=Rx Response

(*) : LRXDL & LTXDL updated by user

DATA-0 DATA-1 DATA-2 DATA-3 CHECKSUM

LCMD2..0=000b

LIN bus

LBUSY

1st Byte 2 nd Byte 3 rd Byte 4 th Byte
LIDOK LTXOK

14 0LRXDL (*) 2 3 4

LCMD=Tx Response

(*) : LRXDL & LTXDL updated by Rx Response or Tx Response task

LTXDL (*) 4
 167
7728A–AUTO–07/08

15.5.7.5 Data Length after Error

Figure 15-11. Tx Response - Error

Note: Information on response (ex: error on byte) is only available at the end of the serialization/de-seri-
alization of the byte.

15.5.7.6 Data Length in UART Mode
• The UART mode forces LRXDL and LTXDL to 0 and disables the writing in LINDLR register,
• Note that after reset, LRXDL and LTXDL are also forced to 0.

15.5.8 xxOK Flags
There are three xxOK flags in LINSIR register:

• LIDOK: LIN IDentifier OK
It is set at the end of the header, either by the Tx Header function or by the Rx Header. In
LIN 1.3, before generating LIDOK, the controller updates the LRXDL & LTXDL fields in
LINDLR register.
It is not driven in UART mode.

• LRXOK: LIN RX response complete
It is set at the end of the response by the Rx Response function in LIN mode and once a
character is received in UART mode.

• LTXOK: LIN TX response complete
It is set at the end of the response by the Tx Response function in LIN mode and once a
character has been sent in UART mode.

These flags can generate interrupts if the corresponding enable interrupt bit is set in the
LINENIR register (see Section 15.5.13 ”Interrupts” on page 170).

15.5.9 xxERR Flags
LERR bit of the LINSIR register is an logical ‘OR’ of all the bits of LINERR register (see Section
15.5.13 ”Interrupts” on page 170). There are eight flags:

• LBERR = LIN Bit ERRor.
A unit that is sending a bit on the bus also monitors the bus. A LIN bit error will be flagged
when the bit value that is monitored is different from the bit value that is sent. After detection
of a LIN bit error the transmission is aborted.

• LCERR = LIN Checksum ERRor.
A LIN checksum error will be flagged if the inverted modulo-256 sum of all received data
bytes (and the protected identifier in LIN 2.1) added to the checksum does not result in 0xFF.

• LPERR = LIN Parity ERRor (identifier).
A LIN parity error in the IDENTIFIER field will be flagged if the value of the parity bits does
not match with the identifier value. (See LP[1:0] bits in Section 15.6.8 ”LIN Identifier Register
- LINIDR” on page 178). A LIN slave application does not distinguish between corrupted par-
ity bits and a corrupted identifier. The hardware does not undertake any correction. How-

DATA-0 DATA-1

LCMD2..0=000b

LIN bus

LBUSY

1st Byte 2 nd Byte 3 rd Byte
LERR

14 0LRXDL 2

LCMD=Tx Response

LTXDL 4

DATA-2
ERROR
 168
7728A–AUTO–07/08

ATtiny167

 ATtiny167
ever, the LIN slave application has to solve this as:
- known identifier (parity bits corrupted),
- or corrupted identifier to be ignored,
- or new identifier.

• LSERR = LIN Synchronization ERRor.
A LIN synchronization error will be flagged if a slave detects the edges of the SYNCH field
outside the given tolerance.

• LFERR = LIN Framing ERRor.
A framing error will be flagged if dominant STOP bit is sampled.
Same function in UART mode.

• LTOERR = LIN Time Out ERRor.
A time-out error will be flagged if the MESSAGE frame is not fully completed within the max-
imum length T Frame_Maximum by any slave task upon transmission of the SYNCH and IDENTI-
FIER fields (see Section 15.5.10 ”Frame Time Out” on page 169).

• LOVERR = LIN OVerrun ERRor.
Overrun error will be flagged if a new command (other than LIN Abort) is entered while ‘Busy
signal’ is present.
In UART mode, an overrun error will be flagged if a received byte overwrites the byte stored
in the serial input buffer.

• LABORT
LIN abort transfer reflects a previous LIN Abort command (LCMD[2..0] = 000) while ‘Busy
signal’ is present.

After each LIN error, the LIN controller stops its previous activity and returns to its withdrawal
mode (LCMD[2..0] = 000 b) as illustrated in Figure 15-11 on page 168.

Writing 1 in LERR of LINSIR register resets LERR bit and all the bits of the LINERR register.

15.5.10 Frame Time Out
According to the LIN protocol, a frame time-out error is flagged if: T Frame > T Frame_Maximum.
This feature is implemented in the LIN/UART controller.

Figure 15-12. LIN timing and frame time-out

15.5.11 Break-in-data
According to the LIN protocol, the LIN/UART controller can detect the BREAK/SYNC field
sequence even if the break is partially superimposed with a byte of the response. When a

BREAK
Field

SYNC
Field

CHECKSUM
Field

DATA-0
FieldField

IDENTIFIER
PROTECTED

DATA-n
Field

T ResponseT Header

T Frame

T Header_Maximum

T Header_Maximum + T Response_Maximum

1.4 x T Header_Nominal

1.4 x T Response_NominalT Response_Maximum

T Frame_Maximum

=

=

=

Maximun before Time-out

T Header_Nominal

T Header_Nominal + T Response_Nominal

34 x T Bit

10 (Number_of_Data + 1) x T BitT Response_Nominal

T Frame_Nominal

=

=

=

Nominal
 169
7728A–AUTO–07/08

BREAK/SYNC field sequence happens, the transfer in progress is aborted and the processing of
the new frame starts.

• On slave node(s), an error is generated (i.e. LBERR in case of Tx Response or LFERR in
case of Rx Response). Information on data error is also available, refer to the Section
15.5.7.5.

• On master node, the user (code) is responsible for this aborting of frame. To do this, the
master task has first to abort the on-going communication (clearing LCMD bits - LIN Abort
command) and then to apply the Tx Header command. In this case, the abort error flag -
LABORT - is set.

On the slave node, the BREAK detection is processed with the synchronization setting available
when the LIN/UART controller processed the (aborted) response. But the re-synchronization
restarts as usual. Due to a possible difference of timing reference between the BREAK field and
the rest of the frame, the time-out values can be slightly inaccurate.

15.5.12 Checksum
The last field of a frame is the checksum.

In LIN 2.1, the checksum contains the inverted eight bit sum with carry over all data bytes and
the protected identifier. This calculation is called enhanced checksum.

In LIN 1.3, the checksum contains the inverted eight bit sum with carry over all data bytes. This
calculation is called classic checksum.

Frame identifiers 60 (0x3C) to 61 (0x3D) shall always use classic checksum

15.5.13 Interrupts
As shown in Figure 15-13 on page 171, the four communication flags of the LINSIR register are
combined to drive two interrupts. Each of these flags have their respective enable interrupt bit in
LINENIR register.

(see Section 15.5.8 ”xxOK Flags” on page 168 and Section 15.5.9 ”xxERR Flags” on page 168).

CHECKSUM 255 unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

PROTECTED ID.+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

PROTECTED ID.+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

8»
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

CHECKSUM 255 unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

unsigned char DATA n
0

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

8»
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=
 170
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 15-13. LIN Interrupt Mapping

15.5.14 Message Filtering
Message filtering based upon the whole identifier is not implemented. Only a status for frame
headers having 0x3C, 0x3D, 0x3E and 0x3F as identifier is available in the LINSIR register.

The LIN protocol says that a message with an identifier from 60 (0x3C) up to 63 (0x3F) uses a
classic checksum (sum over the data bytes only). Software will be responsible for switching cor-
rectly the LIN13 bit to provide/check this expected checksum (the insertion of the ID field in the
computation of the CRC is set - or not - just after entering the Rx or Tx Response command).

15.5.15 Data Management

15.5.15.1 LIN FIFO Data Buffer
To preserve register allocation, the LIN data buffer is seen as a FIFO (with address pointer
accessible). This FIFO is accessed via the LINDX[2..0] field of LINSEL register through the
LINDAT register.

LINDX[2..0], the data index, is the address pointer to the required data byte. The data byte can
be read or written. The data index is automatically incremented after each LINDAT access if the
LAINC (active low) bit is cleared. A roll-over is implemented, after data index=7 it is data
index=0. Otherwise, if LAINC bit is set, the data index needs to be written (updated) before each
LINDAT access.

The first byte of a LIN frame is stored at the data index=0, the second one at the data index=1,
and so on. Nevertheless, LINSEL must be initialized by the user before use.

LIDOK
LINSIR.2

LTXOK
LINSIR.1

LRXOK
LINSIR.0

LABORT
LINERR.7

LTOERR
LINERR.6

LOVERR
LINERR.5

LERR
LINSIR.3

LIN TC

LENERR

LFERR
LINERR.4

LSERR
LINERR.3

LPERR
LINERR.2

LCERR
LINERR.1

LBERR
LINERR.0

LIN ERR

LENIDOK

LINENIR.2

LENTXOK

LINENIR.1

LENRXOK

LINENIR.0LINENIR.3

Table 15-4. Frame Status

LIDST[2..0] Frame Status

0xx b No specific identifier

100 b 60 (0x3C) identifier

101 b 61 (0x3D) identifier

110 b 62 (0x3E) identifier

111 b 63 (0x3F) identifier
 171
7728A–AUTO–07/08

15.5.15.2 UART Data Register
The LINDAT register is the data register (no buffering - no FIFO). In write access, LINDAT will be
for data out and in read access, LINDAT will be for data in.

In UART mode the LINSEL register is unused.

15.5.16 OCD Support
This chapter describes the behavior of the LIN/UART controller stopped by the OCD (i.e. I/O
view behavior in AVR Studio)

1. LINCR:
- LINCR[6..0] are R/W accessible,
- LSWRES always is a self-reset bit (needs 1 micro-controller cycle to execute)

2. LINSIR:
- LIDST[2..0] and LBUSY are always Read accessible,
- LERR & LxxOK bit are directly accessible (unlike in execution, set or cleared directly by
writing 1 or 0).
- Note that clearing LERR resets all LINERR bits and setting LERR sets all LINERR bits.

3. LINENR:
- All bits are R/W accessible.

4. LINERR:
- All bits are R/W accessible,
- Note that LINERR bits are ORed to provide the LERR interrupt flag of LINSIR.

5. LINBTR:
- LBT[5..0] are R/W access only if LDISR is set,
- If LDISR is reset, LBT[5..0] are unchangeable.

6. LINBRRH & LINBRRL:
- All bits are R/W accessible.

7. LINDLR:
- All bits are R/W accessible.

8. LINIDR:
- LID[5..0] are R/W accessible,
- LP[1..0] are Read accessible and are always updated on the fly.

9. LINSEL:
- All bits are R/W accessible.

10. LINDAT:
- All bits are in R/W accessible,
- Note that LAINC has no more effect on the auto-incrementation and the access to the
full FIFO is done setting LINDX[2..0] of LINSEL.

Note: When a debugger break occurs, the state machine of the LIN/UART controller is stopped
(included frame time-out) and further communication may be corrupted.
 172
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.6 LIN / UART Register Description

15.6.1 LIN Control Register - LINCR

• Bit 7 - LSWRES: Software Reset
– 0 = No action,
– 1 = Software reset (this bit is self-reset at the end of the reset procedure).

• Bit 6 - LIN13: LIN 1.3 mode
– 0 = LIN 2.1 (default),
– 1 = LIN 1.3.

• Bit 5:4 - LCONF[1:0]: Configuration
a. LIN mode (default = 00):

– 00 = LIN Standard configuration (listen mode “off”, CRC “on” & Frame_Time_Out “on”,

Table 15-5. LIN/UART Register Bits Summary

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LINCR
LSWRES LIN13 LCONF1 LCONF0 LENA LCMD2 LCMD1 LCMD0

0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W

LINSIR
LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK

0 R 0 R 0 R 0 R 0 R/Wone 0 R/Wone 0 R/Wone 0 R/Wone

LINENIR
— — — — LENERR LENIDOK LENTXOK LENRXOK

0 R 0 R 0 R 0 R 0 R/W 0 R/W 0 R/W 0 R/W

LINERR
LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR

0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R

LINBTR
LDISR LBT5 LBT4 LBT3 LBT2 LBT1 LBT0

0 R/W 0 R 1 R/(W) 0 R/(W) 0 R/(W) 0 R/(W) 0 R/(W) 0 R/(W)

LINBRRL
LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIV0

0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W

LINBRRH
— — — — LDIV11 LDIV10 LDIV9 LDIV8

0 R 0 R 0 R 0 R 0 R/W 0 R/W 0 R/W 0 R/W

LINDLR
LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0

0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W

LINIDR
LP1 LP0 LID5/LDL1 LID4/LDL0 LID3 LID2 LID1 LID0

1 R 0 R 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W

LINSEL
— — — — LAINC LINDX2 LINDX1 LINDX0

0 R 0 R 0 R 0 R 0 R/W 0 R/W 0 R/W 0 R/W

LINDAT
LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0

0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W

Bit 7 6 5 4 3 2 1 0

LSWRES LIN13 LCONF1 LCONF0 LENA LCMD2 LCMD1 LCMD0 LINCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 173
7728A–AUTO–07/08

– 01 = No CRC, No Frame_Time_Out (listen mode “off”),
– 10 = No Frame_Time_Out (listen mode “off” & CRC “on”),
– 11 = Listening mode (CRC “on” & Frame_Time_Out “on”).

b. UART mode (default = 00):
– 00 = 8-bit, no parity (listen mode “off”),
– 01 = 8-bit, even parity (listen mode “off”),
– 10 = 8-bit, odd parity (listen mode “off”),
– 11 = Listening mode, 8-bit, no parity.

• Bit 3 - LENA: Enable
– 0 = Disable (both LIN and UART modes),
– 1 = Enable (both LIN and UART modes).

• Bit 2:0 - LCMD[2..0]: Command and mode
The command is only available if LENA is set.

– 000 = LIN Rx Header - LIN abort,
– 001 = LIN Tx Header,
– 010 = LIN Rx Response,
– 011 = LIN Tx Response,
– 100 = UART Rx & Tx Byte disable,
– 11x = UART Rx Byte enable,
– 1x1 = UART Tx Byte enable.

15.6.2 LIN Status and Interrupt Register - LINSIR

• Bits 7:5 - LIDST[2:0]: Identifier Status
– 0xx = no specific identifier,
– 100 = Identifier 60 (0x3C),
– 101 = Identifier 61 (0x3D),
– 110 = Identifier 62 (0x3E),
– 111 = Identifier 63 (0x3F).

• Bit 4 - LBUSY: Busy Signal
– 0 = Not busy,
– 1 = Busy (receiving or transmitting).

• Bit 3 - LERR: Error Interrupt
It is a logical OR of LINERR register bits. This bit generates an interrupt if its respective

enable bit - LENERR - is set in LINENIR.

Bit 7 6 5 4 3 2 1 0

LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK LINSIR
Read/Write R R R R R/Wone R/Wone R/Wone R/Wone

Initial Value 0 0 0 0 0 0 0 0
 174
7728A–AUTO–07/08

ATtiny167

 ATtiny167
– 0 = No error,
– 1 = An error has occurred.

The user clears this bit by writing 1 in order to reset this interrupt. Resetting LERR also
resets all LINERR bits.

In UART mode, this bit is also cleared by reading LINDAT.

• Bit 2 - LIDOK: Identifier Interrupt
This bit generates an interrupt if its respective enable bit - LENIDOK - is set in LINENIR.

– 0 = No identifier,
– 1 = Slave task: Identifier present, master task: Tx Header complete.

The user clears this bit by writing 1, in order to reset this interrupt.

• Bit 1 - LTXOK: Transmit Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENTXOK - is set in LINENIR.

– 0 = No Tx,
– 1 = Tx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.

In UART mode, this bit is also cleared by writing LINDAT.

• Bit 0 - LRXOK: Receive Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENRXOK - is set in LINENIR.

– 0 = No Rx
– 1 = Rx Response complete.

The user clears this bit by writing 1, in order to reset this interrupt.

In UART mode, this bit is also cleared by reading LINDAT.

15.6.3 LIN Enable Interrupt Register - LINENIR

• Bits 7:4 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be

written to zero when LINENIR is written.

• Bit 3 - LENERR: Enable Error Interrupt
– 0 = Error interrupt masked,
– 1 = Error interrupt enabled.

• Bit 2 - LENIDOK: Enable Identifier Interrupt
– 0 = Identifier interrupt masked,
– 1 = Identifier interrupt enabled.

Bit 7 6 5 4 3 2 1 0

- - - - LENERR LENIDOK LENTXOK LENRXOK LINENIR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 175
7728A–AUTO–07/08

• Bit 1 - LENTXOK: Enable Transmit Performed Interrupt
– 0 = Transmit performed interrupt masked,
– 1 = Transmit performed interrupt enabled.

• Bit 0 - LENRXOK: Enable Receive Performed Interrupt
– 0 = Receive performed interrupt masked,
– 1 = Receive performed interrupt enabled.

15.6.4 LIN Error Register - LINERR

• Bit 7 - LABORT: Abort Flag
– 0 = No warning,
– 1 = LIN abort command occurred.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 6 - LTOERR: Frame_Time_Out Error Flag
– 0 = No error,
– 1 = Frame_Time_Out error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 5 - LOVERR: Overrun Error Flag
– 0 = No error,
– 1 = Overrun error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 4 - LFERR: Framing Error Flag
– 0 = No error,
– 1 = Framing error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 3 - LSERR: Synchronization Error Flag
– 0 = No error,
– 1 = Synchronization error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 2 - LPERR: Parity Error Flag
– 0 = No error,
– 1 = Parity error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 1 - LCERR: Checksum Error Flag

Bit 7 6 5 4 3 2 1 0

LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR LINERR
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
 176
7728A–AUTO–07/08

ATtiny167

 ATtiny167
– 0 = No error,
– 1 = Checksum error.

This bit is cleared when LERR bit in LINSIR is cleared.

• Bit 0 - LBERR: Bit Error Flag
– 0 = no error,
– 1 = Bit error.

This bit is cleared when LERR bit in LINSIR is cleared.

15.6.5 LIN Bit Timing Register - LINBTR

• Bit 7 - LDISR: Disable Bit Timing Re synchronization
– 0 = Bit timing re-synchronization enabled (default),
– 1 = Bit timing re-synchronization disabled.

• Bits 5:0 - LBT[5:0]: LIN Bit Timing
Gives the number of samples of a bit.

 sample-time = (1 / fclki/o) x (LDIV[11..0] + 1)

Default value: LBT[6:0]=32 — Min. value: LBT[6:0]=8 — Max. value: LBT[6:0]=63

15.6.6 LIN Baud Rate Register - LINBRR

• Bits 15:12 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be

written to zero when LINBRR is written.

• Bits 11:0 - LDIV[11:0]: Scaling of clki/o Frequency
The LDIV value is used to scale the entering clki/o frequency to achieve appropriate LIN or

UART baud rate.

15.6.7 LIN Data Length Register - LINDLR

Bit 7 6 5 4 3 2 1 0

LDISR - LBT5 LBT4 LBT3 LBT2 LBT1 LBT0 LINBTR
Read/Write R/W R R/(W) R/(W) R/(W) R/(W) R/(W) R/(W)

Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIV0 LINBRRL
- - - - LDIV11 LDIV10 LDIV9 LDIV8 LINBRRH

Bit 15 14 13 12 11 10 9 8

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 LINDLR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 177
7728A–AUTO–07/08

• Bits 7:4 - LTXDL[3:0]: LIN Transmit Data Length
In LIN mode, this field gives the number of bytes to be transmitted (clamped to 8 Max).

In UART mode this field is unused.

• Bits 3:0 - LRXDL[3:0]: LIN Receive Data Length
In LIN mode, this field gives the number of bytes to be received (clamped to 8 Max).

In UART mode this field is unused.

15.6.8 LIN Identifier Register - LINIDR

• Bits 7:6 - LP[1:0]: Parity
In LIN mode:

LP0 = LID4 ^ LID2 ^ LID1 ^ LID0

LP1 = ! (LID1 ^ LID3 ^ LID4 ^ LID5)

In UART mode this field is unused.

• Bits 5:4 - LDL[1:0]: LIN 1.3 Data Length
In LIN 1.3 mode:

– 00 = 2-byte response,
– 01 = 2-byte response,
– 10 = 4-byte response,
– 11 = 8-byte response.

In UART mode this field is unused.

• Bits 3:0 - LID[3:0]: LIN 1.3 Identifier
In LIN 1.3 mode: 4-bit identifier.

In UART mode this field is unused.

• Bits 5:0 - LID[5:0]: LIN 2.1 Identifier
In LIN 2.1 mode: 6-bit identifier (no length transported).

In UART mode this field is unused.

Bit 7 6 5 4 3 2 1 0

LP1 LP0 LID5 /
LDL1

LID4 /
LDL0 LID3 LID2 LID1 LID0 LINIDR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 178
7728A–AUTO–07/08

ATtiny167

 ATtiny167
15.6.9 LIN Data Buffer Selection Register - LINSEL

• Bits 7:4 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be

written to zero when LINSEL is written.

• Bit 3 - LAINC: Auto Increment of Data Buffer Index
In LIN mode:

– 0 = Auto incrementation of FIFO data buffer index (default),
– 1 = No auto incrementation.

In UART mode this field is unused.

• Bits 2:0 - LINDX 2:0: FIFO LIN Data Buffer Index
In LIN mode: location (index) of the LIN response data byte into the FIFO data buffer. The

FIFO data buffer is accessed through LINDAT.

In UART mode this field is unused.

15.6.10 LIN Data Register - LINDAT

• Bits 7:0 - LDATA[7:0]: LIN Data In / Data out
In LIN mode: FIFO data buffer port.

In UART mode: data register (no data buffer - no FIFO).

– In Write access, data out.
– In Read access, data in.

Bit 7 6 5 4 3 2 1 0

- - - - LAINC LINDX2 LINDX1 LINDX0 LINSEL

Read/Write - - - - R/W R/W R/W R/W

Initial Value - - - - 0 0 0 0

Bit 7 6 5 4 3 2 1 0

LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0 LINDAT
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 179
7728A–AUTO–07/08

16. ISRC - Current Source

16.1 Features
• 100µA Constant current source
• ± 6% Absolute Accuracy

The ATtiny167 features a 100µA ±6% Current Source. After RESET or up on request, the
current is flowing through an external resistor. The voltage can be measured on the dedicated
pin shared with the ADC. Using a resistor in serie with a ≤0.5% tolerance is recommended. To
protect the device against big values, the ADC must be configured with AVcc as internal refer-
ence to perform the first measurement. Afterwards, another internal reference can be chosen
according to the previous measured value to refine the result.

When ISRCEN bit is set, the ISRC pin sources 100µA. Otherwise this pin keeps its initial
function.

Figure 16-1. Current Source Block Diagram

16.2 Typical applications

16.2.1 LIN Current Source
During the configuration of a LIN node in a cluster, it may be necessary to attribute dynamically
an unique physical address to every cluster node. The way to do it is not described in the LIN
protocol.

The Current Source offers an excellent solution to associate a physical address to the applica-
tion supported by the LIN node. A full dynamic node configuration can be used to set-up the LIN
nodes in a cluster.

ATtiny167 proposes to have an external resistor used in conjunction with the Current Source.
The device measures the voltage to the boundaries of the resistance via the Analog to Digital
converter. The resulting voltage defines the physical address that the communication handler
will use when the node will participate in LIN communication.

AVCC

ADC Input

External
Resistor

ISRCEN ADCn/ ISRC

100 uA
 180
7728A–AUTO–07/08

ATtiny167

 ATtiny167
In automotive applications, distributed voltages are very disturbed. The internal Current Source
solution of ATtiny167 immunizes the address detection the against any kind of voltage
variations.

Note: 1. 5V range: Max Rload 30KΩ
3V range: Max Rload 15KΩ

Table 16-1. Example of Resistor Values(±5%) for a 8-address System (AVcc = 5V(1))

Physical
Address

Resistor Value
Rload (Ohm)

Typical
Measured
Voltage (V)

Minimum
Reading with

a 2.56V ref

Typical
Reading with

a 2.56V ref

Maximum
Reading with

a 2.56V ref

0 1 000 0.1 40

1 2 200 0.22 88

2 3 300 0.33 132

3 4 700 0.47 188

4 6 800 0.68 272

5 10 000 1 400

6 15 000 1.5 600

7 22 000 2.2 880

Table 16-2. Example of Resistor Values(±1%) for a 16-address System (AVcc = 5V(1))

Physical
Address

Resistor Value
Rload (Ohm)

Typical
Measured
Voltage (V)

Minimum
Reading with

a 2.56V ref

Typical
Reading with

a 2.56V ref

Miximum
Reading with

a 2.56V ref

0 1 000 0.1 38 40 45

1 1 200 0.12 46 48 54

2 1500 0.15 57 60 68

3 1800 0.18 69 72 81

4 2200 0.22 84 88 99

5 2700 0.27 104 108 122

6 3300 0.33 127 132 149

7 4700 0.47 181 188 212

8 6 800 0.68 262 272 306

9 8 200 0.82 316 328 369

10 10 000 1.0 386 400 450

11 12 000 1.2 463 480 540

12 15 000 1.5 579 600 675

13 18 000 1.8 694 720 810

14 22 000 2.2 849 880 989

15 27 000 2.7 1023 1023 1023
 181
7728A–AUTO–07/08

16.2.2 Current Source for Low Cost Transducer
An external transducer based on a variable resistor can be connected to the Current Source.
This can be, for instance:

• A thermistor, or temperature-sensitive resistor, used as a temperature sensor,
• A CdS photoconductive cell, or luminosity-sensitive resistor, used as a luminosity sensor,
• ...
Using the Current Source with this type of transducer eliminates the need for additional parts
otherwise required in resistor network or Wheatstone bridge.

16.2.3 Voltage Reference for External Devices
An external resistor used in conjunction with the Current Source can be used as voltage refer-
ence for external devices. Using a resistor in serie with a lower tolerance than the Current
Source accuracy (≤2%) is recommended. Table 16-2 gives an example of voltage references
using standard values of resistors.

16.2.4 Threshold Reference for Internal Analog Comparator
An external resistor used in conjunction with the Current Source can be used as threshold refer-
ence for internal Analog Comparator (See ”AnaComp - Analog Comparator” on page 202.). This
can be connected to AIN0 (negative Analog Compare input pin) as well as AIN1 (positive Analog
Compare input pin). Using a resistor in serie with a lower tolerance than the Current Source
accuracy (≤2%) is recommended. Table 16-2 gives an example of threshold references using
standard values of resistors.

16.3 Control Register

16.3.1 AMISCR – Analog Miscellaneous Control Register

• Bit 0 – ISRCEN: Current Source Enable
Writing this bit to one enables the Current Source as shown in Figure 16-1. It is recommended to
use DIDR register bit function when ISRCEN is set and to turn off the Current Source once the
ADC measurement is done.

Bit 7 6 5 4 3 2 1 0

- - - - - AREFEN XREFEN ISRCEN AMISCR
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 182
7728A–AUTO–07/08

ATtiny167

 ATtiny167
17. ADC – Analog to Digital Converter

17.1 Features
• 10-bit Resolution
• 1.0 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 13 - 260 µs Conversion Time (Low - High Resolution)
• Up to 15 kSPS at Maximum Resolution
• 11 Multiplexed Single Ended Input Channels
• 8 Differential input pairs with selectable gain
• Temperature sensor input channel
• Voltage from Internal Current Source Driving (ISRC)
• Optional Left Adjustment for ADC Result Readout
• 0 - AVcc ADC Input Voltage Range
• Selectable 1.1V / 2.56V ADC Voltage Reference
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler
• Unipolar / Bipolar Input Mode
• Input Polarity Reversal Mode

17.2 Overview
The ATtiny167 features a 10-bit successive approximation ADC. The ADC is connected to a 11-
channel Analog Multiplexer which allows 16 differential voltage input combinations and 11
single-ended voltage inputs constructed from the pins PA7..PA0 or PB7..PB4. The differential
input is equipped with a programmable gain stage, providing amplification steps of 8x or 20x on
the differential input voltage before the A/D conversion. The single-ended voltage inputs refer to
0V (AGND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 17-1.

Internal reference voltages of nominally 1.1V or 2.56V are provided On-chip. Alternatively, AVcc
can be used as reference voltage for single ended channels. There are also options to output
the internal 1.1V or 2.56V reference voltages or to input an external voltage reference and turn-
off the internal voltage reference. These options are selected using the REFS[1:0] bits of the
ADMUX control register and using AREFEN and XREFEN bits of the AMISCR control register.
 183
7728A–AUTO–07/08

Figure 17-1. Analog to Digital Converter Block Schematic

17.3 Operation
The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents AGND and the maximum value represents the voltage
on AVcc, the voltage refrence on AREF pin or an internal 1.1V / 2.56V voltage reference.

ADC0

ADC1

ADC2

ISRC / ADC3

ADC4

ADC5

ADC6

ADC8

ADC9

ADC10

Temperature
Sensor

Bandgap
Reference

AVCC/4

AGND

AVCC

Neg.
Input
Mux.

Mux.

Pos.
Input
Mux.

x8 / x20 Gain
Amplifier

ADC Multiplexer
Output

10-bit DAC

Sample & Hold
Comparator

Conversion LogicMux.
Decoder

ADC Data Register
(ADCH / ADCL)

ADC Control & Status
Register A & B (ADCSRA/ADCSRB)

ADC Multiplexer
Select (ADMUX)

Analog Misc.
(AMISCR)

Prescaler A
D

C
[9

..0
]A

D
TS

[2
..0

]

A
D

P
S

[2
..0

]

R
E

FS
0

A
D

LA
R

A
D

E
N

B
IN

A
D

S
C

A
D

A
TE

A
D

IE

ADC Conversion
Complete IRQ

Interrupt
Flags

Start

A
D

IF
A

D
IF

R
E

FS
1

Trigger
SelectM

U
X

[4
..0

]

A
R

E
FE

N

X
R

E
FE

N

8-Bit Data Bus

Internal
2.56 / 1.1V
Reference

ADC7AREF
XREF
 184
7728A–AUTO–07/08

ATtiny167

 ATtiny167
The voltage reference for the ADC may be selected by writing to the REFS[1..0] bits in ADMUX
and AREFEN bit in AMISCR. The AVcc supply, the AREF pin or an internal 1.1V / 2.56V voltage
reference may be selected as the ADC voltage reference.

The analog input channel and differential gain are selected by writing to the MUX[4..0] bits in
ADMUX register. Any of the 11 ADC input pins ADC[10..0] can be selected as single ended
inputs to the ADC. The positive and negative inputs to the differential gain amplifier are
described in Table 17-5.

If differential channels are selected, the differential gain stage amplifies the voltage difference
between the selected input pair by the selected gain factor 8x or 20x, according to the setting of
the MUX[4..0] bits in ADMUX register. This amplified value then becomes the analog input to the
ADC. If single ended channels are used, the gain amplifier is bypassed altogether.

The on-chip temperature sensor is selected by writing the code defined in Table 17-5 to the
MUX[4..0] bits in ADMUX register when its dedicated ADC channel is used as an ADC input.

A specific ADC channel (defined in Table 17-5) is used to measure the voltage to the boundaries
of an external resistance flowing by a current driving by the Internal Current Source (ISRC).

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA register. Voltage refer-
ence and input channel selections will not go into effect until ADEN is set. The ADC does not
consume power when ADEN is cleared, so it is recommended to switch off the ADC before
entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX register.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the data
registers belongs to the same conversion. Once ADCL is read, ADC access to data registers is
blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the data registers is prohibited between reading of ADCH and ADCL, the interrupt will
trigger even if the result is lost.

17.4 Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA register. The trigger
source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB register (see
description of the ADTS bits for a list of the trigger sources). When a positive edge occurs on the
selected trigger signal, the ADC prescaler is reset and a conversion is started. This provides a
method of starting conversions at fixed intervals. If the trigger signal still is set when the conver-
sion completes, a new conversion will not be started. If another positive edge occurs on the
trigger signal during conversion, the edge will be ignored. Note that an Interrupt Flag will be set
 185
7728A–AUTO–07/08

even if the specific interrupt is disabled or the Global Interrupt Enable bit in SREG register is
cleared. A conversion can thus be triggered without causing an interrupt. However, the Interrupt
Flag must be cleared in order to trigger a new conversion at the next interrupt event.

Figure 17-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA register. In this mode the ADC will perform suc-
cessive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA
register to one. ADSC can also be used to determine if a conversion is in progress. The ADSC
bit will be read as one during a conversion, independently of how the conversion was started.

17.5 Prescaling and Conversion Timing

Figure 17-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA
register. The prescaler starts counting from the moment the ADC is switched on by setting the

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

Conversion
Logic

ADC Prescaler
Start

CLKADC

CLK IO

. . .

. . .

. . .

. . .

Edge
Detector

ADATE

7-bit ADC Prescaler

C
K

/2

Reset

CLK IO

ADEN

Start

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

C
K

/1
28

ADPS0
ADPS1
ADPS2
 186
7728A–AUTO–07/08

ATtiny167

 ATtiny167
ADEN bit in ADCSRA register. The prescaler keeps running for as long as the ADEN bit is set,
and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA register, the con-
version starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA register is set) takes 25 ADC clock cycles in order to initialize the analog
circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 14.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place 2 ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 17-1.

Figure 17-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 17-5. ADC Timing Diagram, Single Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX
and REFS

Update
Conversion

Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold
MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update
 187
7728A–AUTO–07/08

Figure 17-6. ADC Timing Diagram, Auto Triggered Conversion

Figure 17-7. ADC Timing Diagram, Free Running Conversion

17.6 Changing Channel or Reference Selection
The MUX[4:0] and REFS[1:0] bits in the ADMUX register are single buffered through a tempo-
rary register to which the CPU has random access. This ensures that the channels and
reference selection only takes place at a safe point during the conversion. The channel and ref-
erence selection is continuously updated until a conversion is started. Once the conversion
starts, the channel and reference selection is locked to ensure a sufficient sampling time for the
ADC. Continuous updating resumes in the last ADC clock cycle before the conversion com-
pletes (ADIF in ADCSRA register is set). Note that the conversion starts on the following rising
ADC clock edge after ADSC is written. The user is thus advised not to write new channel or ref-
erence selection values to ADMUX until one ADC clock cycle after ADSC is written.

Table 17-1. ADC Conversion Time

Condition Sample & Hold
(Cycles from Start of Conversion) Conversion Time (Cycles)

First conversion 13.5 cycles 25 cycles

Normal conversions 1.5 cycles 13 cycles

Auto Triggered conversions 2 cycles 13.5 cycles

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold
MUX and REFS
Update
 188
7728A–AUTO–07/08

ATtiny167

 ATtiny167
If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX register, in order to control which conversion will
be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.
b. During conversion, minimum one ADC clock cycle after the trigger event.
c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

17.6.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

17.6.2 ADC Voltage Reference
The voltage reference for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVcc, internal 1.1V / 2.56V voltage reference or external AREF pin. The first ADC conver-
sion result after switching voltage reference source may be inaccurate, and the user is advised
to discard this result.

17.7 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
 189
7728A–AUTO–07/08

generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

17.7.1 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 17-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present to avoid
distortion from unpredictable signal convolution. The user is advised to remove high frequency
components with a low-pass filter before applying the signals as inputs to the ADC.

Figure 17-8. Analog Input Circuitry

17.7.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

b. Use the ADC noise canceler function to reduce induced noise from the CPU.
c. If any port pins are used as digital outputs, it is essential that these do not switch

while a conversion is in progress.

17.7.3 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

ADCn

IIH

CS/H= 14 pF

VCC/2

IIL

1..100 kO
 190
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 17-9. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 17-10. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error
 191
7728A–AUTO–07/08

Figure 17-11. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the
interval between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0
LSB.

Figure 17-12. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared
to an ideal transition for any code. This is the compound effect of offset, gain error,
differential error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.

17.8 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH). The form of the conversion result depends on the type of the
conversion as there are three types of conversions: single ended conversion, unipolar differen-
tial conversion and bipolar differential conversion.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code
0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB
 192
7728A–AUTO–07/08

ATtiny167

 ATtiny167
17.8.1 Single Ended Conversion
For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 17-4 on page 195 and Table 17-5 on page 197). 0x000 represents analog ground, and
0x3FF represents the selected voltage reference minus one LSB. The result is presented in one-
sided form, from 0x3FF to 0x000.

17.8.2 Unipolar Differential Conversion
If differential channels and an unipolar input mode are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin,
and VREF the selected voltage reference (see Table 17-4 on page 195 and Table 17-5 on page
197). The voltage on the positive pin must always be larger than the voltage on the negative pin
or otherwise the voltage difference is saturated to zero. The result is presented in one-sided
form, from 0x000 (0d) to 0x3FF (+1023d). The GAIN is either 8x or 20x.

17.8.3 Bipolar Differential Conversion
As default the ADC converter operates in the unipolar input mode, but the bipolar input mode
can be selected by writing the BIN bit in the ADCSRB register to one. In the bipolar input mode
two-sided voltage differences are allowed and thus the voltage on the negative input pin can
also be larger than the voltage on the positive input pin. If differential channels and a bipolar
input mode are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin,
and VREF the selected voltage reference. The result is presented in two’s complement form, from
0x200 (-512d) through 0x000 (+0d) to 0x1FF (+511d). The GAIN is either 8x or 20x.

However, if the signal is not bipolar by nature (9 bits + sign as the 10th bit), this scheme loses
one bit of the converter dynamic range. Then, if the user wants to perform the conversion with
the maximum dynamic range, the user can perform a quick polarity check of the result and use
the unipolar differential conversion with selectable differential input pair. When the polarity check
is performed, it is sufficient to read the MSB of the result (ADC9 in ADCH register). If the bit is
one, the result is negative, and if this bit is zero, the result is positive.

17.9 Temperature Measurement
The temperature measurement is based on an on-chip temperature sensor that is coupled to a
single ended. MUX[4..0] bits in ADMUX register enables the temperature sensor. The internal

ADC
VIN 1024⋅

VREF
--------------------------=

ADC
VPOS VNEG–() 1024⋅

VREF
-- GAIN⋅=

ADC
VPOS VNEG–() 512⋅

VREF
--- GAIN⋅=
 193
7728A–AUTO–07/08

1.1V voltage reference must also be selected for the ADC voltage reference source in the tem-
perature sensor measurement. When the temperature sensor is enabled, the ADC converter
can be used in single conversion mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 17-2 on
page 194. The voltage sensitivity is approximately 1 mV/°C and the accuracy of the temperature
measurement is ± 10°C after bandgap calibration.

The values described in Table 17-2 on page 194 are typical values. However, due to the process
variation the temperature sensor output voltage varies from one chip to another. To be capable
of achieving more accurate results, the temperature measurement can be calibrated in the appli-
cation software.

17.9.1 User Calibration
The software calibration requires that a calibration value is measured and stored in a register or
EEPROM for each chip. The software calibration can be done utilizing the formula:

T = { [(ADCH << 8) | ADCL] - TOS } / k

where ADCH & ADCL are the ADC data registers, k is a fixed coefficient and TOS is the temper-
ature sensor offset value determined and stored into EEPROM.

17.9.2 Manufacturing Calibration
One can also use the calibration values available in the signature row See Section “20.2.4” on
page 212.

The calibration values are determined from values measured during test at room temperature
which is approximatively +25°C and during test at hot temperature which is approximatively
+125°C. Calibration measures are done at Vcc = 3V and with ADC in internal Vref (1.1V) mode.

The temperature in Celsius degrees can be calculated utilizing the formula:

T = { [(ADCH << 8) | ADCL] *TSGAIN } + TSOFFSET-273

Where:

a. ADCH & ADCL are the ADC data registers,
b. TSGAIN is the temperature sensor gain (constant 1, or unsigned fixed point number,

0x80 = decimal 1.0)
c. TSOFFSET is the temperature sensor offset correction term (2. complement signed

byte)

17.10 Internal Voltage Reference Output
The internal voltage reference is output on XREF pin as described in Table 17-3 if the ADC is
turned on (See Section “6.2.1” on page 51.). Addition of an external filter capacitor (5 - 10 nF) on
XREF pin may be necessary.

Table 17-2. Temperature vs. Sensor Output Voltage (Typical Case)

Temperature / °C -40 °C +25 °C +85 °C

Voltage / mV 247 mV 314 mv 382 mV
 194
7728A–AUTO–07/08

ATtiny167

 ATtiny167
XREF pin can be coupled to an analog input of the ADC (See ”Pin Configuration” on page 4.).

Notes: 1. See ”Bit 1 – XREFEN: Internal Voltage Reference Output Enable” on page 201.
2. See ”Bit 7:6 – REFS1:REFS0: Voltage Reference Selection Bits” on page 195.
3. In these configurations, the pin pull-up must be turned off and the pin digital output must be set

in Hi-Z.
4. Vcc in range 4.5 - 5.5V.

17.11 Register Description

17.11.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:REFS0: Voltage Reference Selection Bits
These bits and AREFEN bit from the Analog Miscellaneous Control Register (AMISCR) select
the voltage reference for the ADC, as shown in Table 17-4. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA
register is set). Whenever these bits are changed, the next conversion will take 25 ADC clock
cycles. If active channels are used, using AVCC or an external AREF higher than (AVcc - 1V) is
not recommended, as this will affect ADC accuracy. The internal voltage reference options may
not be used if an external voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see ”ADCL and ADCH – The ADC Data Register” on
page 199.

Table 17-3. Internal Voltage Reference Output

XREFEN (1) REFS1 (2) REFS0 (2) Voltage Reference Output (Iload ≤ 100 µA)

0 x x Hi-Z, the pin can be used as AREF input or other alternate
functions.

1 (1) 0 1 XREF = 1.1V (3)

1 (1) 1 1 XREF = 2.56V (3)(4)

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-4. Voltage Reference Selections for ADC

REFS1 REFS0 AREFEN Voltage Reference (VREF) Selection

X 0 0 AVcc used as Voltage Reference, diconnected from AREF pin.

X 0 1 External Voltage Reference at AREF pin (AREF ≥ 2.0V)

0 1 0 Internal 1.1V Voltage Reference .

1 1 0 Internal 2.56V Voltage Reference .
 195
7728A–AUTO–07/08

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits
These bits select which combination of analog inputs are connected to the ADC. In case of dif-
ferential input, gain selection is also made with these bits. Refer to Table 17-5 for details. If
these bits are changed during a conversion, the change will not go into effect until this
conversion is complete (ADIF in ADCSRA register is set).
 196
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Table 17-5. Input Channel Selections

MUX[4..0] Single Ended Input Positive
Differential Input

Negative
Differential Input Gain

0 0000 ADC0 (PA0)

NA NA NA

0 0001 ADC1 (PA1)

0 0010 ADC2 (PA2)

0 0011 ADC3 / ISRC (PA3)

0 0100 ADC4 (PA4)

0 0101 ADC5 (PA5)

0 0110 ADC6 (PA6)

0 0111 ADC7 / XREF (PA7)

0 1000 ADC8 (PB5)

0 1001 ADC9 (PB6)

0 1010 ADC10 (PB7)

0 1011 Temperature Sensor

0 1100 Bandgap Reference (1.1 V)

0 1101 AVcc/4

0 1110 GND (0V)

0 1111 (reserved)

1 0000

N/A

ADC0 (PA0) ADC1 (PA1)
8x

1 0001 20x

1 0010
ADC1 (PA1) ADC2 (PA2)

8x

1 0011 20x

1 0100
ADC2 (PA2) ADC3 (PA3)

8x

1 0101 20x

1 0110
ADC4 (PA4) ADC5 (PA5)

8x

1 0111 20x

1 1000
ADC5 (PA5) ADC6 (PA6)

8x

1 1001 20x

1 1010
ADC6 (PA6) ADC7 (PA7)

8x

1 1011 20x

1 1100
ADC8 (PB5) ADC9 (PB6)

8x

1 1101 20x

1 1110
ADC9 (PB6) ADC10 (PB7)

8x

1 1111 20x
 197
7728A–AUTO–07/08

17.11.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input clock
to the ADC.

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-6. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8
 198
7728A–AUTO–07/08

ATtiny167

 ATtiny167
17.11.3 ADCL and ADCH – The ADC Data Register

17.11.3.1 ADLAR = 0

17.11.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

• ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in ”ADC Conversion Result” on
page 192.

17.11.4 ADCSRB – ADC Control and Status Register B

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Table 17-6. ADC Prescaler Selections (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

BIN ACME ACIR1 ACIR0 – ADTS2 ADTS1 ADTS0 ADCSRB
Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 199
7728A–AUTO–07/08

• Bit 7– BIN: Bipolar Input Mode
The gain stage is working in the unipolar mode as default, but the bipolar mode can be selected
by writing the BIN bit in the ADCSRB register. In the unipolar mode only one-sided conversions
are supported and the voltage on the positive input must always be larger than the voltage on
the negative input. Otherwise the result is saturated to the voltage reference. In the bipolar mode
two-sided conversions are supported and the result is represented in the two’s complement
form. In the unipolar mode the resolution is 10 bits and the bipolar mode the resolution is 9 bits +
1 sign bit.

• Bit 3 – Res: Reserved Bit
This bit is reserved for future use. For compatibility with future devices it must be written to zero
when ADCSRB register is written.

• Bits 2:0 – ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA register is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A con-
version will be triggered by the rising edge of the selected Interrupt Flag. Note that switching
from a trigger source that is cleared to a trigger source that is set, will generate a positive edge
on the trigger signal. If ADEN in ADCSRA register is set, this will start a conversion. Switching to
Free Running mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag
is set.

17.11.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:0 – ADC7D:ADC0D: ADC7:0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7:0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

Table 17-7. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter1 Compare Match A

1 0 0 Timer/Counter1 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Capture Event

1 1 1 Watchdog Interrupt Request

Bit 7 6 5 4 3 2 1 0

ADC7D /
AIN1D

ADC6D /
AIN0D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 200
7728A–AUTO–07/08

ATtiny167

 ATtiny167
17.11.6 DIDR1 – Digital Input Disable Register 1

• Bits 7:3 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written
to zero when DIDR1 is written.

• Bits 2..0 – ADC10D..ADC8D: ADC10..8 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC10:8 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

17.11.7 AMISCR – Analog Miscellaneous Control Register

• Bits 7:3 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written
to zero when AMISCR is written.

• Bit 2 – AREFEN: External Voltage Reference Input Enable
When this bit is written logic one, the voltage reference for the ADC is input from AREF pin as
described in Table 17.10 on page 194. If active channels are used, using AVcc or an external
AREF higher than (AVcc - 1V) is not recommended, as this will affect ADC accuracy. The inter-
nal voltage reference options may not be used if an external voltage is being applied to the
AREF pin. It is recommended to use DIDR register bit function (digital input disable) when
AREFEN is set.

• Bit 1 – XREFEN: Internal Voltage Reference Output Enable
When this bit is written logic one, the internal voltage reference 1.1V or 2.56V is output on XREF
pin as described in Table 17.10 on page 194. It is recommended to use DIDR register bit func-
tion (digital input disable) when XREFEN is set.

Bit 7 6 5 4 3 2 1 0

- - - - - ADC10D ADC9D ADC8D DIDR1
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - - AREFEN XREFEN ISRCEN AMISCR
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 201
7728A–AUTO–07/08

18. AnaComp - Analog Comparator
The Analog Comparator compares the input values on the positive pin (AIN1) and negative pin
(AIN0). When the voltage on the positive pin is higher than the voltage on the negative pin, the
Analog Comparator output, ACO, is set. The comparator can trigger a separate interrupt, exclu-
sive to the Analog Comparator. The user can select Interrupt triggering on comparator output
rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown in
Figure 18-1.

Figure 18-1. Analog Comparator Block Diagram(1)(2)

Notes: 1. See Table 18-2 on page 205 and Table 18-3 on page 205
2. Refer to Figure 1-2 on page 4 and Table 9-3 on page 73 for Analog Comparator pin

placement.

18.1 Register Description

18.1.1 ADC Control and Status Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the positive input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the positive input of the Analog Comparator.

When the Analog to Digital Converter (ADC) is configured as single ended input channel, it is
possible to select any of the ADC[10..0] pins to replace the positive input to the Analog Compar-
ator. The ADC multiplexer (MUX[4..0]) is used to select this input, and consequently, the ADC
must be switched off to utilize this feature.

Analog Comparator
Interrupt

Interrupt
Sensivity
Control

ACO

ACI

ACIE
ACIS0ACIS1

ACME

ACIRS

ADEN

16-bit Timer/Counter
Input Capture

AIN0
(PA6)

AIN1
(PA7)

REFS1

Internal
2.56 / 1.1V
Reference

ACIR1
ACIR0

2.56 V

1.1 V

2.56 V/2

2.56V/4

2.56V/8

ACD

AVcc

(from ADC)

REFS0

(1)
ADC Multiplexer

Output

Bit 7 6 5 4 3 2 1 0

BIN ACME ACIR1 ACIR0 — ADTS2 ADTS1 ADTS0 ADCSRB
Read/Write R R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 202
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Bits 5, 4 – ACIR1, ACIR0: Analog Comparator Internal Voltage Reference Select
When ACIRS bit is set in ADCSRA register, these bits select a voltage reference for the negative
input to the Analog Comparator, see Table 18-3 on page 205.

18.1.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit of ACSR register. Otherwise an interrupt can occur when the
bit is changed.

• Bit 6 – ACIRS: Analog Comparator Internal Reference Select
When this bit is set an Internal Reference Voltage replaces the negative input to the Analog
Comparator (c.f. Table 18-3 on page 205).
If ACIRS is cleared, AIN0 is applied to the negative input to the Analog Comparator.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

Bit 7 6 5 4 3 2 1 0

ACD ACIRS ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
 203
7728A–AUTO–07/08

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 18-1.

Note: When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

18.1.3 DIDR0 – Digital Input Disable Register 0

• Bits 7,6 – AIN1D, AIN0D: AIN1D and AIN0D Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding Analog Compare
pin is disabled. The corresponding PIN register bit will always read as zero when this bit is set.
When an analog signal is applied to the AIN0/1 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital input
buffer.

18.2 Analog Comparator Inputs

18.2.1 Analog Compare Positive Input
It is possible to select any of the inputs of the ADC Positive Input Multiplexer to replace the pos-
itive input to the Analog Comparator. The ADC multiplexer is used to select this input, and
consequently, the ADC must be switched off to utilize this feature. If the Analog Comparator
Multiplexer Enable bit (ACME in ADCSRB register) is set and the ADC is switched off (ADEN in
ADCSRA register is zero), MUX[4..0] in ADMUX register select the input pin to replace the posi-
tive input to the Analog Comparator, as shown in Table 18-2.
If ACME is cleared or ADEN is set, AIN1 pin is applied to the positive input to the Analog
Comparator.

Table 18-1. ACIS1 / ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

ADC7D /
AIN1D

ADC6D /
AIN0D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 204
7728A–AUTO–07/08

ATtiny167

 ATtiny167
18.2.2 Analog Compare Negative Input
It is possible to select an internal voltage reference to replace the negative input to the Analog
Comparator. The output of a 2-bit DAC using the Internal Voltage Reference of the DAC is avail-
able when ACIRS bit of ACSR register is set. The voltage reference division factor is done by
ACIR[1..0] of ADCSRB register.
If ACIRS is cleared, AIN0 pin is applied to the negative input to the Analog Comparator.

Table 18-2. Analog Comparator Positive Input

ACME ADEN MUX[4..0] Analog Comparator Positive Input - Comment

0 x x xxxx b AIN1
ADC Switched On

x 1 x xxxx b AIN1

1 0 0 0000 b ADC0

ADC Switched Off.

1 0 0 0001 b ADC1

1 0 0 0010 b ADC2

1 0 0 0011 b ADC3 / ISRC

1 0 0 0100 b ADC4

1 0 0 0101 b ADC5

1 0 0 0110 b ADC6

1 0 0 0111 b ADC7

1 0 0 1000 b ADC8

1 0 0 1001 b ADC9

1 0 0 1010 b ADC10

1 0 Other This doesn’t make sense - Don’t use.

Table 18-3. Analog Comparator Negative Input

ACIRS ACIR[1..0] REFS[1..0] Analog Comparator Negative Input - Comment

0 x x AIN0

1 x 0 1 b 1.1 V - using Internal 1.1V Voltage Reference

1 0 0 b 1 1 b 2.56 V - using Internal 2.56V Voltage Reference

1 0 1 b 1 1 b 1.28 V (1/2 of 2.56 V) - using Internal 2.56V Voltage Reference

1 1 0 b 1 1 b 0.64 V (1/4 of 2.56 V - using Internal 2.56V Voltage Reference

1 1 1 b 1 1 b 0.32 V (1/8 of 2.56 V) - using Internal 2.56V Voltage Reference
 205
7728A–AUTO–07/08

19. DebugWIRE On-chip Debug System

19.1 Features
• Complete Program Flow Control
• Emulates All On-chip Functions, Both Digital and Analog, except RESET Pin
• Real-time Operation
• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)
• Unlimited Number of Program Break Points (Using Software Break Points)
• Non-intrusive Operation
• Electrical Characteristics Identical to Real Device
• Automatic Configuration System
• High-Speed Operation
• Programming of Non-volatile Memories

19.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories.

19.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,
the debugWIRE system within the target device is activated. The RESET port pin is configured
as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the commu-
nication gateway between target and emulator.

Figure 19-1. The debugWIRE Setup

Figure 19-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator
connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses.

When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:

Vcc

+1.8 - +5.5V

GND

dW (RESET)dW
 206
7728A–AUTO–07/08

ATtiny167

 ATtiny167
• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor
is not required for debugWIRE functionality.

• Connecting the RESET pin directly to Vcc will not work.
• Capacitors connected to the RESET pin must be disconnected when using debugWire.
• All external reset sources must be disconnected.

19.4 Software Break Points
DebugWIRE supports Program memory break points by the AVR BREAK instruction. Setting a
break point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a break point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of break points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

19.5 Limitations of DebugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio®).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

19.6 DebugWIRE Related Register in I/O Memory
The following section describes the registers used with the debugWire.

19.6.1 DebugWIRE Data Register – DWDR

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 207
7728A–AUTO–07/08

20. Flash Programming
The device provides a Self-Programming mechanism for downloading and uploading program
code by the MCU itself. The Self-Programming can use any available data interface (i.e. LIN,
USART, ...) and associated protocol to read code and write (program) that code into the
Program memory.

The Program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

• Alternative 1, fill the buffer before a Page Erase
– Fill temporary page buffer
– Perform a Page Erase
– Perform a Page Write

• Alternative 2, fill the buffer after Page Erase
– Perform a Page Erase
– Fill temporary page buffer
– Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be re-written. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the
same page.

20.1 Self-Programming the Flash

20.1.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “00000011 b” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

• The CPU is halted during the Page Erase operation.

20.1.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001 b” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the CTPB bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.
 208
7728A–AUTO–07/08

ATtiny167

 ATtiny167
20.1.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101 b” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

• The CPU is halted during the Page Write operation.

20.2 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file. The number of bits actually used is implementation dependent.

Since the Flash is organized in pages (see Table 21-7 on page 219), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 20-1.

Note that the Page Erase and Page Write operations are addressed independently. Therefore it
is of major importance that the software addresses the same page in both the Page Erase and
Page Write operation.

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 20-1. Addressing the Flash During SPM (1)

Note: 1. The different variables used in Table 20-2 are listed in Table 21-7 on page 219.

Bit 15 14 13 12 11 10 9 8

Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8 ZH (R31)
Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 ZL (R30)

Bit 7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - POINTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB

PROGRAM COUNTER
 209
7728A–AUTO–07/08

20.2.1 Store Program Memory Control and Status Register – SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to
control the Boot Loader operations.

• Bit 7 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny167 and will always read as zero.

• Bit 6 – RWWSB: Read-While-Write Section Busy
This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero
in ATtiny167.

• Bit 5 – SIGRD: Signature Row Read
If this bit is written to one at the same time as SPMEN, the next LPM instruction within three
clock cycles will read a byte from the signature row into the destination register. See ”Reading
the Signature Row from Software” on page 212. for details. An SPM instruction within four cycles
after SIGRD and SPMEN are set will have no effect.

• Bit 4 – CTPB: Clear Temporary Page Buffer
If the CTPB bit is written while filling the temporary page buffer, the temporary page buffer will be
cleared and the data will be lost.

• Bit 3 – RFLB: Read Fuse and Lock Bits
An LPM instruction within three cycles after RFLB and SPMEN are set in the SPMCSR Register,
will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destina-
tion register. See ”Reading the Fuse and Lock Bits from Software” on page 211. for details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Zpointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation.

• Bit 0 – SPMEN: Self Programming Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either SIGRD, CTPB, RFLB, PGWRT, or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SPMEN is written, the following SPM instruction
will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB

Bit 7 6 5 4 3 2 1 0

– RWWSB SIGRD CTPB RFLB PGWRT PGERS SPMEN SPMCSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 210
7728A–AUTO–07/08

ATtiny167

 ATtiny167
of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruc-
tion, or if no SPM instruction is executed within four clock cycles. During Page Erase and Page
Write, the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10 0001 b”, “01 0001 b”, “00 1001 b”, “00 0101 b”, “00 0011 b”
or “00 0001 b” in the lower six bits will have no effect.

Note: Only one SPM instruction should be active at any time.

20.2.2 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

20.2.3 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the RFLB and SPMEN bits in SPMCSR. When an LPM instruction
is executed within three CPU cycles after the RFLB and SPMEN bits are set in SPMCSR, the
value of the Lock bits will be loaded in the destination register. The RFLB and SPMEN bits will
auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed within
three CPU cycles or no SPM instruction is executed within four CPU cycles. When RFLB and
SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the RFLB and
SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
RFLB and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. See Table 21-5 on page 218 for a detailed
description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the RFLB and SPMEN bits are set in the
SPMCSR, the value of the Fuse High byte will be loaded in the destination register as shown
below. See Table 21-4 on page 217 for detailed description and mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0001) – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0000) FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0003) FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
 211
7728A–AUTO–07/08

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an
LPM instruction is executed within three cycles after the RFLB and SPMEN bits are set in the
SPMCSR, the value of the Extended Fuse byte will be loaded in the destination register as
shown below. See Table 21-3 on page 217 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

20.2.4 Reading the Signature Row from Software
To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 20-1 on page 212 and set the SIGRD and SPMEN bits in SPMCSR. When an
LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in
SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and
SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM
instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

Note: All other addresses are reserved for future use.

20.2.5 Preventing Flash Corruption
During periods of low Vcc, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low.

• First, a regular write sequence to the Flash requires a minimum voltage to operate correctly.
• Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage for

executing instructions is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low Vcc reset protection circuit can be

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0002) – – – – – – – EFB0

Table 20-1. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 0 0x0000

Device Signature Byte 1 0x0002

Device Signature Byte 2 0x0004

8MHz RC Oscillator Calibration Byte 0x0001

TSOFFSET - Temp Sensor Offset 0x0003

TSGAIN - Temp Sensor Gain 0x0005
 212
7728A–AUTO–07/08

ATtiny167

 ATtiny167
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low Vcc. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

20.2.6 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 20-2 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 20-2. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM) 3.7 ms 4.5 ms
 213
7728A–AUTO–07/08

20.2.7 Simple Assembly Code Example for a Boot Loader
Note that the RWWSB bit will always be read as zero in ATtiny167. Nevertheless, it is
recommended to check this bit as shown in the code example, to ensure compatibility with
devices supporting Read-While-Write.

;- The routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- Error handling is not included
;- Registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcsrval (r20)
; - Storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size

.equ PAGESIZEB = PAGESIZE*2 ; AGESIZEB is page size in BYTES, not words
.org SMALLBOOTSTART

Write_page:
; Page Erase
ldi spmcsrval, (1<<PGERS) | (1<<SELFPGEN)
rcall Do_spm

; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
rcall Do_spm

; Transfer data from RAM to Flash temporary page buffer
ldi looplo, low(PAGESIZEB) ; init loop variable
ldi loophi, high(PAGESIZEB) ; not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcsrval, (1<<SELFPGEN)
rcall Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ; use subi for PAGESIZEB<=256
brne Wrloop

; Execute Page Write
subi ZL, low(PAGESIZEB) ; restore pointer
sbci ZH, high(PAGESIZEB) ; not required for PAGESIZEB<=256
ldi spmcsrval, (1<<PGWRT) | (1<<SELFPGEN)
rcall Do_spm

; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
rcall Do_spm

; Read back and check, optional
ldi looplo, low(PAGESIZEB) ; init loop variable
ldi loophi, high(PAGESIZEB) ; not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ; restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
 214
7728A–AUTO–07/08

ATtiny167

 ATtiny167
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ; use subi for PAGESIZEB<=256
brne Rdloop

; To ensure compatibility with devices supporting Read-While-Write
; Return to RWW section
; Verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
call Do_spm
rjmp Return

Do_spm:
; Check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPGEN
rjmp Wait_spm
; Input: spmcsrval determines SPM action
; Disable interrupts if enabled, store status
in temp2, SREG
cli
; Check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcsrval
spm
; Restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
 215
7728A–AUTO–07/08

21. Memory Programming

21.1 Program and Data Memory Lock Bits
The ATtiny167 provides two Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 21-2. The Lock bits can only be
erased to “1” with the Chip Erase command. The ATtiny167 has no separate Boot Loader
section.

Note: 1. “1” means unprogrammed, “0” means programmed.

Notes: 1. Program the Fuse bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

21.2 Fuse Bits
The ATtiny167 has three Fuse bytes. Table 21-3, Table 21-4 & Table 21-5 describe briefly the
functionality of all the fuses and how they are mapped into the Fuse bytes.

The SPM instruction is enabled for the whole Flash if the SELFPRGEN fuse is programmed
(“0”), otherwise it is disabled.

Table 21-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

5 – 1 (unprogrammed)

4 – 1 (unprogrammed)

3 – 1 (unprogrammed)

2 – 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 21-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Fuse bits are locked in
both Serial and Parallel Programming mode.(1)

3 0 0
Further programming and verification of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The Fuse bits
are locked in both Serial and Parallel Programming mode.(1)
 216
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Note that the fuses are read as logical zero, “0”, if they are programmed.

Note: 1. See ”Alternate Functions of Port B” on page 78. for description of RSTDISBL Fuse.
2. The SPIEN Fuse is not accessible in serial programming mode.
3. See ”Watchdog Timer Control Register - WDTCR” on page 55. for details.
4. See Table 22-5 on page 237 for BODLEVEL Fuse coding.

Table 21-3. Extended Fuse Byte

Fuse Extended Byte Bit No Description Default Value

– 7 – 1 (unprogrammed)

– 6 – 1 (unprogrammed)

– 5 – 1 (unprogrammed)

– 4 – 1 (unprogrammed)

– 3 – 1 (unprogrammed)

– 2 – 1 (unprogrammed)

– 1 – 1 (unprogrammed)

SELFPRGEN 0 Self Programming Enable 1 (unprogrammed)

Table 21-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

RSTDISBL(1) 7 External Reset Disable 1 (unprogrammed)

DWEN 6 DebugWIRE Enable 1 (unprogrammed)

SPIEN(2) 5 Enable Serial Program
and Data Downloading

0 (programmed,
SPI programming enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed,
EEPROM not preserved)

BODLEVEL2(4) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(4) 1 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(4) 0 Brown-out Detector trigger level 1 (unprogrammed)
 217
7728A–AUTO–07/08

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 4-4 on page 26 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 4-3 on
page 25 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTB5. See ”Clock Output
Buffer” on page 30. for details.

4. See ”System Clock Prescaler” on page 36.for details.

21.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

21.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

21.4 Calibration Byte
The ATtiny167 has a byte calibration value for the internal RC Oscillator. This byte resides in the
high byte of address 0x000 in the signature address space. During reset, this byte is automati-
cally written into the OSCCAL Register to ensure correct frequency of the calibrated RC
Oscillator.

Table 21-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Table 21-6. Signature Bytes

Device Address Value Signature Byte Description

ATtiny167

0 0x1E Indicates manufactured by Atmel

1 0x94 Indicates 16 KB Flash memory

2 0x87 Indicates ATtiny167 device when address 1 contains 0x94
 218
7728A–AUTO–07/08

ATtiny167

 ATtiny167
21.5 Page Size

21.6 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATtiny167. Pulses are assumed to be at
least 250 ns unless otherwise noted.

21.6.1 Signal Names
In this section, some pins of the ATtiny167 are referenced by signal names describing their func-
tionality during parallel programming, see Figure 21-1 and Figure 21-9. Pins not described in the
following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Figure 21-11.

When pulsing WR or OE, the command loaded determines the action executed. The different
commands are shown in Figure 21-12.

Figure 21-1. Parallel programming

Note: Vcc - 0.3V < AVcc < Vcc + 0.3V, however, AVcc should always be within 4.5 - 5.5V

Table 21-7. Number of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

ATtiny167 8K words 64 words PC[5:0] 128 PC[12:6] 12

Table 21-8. Number of Words in a Page and No. of Pages in the EEPROM

Device EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

ATtiny167 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

Vcc

+4.5 - +5.5V

GND

PB0

PB1

PB2

PB3

 PA7 - PA0 DATA

RESET / PB7

XTAL1 / PB4

+12 V

XA0

XA1 / BS2

PAGEL / BS1

WR

PB6RDY / BSY

AVcc

+4.5 - +5.5V

OE PB5
 219
7728A–AUTO–07/08

Table 21-9. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

WR PB0 I Write Pulse (Active low).

XA0 PB1 I XTAL1 Action Bit 0

XA1 / BS2 PB2 I
- XTAL1 Action Bit 1
- Byte Select 2

(“0” selects low byte, “1” selects 2’nd high byte)

PAGEL / BS1 PB3 I
- Program Memory and EEPROM data Page Load
- Byte Select 1

(“0” selects low byte, “1” selects high byte)

PB4 I XTAL1 (Clock input)

OE PB5 I Output Enable (Active low).

RDY / BSY PB6 O 0: Device is busy programming,
1: Device is ready for new command.

+12V PB7 I - Reset (Active low)
- Parallel programming mode (+12V).

DATA PA7-PA0 I/O Bi-directional Data bus (Output when OE is low).

Table 21-10. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL / BS1 Prog_enable[3] 0

XA1 / BS2 Prog_enable[2] 0

XA0 Prog_enable[1] 0

WR Prog_enable[0] 0

Table 21-11. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle
 220
7728A–AUTO–07/08

ATtiny167

 ATtiny167
21.7 Parallel Programming

21.7.1 Enter Programming Mode
The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between Vcc and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.
3. Set the Prog_enable pins listed in Table 21-10 on page 220 to “0000 b” and wait at least

100 ns.
4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V

has been applied to RESET, will cause the device to fail entering programming mode.
5. Wait at least 50 µs before sending a new command.

21.7.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

21.7.3 Chip Erase
The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

Table 21-12. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 b Chip Erase

0100 0000 b Write Fuse bits

0010 0000 b Write Lock bits

0001 0000 b Write Flash

0001 0001 b Write EEPROM

0000 1000 b Read Signature bytes and Calibration byte

0000 0100 b Read Fuse and Lock bits

0000 0010 b Read Flash

0000 0011 b Read EEPROM
 221
7728A–AUTO–07/08

1. Set XA1, XA0 to “1,0 ”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000 b”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.

21.7.4 Programming the Flash
The Flash is organized in pages, see Table 21-7 on page 219. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “1,0”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000 b”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “0,1”. This enables data loading.
2. Set DATA = Data low byte (0x00 - 0xFF).
3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “0,1”. This enables data loading.
3. Set DATA = Data high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 21-3 for signal

waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 21-2 on page 223. Note that if less than
 222
7728A–AUTO–07/08

ATtiny167

 ATtiny167
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “0,0”. This enables address loading.
2. Set BS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 21-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “1,0”. This enables command loading.
2. Set DATA to “0000 0000 b”. This is the command for No Operation.
3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are

reset.

Figure 21-2. Addressing the Flash Which is Organized in Pages

Note: 1. PCPAGE and PCWORD are listed in

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB

PROGRAM COUNTER
 223
7728A–AUTO–07/08

Figure 21-3. Programming the Flash Waveforms (1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

21.7.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 21-8 on page 219. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to ”Programming the Flash” on page 222 for details on Command, Address and
Data loading):

A: Load Command “0001 0001 b”.

G: Load Address High Byte (0x00 - 0xFF).

B: Load Address Low Byte (0x00 - 0xFF).

C: Load Data (0x00 - 0xFF).

E: Latch data (give PAGEL a positive pulse).

K: Repeat A through E until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.
2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY

goes low.
3. Wait until to RDY/BSY goes high before programming the next page (See Figure 21-4 for

signal waveforms).

RDY/BSY

WR

OE

RESET +12V

0x10 ADDR. LOW ADDR. HIGHDATA DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1 / BS2

XA0

PAGEL / BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

 224
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 21-4. Programming the EEPROM Waveforms

21.7.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on
page 222 for details on Command and Address loading):

1. A: Load Command “0000 0010 b”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.
6. Set OE to “1”.

21.7.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 222 for details on Command and Address loading):

1. A: Load Command “0000 0011 b”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
5. Set OE to “1”.

21.7.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”
on page 222 for details on Command and Data loading):

1. A: Load Command “0100 0000 b”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

21.7.9 Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the
Flash” on page 222 for details on Command and Data loading):

0x11 ADDR. HIGH ADDR. LOW DATA ADDR. LOW DATA XX

RDY/BSY

WR

OE

RESET +12V

DATA

XA1 / BS2

XA0

PAGEL / BS1

XTAL1

XX

A G B C E B C E L

K

 225
7728A–AUTO–07/08

1. A: Load Command “0100 0000 b”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.

21.7.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the
Flash” on page 222 for details on Command and Data loading):

1. A: Load Command “0100 0000 b”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS2 to “0”. This selects low data byte.

Figure 21-5. Programming the FUSES Waveforms

21.7.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to ”Programming the Flash” on
page 222 for details on Command and Data loading):

1. A: Load Command “0010 0000 b”.
2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed

(LB1 and LB2 is programmed), it is not possible to re-program the Lock bits by any Exter-
nal Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

21.7.12 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to ”Programming the Flash”
on page 222 for details on Command loading):

0x40 DATA XXDATA

XA1 / BS2

XA0

PAGEL / BS1

A C
0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

RDY/BSY

WR

OE

RESET +12V

XTAL1
 226
7728A–AUTO–07/08

ATtiny167

 ATtiny167
1. A: Load Command “0000 0100 b”.
2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be

read at DATA (“0” means programmed).
3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be

read at DATA (“0” means programmed).
4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now

be read at DATA (“0” means programmed).
5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at

DATA (“0” means programmed).
6. Set OE to “1”.

Figure 21-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

21.7.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to ”Programming the Flash” on
page 222 for details on Command and Address loading):

1. A: Load Command “0000 1000 b”.
2. B: Load Address Low Byte (0x00 - 0x02).
3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.

21.7.14 Reading the 8 MHz RC Oscillator Calibration Byte
The algorithm for reading the 8 MHz RC Oscillator Calibration byte is as follows (refer to ”Pro-
gramming the Flash” on page 222 for details on Command and Address loading):

1. A: Load Command “0000 1000 b”.
2. B: Load Address Low Byte, 0x00.
3. Set OE to “0”, and BS1 to “1”. The 8 MHz RC Oscillator Calibration byte can now be read

at DATA.
4. Set OE to “1”.

21.7.15 Reading the Temperature Sensor Parameter Bytes
The algorithm for reading the Temperature Sensor parameter bytes is as follows (refer to ”Pro-
gramming the Flash” on page 222 for details on Command and Address loading):

BS2

DATA

0

1

BS2

Extended Fuse Byte

Fuse Low Byte

0

1Fuse High Byte

Lock Bits

BS1

0

1

 227
7728A–AUTO–07/08

1. A: Load Command “0000 1000 b”.
2. B: Load Address Low Byte, 0x0003 or 0x0005.
3. Set OE to “0”, and BS1 to “1”. The Temperature Sensor parameter byte can now be read

at DATA.
4. Set OE to “1”.

21.8 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed.

Note: In Table 21-13, the pin mapping for SPI programming is listed. Not all parts use the SPI pins dedi-
cated for the internal SPI interface.

Figure 21-7. Serial Programming and Verify (1)

Note: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Table 21-13. Pin Mapping Serial Programming

Symbol Pin Name I/O Function

MOSI PA4 I Serial Data In

MISO PA2 O Serial Data Out

SCK PA5 I Serial Clock

Vcc

+2.7 - +5.5V

GND

PA4

PA2

PA5

MOSI

MISO

SCK

RESET / PB7
 228
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

21.8.1 Serial Programming Algorithm
When writing serial data to the ATtiny167, data is clocked on the rising edge of SCK.

When reading data from the ATtiny167, data is clocked on the falling edge of SCK. See Figure
21-7 and Figure 21-8 for timing details.

To program and verify the ATtiny167 in the Serial Programming mode, the following sequence is
recommended (see four byte instruction formats in Table 21-15 on page 230):

1. Power-up sequence:
Apply power between Vcc and GND while RESET and SCK are set to “0”. In some systems,
the programmer can not guarantee that SCK is held low during power-up. In this case,
RESET must be given a positive pulse of at least two CPU clock cycles duration after SCK
has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable
serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchroniza-
tion. When in sync. the second byte (0x53), will echo back when issuing the third byte of the
Programming Enable instruction. Whether the echo is correct or not, all four bytes of the
instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse
and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at a
time by supplying the 5 LSB of the address and data together with the Load Program mem-
ory Page instruction. To ensure correct loading of the page, the data low byte must be
loaded before data high byte is applied for a given address. The Program memory Page is
stored by loading the Write Program memory Page instruction with the 6 MSB of the
address. If polling (RDY/BSY) is not used, the user must wait at least t WD_FLASH before issu-
ing the next page. (See Table 21-14) Accessing the serial programming interface before the
Flash write operation completes can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and data
together with the appropriate Write instruction. An EEPROM memory location is first auto-
matically erased before new data is written. If polling (RDY/BSY) is not used, the user must
wait at least t WD_EEPROM before issuing the next byte. (See Table 21-14) In a chip erased
device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded one
byte at a time by supplying the 2 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the
Write EEPROM Memory Page Instruction with the 6 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is
not used, the used must wait at least t WD_EEPROM before issuing the next page (See Table
21-8). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the content
at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn Vcc power off.
 229
7728A–AUTO–07/08

21.8.2 Serial Programming Instruction set
Table 21-15 on page 230 and Figure 21-8 on page 232 describes the Instruction set

Table 21-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

t WD_FLASH 4.5 ms

t WD_EEPROM 4.0 ms

t WD_ERASE 4.0 ms

t WD_FUSE 4.5 ms

Table 21-15. Serial Programming Instruction Set

Instruction/Operation
Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable 0xAC 0x53 0x00 0x00

Chip Erase (Program Memory/EEPROM) 0xAC 0x80 0x00 0x00

Poll RDY/BSY 0xF0 0x00 0x00 data byte out

Load Instructions

Load Extended Address byte(1) 0x4D 0x00 Extended add. 0x00

Load Program Memory Page, High byte 0x48 add. MSB add. LSB high data byte in

Load Program Memory Page, Low byte 0x40 add. MSB add. LSB low data byte in

Load EEPROM Memory Page (page access) 0xC1 0x00 0000 000aa b data byte in

Read Instructions

Read Program Memory, High byte 0x28 add. MSB add. LSB high data byte out

Read Program Memory, Low byte 0x20 add. MSB add. LSB low data byte out

Read EEPROM Memory 0xA0 0x00 00aa aaaa data byte out

Read Lock bits 0x58 0x00 0x00 data byte out

Read Signature Byte 0x30 0x00 0000 000aa data byte out

Read Fuse bits 0x50 0x00 0x00 data byte out

Read Fuse High bits 0x58 0x08 0x00 data byte out

Read Extended Fuse Bits 0x50 0x08 0x00 data byte out

Read Calibration Byte 0x38 0x00 0x00 data byte out

Write Instructions(6)

Write Program Memory Page 0x4C add. MSB add. LSB 0x00

Write EEPROM Memory 0xC0 0x00 00aa aaaa b data byte in

Write EEPROM Memory Page (page access) 0xC2 0x00 00aa aa00 b 0x00
 230
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Note: 1. Not all instructions are applicable for all parts.
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’).
5. Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. Instructions accessing program memory use a word address. This address may be random

within the page range.
7. See http://www.atmel.com/avr for Application Notes regarding programming and

programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 21-8 on page
232.

Write Lock bits 0xAC 0xE0 0x00 data byte in

Write Fuse bits 0xAC 0xA0 0x00 data byte in

Write Fuse High bits 0xAC 0xA8 0x00 data byte in

Write Extended Fuse Bits 0xAC 0xA4 0x00 data byte in

Table 21-15. Serial Programming Instruction Set (Continued)

Instruction/Operation
Instruction Format

Byte 1 Byte 2 Byte 3 Byte4
 231
7728A–AUTO–07/08

Figure 21-8. Serial programming Instruction Example

21.9 Serial Programming Characteristics

Figure 21-9. Serial Programming Waveforms

For characteristics of the SPI module, See ”SPI Timing Characteristics” on page 242.

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B

Addr. MSB Addr. LSB

0

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B

Addr. MSBAddr. MSB

0

Page Buffer

Page Number

Program Memory /
EEPROM Memory

Serial Programming Instruction

Page Offset

Load Program Memory Page (High/Low Byte) /
Load EEPROM Memory Page (Page Access)

Write Program Memory Page /
Write EEPROM Memory Page

Page 0

Page 1

Page 2

Page N-1

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
 232
7728A–AUTO–07/08

ATtiny167

 ATtiny167
22. Electrical Characteristics

Note: All Characteristics contained in this data sheet are based on simulation and characterization of ATtiny167 AVR microcontrollers
manufactured in a typical process technology. These values are preliminary values representing design targets, and will be
updated after characterization of actual Automotive silicon.

22.1 Absolute Maximum Ratings*

Notes: 1. Maximum current per port = ±30mA
2. Functional corruption may occur .

22.2 DC Characteristics

Operating Temperature.................................– 40°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature– 65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground– 0.5V to Vcc+0.5V

Voltage on RESET with respect to Ground....– 0.5V to +13.0V

Voltage on Vcc with respect to Ground............. – 0.5V to 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current Vcc and GND Pins................................ 200.0 mA

Injection Current at VCC = 0V to 5V(2) ±5.0mA(1)

TA = -40°C to +125°C, Vcc = 2.7V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(1) Max. Units

VIL

Input Low Voltage

Except XTAL1 and
RESET pins - 0.5 0.2 Vcc (2) V

VIL1
XTAL1 pin - External
Clock Selected - 0.5 0.1 Vcc (2) V

VIL2 RESET pin - 0.5 0.2 Vcc (2) V

VIL3 RESET pin as I/O - 0.5 0.2 Vcc (2) V

VIH

Input High Voltage

Except XTAL1 and
RESET pins 0.7 Vcc (3) Vcc + 0.5 V

VIH1
XTAL1 pin - External
Clock Selected 0.8 Vcc (3) Vcc + 0.5 V

VIH2 RESET pin 0.9 Vcc (3) Vcc + 0.5 V

VIH3 RESET pin as I/O 0.7 Vcc (3) Vcc + 0.5 V

VOL
Output Low Voltage (4)
(Ports A, B,)

IOL = 10 mA, Vcc = 5V
IOL = 5 mA, Vcc = 3V

0.6
0.5 V

VOH
Output High Voltage (5)
(Ports A, B)

IOH = – 10 mA, Vcc = 5V
IOH = – 5 mA, Vcc = 3V

4.3
2.5 V
 233
7728A–AUTO–07/08

Notes: 1. “Typ.", typical values at 25 °C. Maximum values are characterized values and not test limits in production.
2. "Max.” means the highest value where the pin is guaranteed to be read as low.
3. “Min.” means the lowest value where the pin is guaranteed to be read as high.
4. Although each I/O port can sink more than the test conditions (10 mA at Vcc= 5V, 5 mA at Vcc = 3V) under steady state con-

ditions (non-transient), the following must be observed:
- The sum of all IOL, for all ports, should not exceed 120 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

5. Although each I/O port can source more than the test conditions (10 mA at Vcc = 5V, 5 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:

- The sum of all IOH, for all ports, should not exceed 120 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

6. Values using methods described in ”Minimizing Power Consumption” on page 43. Power Reduction is enabled
(PRR = 0xFF) and there is no I/O drive.

7. BOD Disabled.

IIL
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value) < 0.05 1 µA

IIH
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value) < 0.05 1 µA

RRST Reset Pull-up Resistor 30 60 kΩ

Rpu I/O Pin Pull-up Resistor 20 50 kΩ

ICC

Power Supply Current (6)
Active Mode
(external clock)

16 MHz, Vcc = 5V T.B.D. 10 T.B.D. mA

8 MHz, Vcc = 5V T.B.D. 5.5 T.B.D. mA

8 MHz, Vcc = 3V T.B.D. 2.8 T.B.D. mA

4 MHz, Vcc = 3V T.B.D. 1.8 T.B.D. mA

Power Supply Current (6)
Idle Mode
(external clock)

16 MHz, Vcc = 5V T.B.D. 3.5 T.B.D. mA

8 MHz, Vcc = 5V T.B.D. 1.8 T.B.D. mA

8 MHz, Vcc = 3V T.B.D. 1 T.B.D. mA

4 MHz, Vcc = 3V T.B.D. 0.5 T.B.D. mA

Power Supply Current (7)
Power-down Mode

WDT enabled, Vcc = 5V T.B.D. 7 T.B.D. µA

WDT disabled, Vcc = 5V T.B.D. 0.18 T.B.D. µA

WDT enabled, Vcc = 3V T.B.D. 5 T.B.D. µA

WDT disabled, Vcc = 3V T.B.D. 0.15 T.B.D. µA

VACIO
Analog Comparator
Input Offset Voltage

Vcc = 5V
Vin = Vcc/2

- 2.0 8.0 20 mV

IACLK
Analog Comparator
Input Leakage Current

Vcc = 5V
Vin = Vcc/2 - 50 50 nA

tACID

Analog Comparator
Propagation Delay
Common Mode Vcc/2

Vcc = 2.7V 170 ns

Vcc = 5.0V 180 ns

TA = -40°C to +125°C, Vcc = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min. Typ.(1) Max. Units
 234
7728A–AUTO–07/08

ATtiny167

 ATtiny167
22.3 Speed Grades

Figure 22-1. Maximum Frequency vs. Vcc, ATtiny167

22.4 Clock Characteristics

22.4.1 Calibrated Internal RC Oscillator Accuracy

22.4.2 External Clock Drive Waveforms

Figure 22-2. External Clock Drive Waveforms

22.4.3 External Clock Drive

Safe Operating Area

4.5V2.7V 5.5V

8 MHz

16 MHz

Frequency

Voltage

Table 22-1. Calibration and Accuracy of Internal RC Oscillator

Frequency Vcc Temperature Accuracy

Factory
Calibration 8.0 MHz 3V 25°C ±1%

Excursion 8.0 MHz 2.7V / 5.5V - 40°C / 125°C ±14%

VIL1

VIH1

Table 22-2. External Clock Drive

Symbol Parameter
Vcc = 2.7 - 5.5V Vcc = 4.5 - 5.5V

Units
Min. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns
 235
7728A–AUTO–07/08

22.5 RESET Characteristics

Note: 1. Before rising, the supply has to be between VPORMIN and VPORMAX to ensure a Reset.

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 ms

tCHCL Fall Time 1.6 0.5 ms

ΔtCLCL
Change in period from one clock cycle
to the next 2 2 %

Table 22-2. External Clock Drive (Continued)

Symbol Parameter
Vcc = 2.7 - 5.5V Vcc = 4.5 - 5.5V

Units
Min. Max. Min. Max.

Table 22-3. External Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VRST
 RESET Pin Threshold
Voltage VCC = 5V 0.1 Vcc 0.9 Vcc V

tRST
Minimum pulse width on
RESET Pin VCC = 5V 2.5 µs

VBG Bandgap reference voltage VCC = 2.7V,
TA = 25°C 1.0 1.1 1.2 V

tBG
Bandgap reference start-up
time

VCC = 2.7V,
TA = 25°C 40 70 µs

IBG
Bandgap reference current
consumption

VCC = 2.7V,
TA = 25°C 15 µA

Table 22-4. Power On Reset Characteristics

Symbol Parameter Min Typ Max Units

VPOT
Power-on Reset Threshold Voltage (rising) 1.0 1.4 V

Power-on Reset Threshold Voltage (falling)(1) 0.9 1.3 V

VPORMAX
VCC Max. start voltage to ensure internal
Power-on Reset signal 0.4 V

VPORMIN
VCC Min. start voltage to ensure internal
Power-on Reset signal - 0.1 V

VCCRR VCC Rise Rate to ensure Power-on Reset 0.01 V/ms

VRST RESET Pin Threshold Voltage 0.1 Vcc 0.9 Vcc V
 236
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to Vcc = VBOT during the production test. This guar-
antees that a Brown-Out Reset will occur before Vcc drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 101 for Low Operating Voltage and BODLEVEL = 100 for High operating
Voltage.

22.6 Internal Voltage Characteristics

Table 22-5. BODLEVEL Fuse Coding

BODLEVEL 2:0 Fuses Min. VBOT
(1) Typ. VBOT Max. VBOT Units

1 1 1 b BOD Disabled

1 1 0 b 1.7 1.8 2.0

V

1 0 1 b 2.5 2.7 2.9

1 0 0 b 4.1 4.3 4.5

0 1 1 b

Reserved
0 1 0 b

0 0 1 b

0 0 0 b

Table 22-6. Brown-out Characteristics

Symbol Parameter Min. Typ. Max. Units

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

Table 22-7. Internal Voltage Reference Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

VBG Bandgap reference voltage Vcc = 4.5
TA = 25°C 1.0 1.1 1.2 V

tBG Bandgap reference start-up time Vcc = 4.5
TA = 25°C 40 70 µs

IBG Bandgap reference current consumption Vcc = 4.5
TA = 25°C 10 µA
 237
7728A–AUTO–07/08

22.7 Current Source Characteristics

22.8 ADC Characteristics

Table 22-8. Current Source Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

IISRC Current Vcc = 2.7 V / 5.5 V
T = -40°C / +125°C 94 106 µA

tISRC Current Source start-up time Vcc = 4.5
TA = 25°C 60 µs

Table 22-9. ADC Characteristics, Single Ended Channels

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution Single Ended Conversion 10 Bits

Absolute accuracy
(Included INL, DNL,
Quantization Error, Gain and
Offset Error)

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

1.5 LSB

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 1 MHz

LSB

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz
Noise Reduction Mode

1.5 LSB

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 1 MHz
Noise Reduction Mode

LSB

INL Integral Non-linearity
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

0.5 1 LSB

DNL Differential Non-linearity
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

0.3 1 LSB

Gain Error
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

- 2 0 + 2 LSB

Offset Error
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

- 2 1 + 2 LSB

Clock Frequency Free Running Conversion 50 1000 kHz

Conversion Time Free Running Conversion 65 260 µs

AVcc Analog Supply Voltage VCC – 0.3 (2) VCC + 0.3 (3) V

VREF External Reference Voltage 2.0 AVcc V

VIN Input voltage GND VREF V
 238
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Notes: 1. Values are guidelines only.
2. Minimum for AVcc is 2.7 V.
3. Maximum for AVcc is 5.5 V

Notes: 1. Values are guidelines only.
2. Minimum for AVCC is 2.7 V.
3. Maximum for AVCC is 5.5 V

Input bandwidth 38.5 kHz

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 22-9. ADC Characteristics, Single Ended Channels (Continued)

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Table 22-10. ADC Characteristics, Differential Channels

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Differential Conversion
Gain = 8x 8 Bits

Differential Conversion
Gain = 20x 7 Bits

Absolute accuracy
Gain = 8x or 20x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

1 LSB

INL
Integral Non-linearity (INL)
(Accuracy after Calibration
for Offset and Gain Error)

Gain = 8x or 20x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

0.5 1 LSB

Gain Error Gain = 8x or 20x - 2 0 + 2 LSB

Offset Error
Gain = 8x or 20x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

- 1 0 + 1 LSB

Clock Frequency Free Running Conversion 50 200 kHz

Conversion Time Free Running Conversion 65 260 µs

AVcc Analog Supply Voltage Vcc – 0.3 (2) Vcc + 0.3 (3) V

VREF External Reference Voltage Differential Conversion 2.0 AVcc - 0.5 V

VIN Input voltage Differential Conversion 0 AVcc V

VDIFF Input Differential Voltage - VREF/Gain + VREF/Gain V

ADC Conversion Output - 511 + 511 LSB

Input bandwidth Differential Conversion 4 kHz

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ
 239
7728A–AUTO–07/08

22.9 Parallel Programming Characteristics

Figure 22-3. Parallel Programming Timing, Including some General Timing Requirements

Figure 22-4. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 22-3 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

RDY/BSY

WR

Data & Contol
(DATA, XA0,�

XA1/BS2,�
PAGEL/BS1)

XTAL1 tXHXL

tWLWH

tRLRH

tDVXH tXLDX

tPLWL

tWLRH

tPLBXtBVPH

tXLWL

tWLBX
t BVWL

XTAL1
XLXHt

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

PAGEL/BS1

XA0

XA1/BS2

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)
 240
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 22-5. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 22-3 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Note: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits

Table 22-11. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

PAGEL/BS1

XA0

XA1/BS2

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
 241
7728A–AUTO–07/08

commands.
2. tWLRH_CE is valid for the Chip Erase command.

22.10 SPI Timing Characteristics
See Figure 22-6 and Figure 22-7 for details.

Note: In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK >12 MHz

Table 22-12. SPI Timing Parameters

Description Mode Min. Typ. Max.

1 SCK period Master See Table 13-4

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low (1) Slave 2 • tck

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 2 • tck
 242
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 22-6. SPI Interface Timing Requirements (Master Mode)

Figure 22-7. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

18
 243
7728A–AUTO–07/08

 244
7728A–AUTO–07/08

ATtiny167

23. Decoupling Capacitors
The operating frequency (i.e. system clock) of the processor determines in 95% of cases the
value needed for microcontroller decoupling capacitors.

The hypotheses used as first evaluation for decoupling capacitors are:

• The operating frequency (fop) supplies itself the maximum peak levels of noise. The main
peaks are located at fop and 2 • fop.

• An SMC capacitor connected to 2 micro-vias on a PCB has the following characteristics:
– 1.5 nH from the connection of the capacitor to the PCB,
– 1.5 nH from the capacitor intrinsic inductance.

Figure 23-1. Capacitor description

According to the operating frequency of the product, the decoupling capacitances are chosen
considering the frequencies to filter, fop and 2 • fop.

The relation between frequencies to cut and decoupling characteristics are defined by:

and

where:
– L: the inductance equivalent to the global inductance on the Vcc/Gnd lines.
– C1 & C2: decoupling capacitors (C1 = 4 • C2).

Then, in normalized value range, the decoupling capacitors become:

These decoupling capacitors must to be implemented as close as possible to each pair of power
supply pins:

– 16-17 for logic sub-system,
– 5-6 for analogical sub-system.

Nevertheless, a bulk capacitor of 10-47 µF is also needed on the power distribution network of
the PCB, near the power source.

For further information, please refer to Application Notes AVR040 “EMC Design Considerations“
and AVR042 “Hardware Design Considerations“ on the Atmel web site.

Table 23-1. Decoupling Capacitors vs. Frequency

fop , operating frequency C1 C2

16 MHz 33 nF 10 nF

12 MHz 56 nF 15 nF

10 MHz 82 nF 22 nF

8 MHz 120 nF 33 nF

6 MHz 220 nF 56 nF

4 MHz 560 nF 120 nF

PCB

Capacitor

1.5 nH

0.75 nH 0.75 nH

fop 1
2Π LC1
-----------------------= 2 fop• 1

2Π LC2
-----------------------=

 ATtiny167
24. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*Vcc*f
where CL = load capacitance, Vcc = operating voltage and f = average switching frequency of
I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

24.1 Active Supply Current

Figure 24-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. LOW FREQUENCY
PRR=0xFF / ATD ON

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I CC
 (m

A)

6
5.5
5
4.5
4
3.6
3.3
3
2.7
2.4
2.1
2
1.8
1.6
 245
7728A–AUTO–07/08

Figure 24-2. Active Supply Current vs. Frequency (≥ 1 MHz)

Figure 24-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

 ACTIVE SUPPLY CURRENT vs. FREQUENCY
PRR=0xFF / ATD ON

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I CC
 (m

A)

6
5.5
5
4.5
4
3.6
3.3
3
2.7
2.4

 ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 8MHz (No ATD influence)

0

1

2

3

4

5

6

7

8

9

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC
 (m

A)

150
125
85
25
-40
 246
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 24-4. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

24.2 Idle Supply Current

Figure 24-5. Idle Supply Current vs. Frequency (≥ 1 MHz)

 ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 128 KHz / ATD ON

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (m

A)

150
125
85
25
-40

 IDLE SUPPLY CURRENT vs. FREQUENCY
NO POWER REDUCTION ENABLED

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I CC
 (m

A)

6
5.5
5
4.5
4
3.6
3.3
3
2.7
2.4
 247
7728A–AUTO–07/08

Figure 24-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 24-7. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

24.3 Supply Current of I/O modules
The table below can be used to calculate the additional current consumption for the different I/O
modules Idle mode. The enabling or disabling of the I/O modules are controlled by the Power
Reduction Register. See Section 5.9.3 ”PRR – Power Reduction Register” on page 46 for
details.

IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 8MHz

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC
 (m

A)

150
125
85
25
-40

 IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 125 KHz

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (m

A)

150
125
85
25
-40
 248
7728A–AUTO–07/08

ATtiny167

 ATtiny167
24.4 Power-down Supply Current

Figure 24-8. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Table 24-1. Additional Current Consumption for the different I/O modules (absolute values)

Module
Vcc = 5.0 V

Freq. = 16 MHz
Vcc = 5.0 V

Freq. = 8 MHz
Vcc = 3.0 V

Freq. = 8 MHz
Vcc = 3.0 V

Freq. = 4 MHz Units

LIN/UART 0.77 0.37 0.20 0.10 mA

SPI 0.31 0.14 0.08 0.04 mA

TIMER-1 0.28 0.13 0.08 0.04 mA

TIMER-0 0.41 0.20 0.10 0.05 mA

USI 0.14 0.05 0.04 0.02 mA

ADC 0.48 0.22 0.10 0.05 mA

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

5

10

15

20

25

30

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (u

A)

150
125
85
25
-40
 249
7728A–AUTO–07/08

Figure 24-9. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

24.5 Pin Pull-up

Figure 24-10. I/O Pin pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

0

5

10

15

20

25

30

35

40

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (u

A)

150
125
85
25
-40

 I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 2.7 V

-10

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (u

A)

150
125
85
25
-40
 250
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 24-11. I/O Pin pull-up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 24-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

 I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 5.0 V

-20

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P
 (u

A)

150
125
85
25
-40

 RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 2.7 V

-10

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (u

A)

150
125
85
25
-40
 251
7728A–AUTO–07/08

Figure 24-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

24.6 Pin Driver Strength

Figure 24-14. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 5.0 V

-20

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T
 (u

A)

150
125
85
25
-40

 I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
Vcc = 3.0 V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16 18

IOL (mA)

V
O

L (
V)

150
125
85
25
-40
 252
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 24-15. I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 24-16. I/O Pin Output Voltage vs. Source Current (VCC = 3V)

 I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
Vcc = 5.0V

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

IOL (mA)

V
O

L (
V)

150
125
85
25
-40

 I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
Vcc = 3.0 V

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

IOH (mA)

V
O

H
 (V

)

150
125
85
25
-40
 253
7728A–AUTO–07/08

Figure 24-17. I/O Pin Output Voltage vs. Source Current (VCC = 5V)

24.7 Internal Oscillator Speed

Figure 24-18. Calibrated 8.0 MHz RC Oscillator Frequency vs. Vcc

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
Vcc = 5.0 V

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

0 2 4 6 8 10 12 14 16 18 20

IOH (mA)

V
O

H
 (V

)

150
125
85
25
-40
 254
7728A–AUTO–07/08

ATtiny167

 ATtiny167
Figure 24-19. Calibrated 8.0 MHz RC Oscillator Frequency vs. OSCCAL Value

24.8 Current Consumption in Reset

Figure 24-20. Reset Supply Current vs. Vcc, Frequencies 0.1 - 1.0 MHz
(Excluding CurrentThrough the Reset Pull-up)

 RESET SUPPLY CURRENT vs. VCC
EXCLUDING CURRENT THROUGH THE RESET PULLUP

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (m

A)

6
5.5
5
4.5
4
3.6
3.3
3
2.7
2.4
2.1
2
1.8
1.6
 255
7728A–AUTO–07/08

Figure 24-21. Reset Supply Current vs. Vcc, Frequencies ≥ 1 MHz
(Excluding Current Through the Reset Pull-up)

 RESET SUPPLY CURRENT vs. VCC

EXCLUDING CURRENT THROUGH THE RESET PULLUP

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I CC
 (m

A)

6
5.5
5
4.5
4
3.6
3.3
3
2.7
2.4
2.1
2
1.8
1.6
 256
7728A–AUTO–07/08

ATtiny167

 ATtiny167
25. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved
(0xFE) Reserved
(0xFD) Reserved
(0xFC) Reserved
(0xFB) Reserved
(0xFA) Reserved
(0xF9) Reserved
(0xF8) Reserved
(0xF7) Reserved
(0xF6) Reserved
(0xF5) Reserved
(0xF4) Reserved
(0xF3) Reserved
(0xF2) Reserved
(0xF1) Reserved
(0xF0) Reserved
(0xEF) Reserved
(0xEE) Reserved
(0xED) Reserved
(0xEC) Reserved
(0xEB) Reserved
(0xEA) Reserved
(0xE9) Reserved
(0xE8) Reserved
(0xE7) Reserved
(0xE6) Reserved
(0xE5) Reserved
(0xE4) Reserved
(0xE3) Reserved
(0xE2) Reserved
(0xE1) Reserved
(0xE0) Reserved
(0xDF) Reserved
(0xDE) Reserved
(0xDD) Reserved
(0xDC) Reserved
(0xDB) Reserved
(0xDA) Reserved
(0xD9) Reserved
(0xD8) Reserved
(0xD7) Reserved
(0xD6) Reserved
(0xD5) Reserved
(0xD4) Reserved
(0xD3) Reserved
(0xD2) LINDAT LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0 page 179
(0xD1) LINSEL – – – – /LAINC LINDX2 LINDX1 LINDX0 page 179
(0xD0) LINIDR LP1 LP0 LID5 / LDL1 LID4 / LDL0 LID3 LID2 LID1 LID0 page 178
(0xCF) LINDLR LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 page 177
(0xCE) LINBRRH – – – – LDIV11 LDIV10 LDIV9 LDIV8 page 177
(0xCD) LINBRRL LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIV0 page 177
(0xCC) LINBTR LDISR – LBT5 LBT4 LBT3 LBT2 LBT1 LBT0 page 177
(0xCB) LINERR LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR page 176
(0xCA) LINENIR – – – – LENERR LENIDOK LENTXOK LENRXOK page 175
(0xC9) LINSIR LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK page 174
(0xC8) LINCR LSWRES LIN13 LCONF1 LCONF0 LENA LCMD2 LCMD1 LCMD0 page 173
(0xC7) Reserved
(0xC6) Reserved
(0xC5) Reserved
(0xC4) Reserved
(0xC3) Reserved
(0xC2) Reserved
(0xC1) Reserved
(0xC0) Reserved
(0xBF) Reserved
 257
7728A–AUTO–07/08

(0xBE) Reserved
(0xBD) Reserved
(0xBC) USIPP USIPOS page 154
(0xBB) USIBR USIB7 USIB6 USIB5 USIB4 USIB3 USIB2 USIB1 USIB0 page 150
(0xBA) USIDR USID7 USID6 USID5 USID4 USID3 USID2 USID1 USID0 page 149
(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 page 150
(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC page 151
(0xB7) Reserved
(0xB6) ASSR – EXCLK AS0 TCN0UB OCR0AUB – TCR0AUB TCR0BUB page 99
(0xB5) Reserved
(0xB4) Reserved
(0xB3) Reserved
(0xB2) Reserved
(0xB1) Reserved
(0xB0) Reserved
(0xAF) Reserved
(0xAE) Reserved
(0xAD) Reserved
(0xAC) Reserved
(0xAB) Reserved
(0xAA) Reserved
(0xA9) Reserved
(0xA8) Reserved
(0xA7) Reserved
(0xA6) Reserved
(0xA5) Reserved
(0xA4) Reserved
(0xA3) Reserved
(0xA2) Reserved
(0xA1) Reserved
(0xA0) Reserved
(0x9F) Reserved
(0x9E) Reserved
(0x9D) Reserved
(0x9C) Reserved
(0x9B) Reserved
(0x9A) Reserved
(0x99) Reserved
(0x98) Reserved
(0x97) Reserved
(0x96) Reserved
(0x95) Reserved
(0x94) Reserved
(0x93) Reserved
(0x92) Reserved
(0x91) Reserved
(0x90) Reserved
(0x8F) Reserved
(0x8E) Reserved
(0x8D) Reserved
(0x8C) Reserved
(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 130
 (0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 130
(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 130
(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 130
(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 130
(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 130
(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 130
(0x84) TCNT1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 130
(0x83) TCCR1D OC1BX OC1BW OC1BV OC1BU OC1AX OC1AW OC1AV OC1AU page 129
(0x82) TCCR1C FOC1A FOC1B – – – – – – page 129
(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 page 128
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 page 125
(0x7F) DIDR1 – – – – – ADC10D ADC9D ADC8D page 201
(0x7E) DIDR0 ADC7D/AIN1D ADC6D/AIN0D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D page 200, page 204
(0x7D) Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
 258
7728A–AUTO–07/08

ATtiny167

 ATtiny167
(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 195
(0x7B) ADCSRB BIN ACME ACIR1 ACIR0 – ADTS2 ADTS1 ADTS0 page 199, page 202
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 198
(0x79) ADCH - / ADC9 - / ADC8 - / ADC7 - / ADC6 - / ADC5 - / ADC4 ADC9 / ADC3 ADC8 / ADC2 page 199
(0x78) ADCL ADC7 / ADC1 ADC6 / ADC0 ADC5 / - ADC4 / - ADC3 / - ADC2 / - ADC1 / - ADC0 / page 199
(0x77) AMISCR – – – – – AREFEN XREFEN ISRCEN page 201, page 182
(0x76) Reserved
(0x75) Reserved
(0x74) Reserved
(0x73) Reserved
(0x72) Reserved
(0x71) Reserved
(0x70) Reserved
(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 page 131
(0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 page 100
(0x6D) Reserved
(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 page 62
(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 page 62
(0x6A) Reserved
(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 page 60
(0x68) PCICR – – – – – – PCIE1 PCIE0 page 61
(0x67) Reserved
(0x66) OSCCAL CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 page 36
(0x65) Reserved
(0x64) PRR – – PRLIN PRSPI PRTIM1 PRTIM0 PRUSI PRADC page 46
(0x63) CLKSELR – COUT CSUT1 CSUT0 CSEL3 CSEL2 CSEL1 CSEL0 page 39
(0x62) CLKCSR CLKCCE – – CLKRDY CLKC3 CLKC2 CLKC1 CLKC0 page 38
(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 38
(0x60) WDTCR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 55

0x3F (0x5F) SREG I T H S V N Z C page 8
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 10
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 10
0x3C (0x5C) Reserved
0x3B (0x5B) Reserved
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR – RWWSB SIGRD CTPB RFLB PGWRT PGERS SPMEN page 210
0x36 (0x56) Reserved – – – – – – – –
0x35 (0x55) MCUCR – BODS BODSE PUD – – – – page 45, page 72
0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF page 50
0x33 (0x53) SMCR – – – – – SM1 SM0 SE page 45
0x32 (0x52) Reserved
0x31 (0x51) DWDR DWDR7 DWDR6 DWDR5 DWDR4 DWDR3 DWDR2 DWDR1 DWDR0 page 207
0x30 (0x50) ACSR ACD ACIRS ACO ACI ACIE ACIC ACIS1 ACIS0 page 203
0x2F (0x4F) Reserved
0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 page 140
0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X page 139
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 138
0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 22
0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 22
0x29 (0x49) Reserved
0x28 (0x48) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 page 99
0x27 (0x47) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 page 99
0x26 (0x46) TCCR0B FOC0A – – – – CS02 CS01 CS00 page 98
0x25 (0x45) TCCR0A COM0A1 COM0A0 – – – – WGM01 WGM00 page 96
0x24 (0x44) Reserved
0x23 (0x43) GTCCR TSM – – – – – PSR0 PSR1 page 101, page 103
0x22 (0x42) EEARH(1) – – – – – – – EEAR8 page 20
0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 20
0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 page 21
0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE page 21
0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 page 22
0x1D (0x3D) EIMSK – – – – – – INT1 INT0 page 60
0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 page 61
0x1B (0x3B) PCIFR – – – – – – PCIF1 PCIF0 page 62

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
 259
7728A–AUTO–07/08

Notes: 1. Address bits exceeding EEAMSB (Table 21-8 on page 219) are don’t care.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.
3. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these

registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
4. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI

instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

5. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATtiny167 is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and
OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

0x1A (0x3A) Reserved
0x19 (0x39) Reserved
0x18 (0x38) Reserved
0x17 (0x37) Reserved
0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 page 131
0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 page 101
0x14 (0x34) Reserved
0x13 (0x33) Reserved
0x12 (0x32) PORTCR – – BBMB BBMA – – PUDB PUDA page 72
0x11 (0x31) Reserved
0x10 (0x30) Reserved
0x0F (0x2F) Reserved
0x0E (0x2E) Reserved
0x0D (0x2D) Reserved
0x0C (0x2C) Reserved
0x0B (0x2B) Reserved
0x0A (0x2A) Reserved
0x09 (0x29) Reserved
0x08 (0x28) Reserved
0x07 (0x27) Reserved
0x06 (0x26) Reserved
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 82
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 82
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 82
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 82
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 82
0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 82

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
 260
7728A–AUTO–07/08

ATtiny167

 ATtiny167
26. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clock

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1

BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
 261
7728A–AUTO–07/08

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clock
 262
7728A–AUTO–07/08

ATtiny167

 ATtiny167
27. Ordering Information

Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
tion and minimum quantities.L

2. Green and ROHS packaging.
3. Tape and Reel with Dry-pack delivery.
4. See ”Speed Grades” on page 235.
5. For information only

28. Packaging Information

Ordering Code (1) Speed (MHz) (4) Power Supply (V) Package (2)(3) Operation Range

E
ng

in
ee

rin
g

S
am

pl
e

ATtiny167-ESSZ

16 2.7 - 5.5

TG

-40° to +125°CATtiny167-ESMZ PN

ATtiny167-ESXZ 6G

ATtiny167-15SZ (5)

16 2.7 - 5.5

TG

-40° to +125°CATtiny167-15MZ (5) PN

ATtiny167-15XZ (5) 6G

Package Type

TG 20-pin, 0.300” Wide, Platic Gull-Wing Small Outline (EIAJ SOIC)

PN 32-pad, Quad Flat No Lead (QFN)

6G 20-pin, 4.5 mm Wide, Thin Shrink Small Outline Package (TSSOP)
 263
7728A–AUTO–07/08

28.1 SOIC20
 264
7728A–AUTO–07/08

ATtiny167

 ATtiny167
28.2 QFN32
 265
7728A–AUTO–07/08

28.3 TSSOP20
 266
7728A–AUTO–07/08

ATtiny167

 ATtiny167
29. Errata

29.1 Errata Summary

29.1.1 ATtiny167 RevA (Date code >1207)
• CRC calculation of diagnostic frames in LIN 2.x.
• Gain control of the crystal oscillator.
• ‘Disable Clock Source’ command remains enabled.
• Comparison between ADC inputs and voltage references.

29.2 Errata Description

1. CRC calculation of diagnostic frames in LIN 2.x.
Diagnostic frames of LIN 2.x use “classic checksum” calculation. Unfortunately, the setting
of the checksum model is enabled when the HEADER is transmitted/received. Usually, in
LIN 2.x the LIN/UART controller is initialized to process “enhanced checksums” and a slave
task does not know what kind of frame it will work on before checking the ID.

Problem fix / workaround.
This workaround is to be implemented only in case of transmission/reception of diagnostic
frames.
a. Slave task of master node:

Before enabling the HEADER, the master must set the appropriate LIN13 bit value in
LINCR register.

b. For slaves nodes, the workaround is in 2 parts:
– Before enabling the RESPONSE, use the following function:

void lin_wa_head(void) {

unsigned char temp;

temp = LINBTR;

LINCR = 0x00; // It is not a RESET !

LINBTR = (1<<LDISR)|temp;

LINCR = (1<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);

LINDLR = 0x88; // If it isn't already done

}

– Once the RESPONSE is received or sent (having RxOK or TxOK as well as
LERR), use the following function:
void lin_wa_tail(void) {

LINCR = 0x00; // It is not a RESET !

LINBTR = 0x00;

LINCR = (0<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);

}

The time-out counter is disabled during the RESPONSE when this workaround is set.

2. Gain control of the crystal oscillator.
The crystal oscillator (0.4 -> 16 MHz) doesn’t latch its gain control (CKSEL/CSEL[2..0] bits):
a. The ‘Recover System Clock Source’ command doesn’t returns CSEL[2..0] bits.
b. The gain control can be modified on the fly if CLKSELR changes.
 267
7728A–AUTO–07/08

Problem fix / workaround .
a. No workaround.
b. As soon as possible, after any CLKSELR modification, re-write the appropriate crystal

oscillator setting (CSEL[3]=1 and CSEL[2..0] / CSUT[1..0] bits) in CLKSELR.

Code example:
; Select crystal oscillator (16MHz crystal, fast rising power)

ldi temp1,((0x0F<<CSEL0)|(0x02<<CSUT0))

sts CLKSELR, temp1

; Enable clock source (crystal oscillator)

ldi temp2,(1<<CLKCCE)

ldi temp3,(0x02<<CLKC0) ; CSEL = "0010"

sts CLKCSR,temp2 ; Enable CLKCSR register access

sts CLKCSR,temp3 ; Enable crystal oscillator clock

; Clock source switch

ldi temp3,(0x04<<CLKC0) ; CSEL = "0100"

sts CLKCSR,temp2 ; Enable CLKCSR register access

sts CLKCSR,temp3 ; Clock source switch

; Select watchdog clock (128KHz, fast rising power)

ldi temp3,((0x03<<CSEL0)|(0x02<<CSUT0))

sts CLKSELR, temp3 ; (*)

; (*) !!! Loose gain control of crystal oscillator !!!

; ==> WORKAROUND ...

sts CLKSELR, temp1

; ...

3. ‘Disable Clock Source’ command remains enabled.
In the Dynamic Clock Switch module, the ‘Disable Clock Source’ command remains running
after disabling the targeted clock source (the clock source is set in the CLKSELR register).

Problem fix / workaround.
After a ‘Disable Clock Source’ command, reset the CLKCSR register writing 0x80.

Code example:
; Select crystal oscillator

ldi temp1,(0x0F<<CSEL0)

sts CLKSELR, temp1

; Disable clock source (crystal oscillator)

ldi temp2,(1<<CLKCCE)

ldi temp3,(0x01<<CLKC0) ; CSEL = "0001"

sts CLKCSR,temp2 ; Enable CLKCSR register access

sts CLKCSR,temp3 ; (*) Disable crystal oscillator clock

; (*) !!! At this moment, if any other clock source is selected by CLKSELR,
; this clock source will also stop !!!

; ==> WORKAROUND ...

sts CLKCSR,temp2
 268
7728A–AUTO–07/08

ATtiny167

 ATtiny167
4. Comparison between ADC inputs and voltage references.
In the Analog Comparator module, comparing any ADC input (ADC[10..0]) with voltage ref-
erences (2.56V, 1.28V, 1.10V, 0.64V or 0.32V) fails.
Regardless, AIN1 input can be compared with the voltage references and any ADC input
can be compared with AIN0 input.

Problem fix / workaround.
Do not use this configuration.
 269
7728A–AUTO–07/08

 270
7728A–AUTO–07/08

ATtiny167

30. Datasheet Revision History for ATtiny167
Please note that the referring page numbers in this section are referring to this document.
The referring revision in this section are referring to the document revision.

30.1 Document Creation
1. Revision: 7728A - 07/08

 ATtiny167
Features ... 1

1 Description ... 2
1.1 Part Description ..2

1.2 Automotive Quality Grade ..2

1.3 Disclaimer ..3

1.4 Block Diagram ..3

1.5 Pin Configuration ..4

1.6 Pin Description ...4

1.7 Resources ..5

1.8 About Code Examples ...5

2 AVR CPU Core .. 6
2.1 Overview ..6

2.2 ALU – Arithmetic Logic Unit ...7

2.3 Status Register ...7

2.4 General Purpose Register File ...9

2.5 Stack Pointer ..10

2.6 Instruction Execution Timing ..11

2.7 Reset and Interrupt Handling ...11

3 AVR Memories .. 14
3.1 In-System Re-programmable Flash Program Memory14

3.2 SRAM Data Memory ..15

3.3 EEPROM Data Memory ...16

3.4 I/O Memory ..20

3.5 Register Description ...20

4 System Clock and Clock Options ... 23
4.1 Clock Systems and their Distribution ...23

4.2 Clock Sources ..24

4.3 Dynamic Clock Switch ..30

4.4 System Clock Prescaler ...36

4.5 Register Description ...36

5 Power Management and Sleep Modes ... 41
5.1 Sleep Modes ..41

5.2 BOD Disable ..41

5.3 Idle Mode ...42
 i
7728A–AUTO–07/08

5.4 ADC Noise Reduction Mode ..42

5.5 Power-down Mode ...42

5.6 Power-save Mode ..43

5.7 Power Reduction Register ...43

5.8 Minimizing Power Consumption ...43

5.9 Register Description ...45

6 System Control and Reset .. 47
6.1 Reset ..47

6.2 Internal Voltage Reference ..51

6.3 Watchdog Timer ...51

7 Interrupts .. 57
7.1 Interrupt Vectors in ATtiny167 ..57

7.2 Program Setup in ATtiny167 ..57

8 External Interrupts ... 59
8.1 Overview ..59

8.2 Pin Change Interrupt Timing ..59

8.3 External Interrupts Register Description ..60

9 I/O-Ports .. 64
9.1 Introduction ..64

9.2 Ports as General Digital I/O ...65

9.3 Alternate Port Functions ...70

9.4 Register Description for I/O Ports ..82

10 8-bit Timer/Counter0 and Asynchronous Operation 83
10.1 Features ...83

10.2 Overview ..83

10.3 Timer/Counter Clock Sources ..85

10.4 Counter Unit ...85

10.5 Output Compare Unit ...86

10.6 Compare Match Output Unit ..87

10.7 Modes of Operation ..88

10.8 Timer/Counter Timing Diagrams ..92

10.9 Asynchronous Operation of Timer/Counter0 ..94

10.10 Timer/Counter0 Prescaler ..96

10.11 8-bit Timer/Counter Register Description ...96
 ii
7728A–AUTO–07/08

ATtiny167

 ATtiny167
11 Timer/Counter1 Prescaler ... 102
11.1 Overview ..102

11.2 Timer/Counter1 Prescalers Register Description ...103

12 16-bit Timer/Counter1 .. 104
12.1 Features ...104

12.2 Overview ..104

12.3 Accessing 16-bit Registers ...106

12.4 Timer/Counter Clock Sources ..109

12.5 Counter Unit ...110

12.6 Input Capture Unit ..111

12.7 Output Compare Units ...113

12.8 Compare Match Output Unit ..114

12.9 Modes of Operation ..116

12.10 Timer/Counter Timing Diagrams ..124

12.11 16-bit Timer/Counter Register Description ...125

13 SPI - Serial Peripheral Interface .. 133
13.1 Features ...133

13.2 SS Pin Functionality ...137

13.3 Data Modes ..140

14 USI – Universal Serial Interface .. 142
14.1 Features ...142

14.2 Overview ..142

14.3 Functional Descriptions ..143

14.4 Alternative USI Usage ..149

14.5 Register Descriptions ...149

15 LIN / UART - Local Interconnect Network Controller or UART 155
15.1 LIN Features ..155

15.2 UART Features ..155

15.3 LIN Protocol ...156

15.4 LIN / UART Controller ..157

15.5 LIN / UART Description ..163

15.6 LIN / UART Register Description ..173

16 ISRC - Current Source ... 180
16.1 Features ...180
 iii
7728A–AUTO–07/08

16.2 Typical applications ..180

16.3 Control Register ...182

17 ADC – Analog to Digital Converter ... 183
17.1 Features ...183

17.2 Overview ..183

17.3 Operation ...184

17.4 Starting a Conversion ...185

17.5 Prescaling and Conversion Timing ..186

17.6 Changing Channel or Reference Selection ..188

17.7 ADC Noise Canceler ..189

17.8 ADC Conversion Result ...192

17.9 Temperature Measurement ..193

17.10 Internal Voltage Reference Output ...194

17.11 Register Description ...195

18 AnaComp - Analog Comparator ... 202
18.1 Register Description ...202

18.2 Analog Comparator Inputs ...204

19 DebugWIRE On-chip Debug System .. 206
19.1 Features ...206

19.2 Overview ..206

19.3 Physical Interface ...206

19.4 Software Break Points ..207

19.5 Limitations of DebugWIRE ...207

19.6 DebugWIRE Related Register in I/O Memory ..207

20 Flash Programming ... 208
20.1 Self-Programming the Flash ..208

20.2 Addressing the Flash During Self-Programming ..209

21 Memory Programming ... 216
21.1 Program and Data Memory Lock Bits ..216

21.2 Fuse Bits ..216

21.3 Signature Bytes ..218

21.4 Calibration Byte ..218

21.5 Page Size ...219

21.6 Parallel Programming Parameters, Pin Mapping, and Commands219
 iv
7728A–AUTO–07/08

ATtiny167

 ATtiny167
21.7 Parallel Programming ...221

21.8 Serial Downloading ..228

21.9 Serial Programming Characteristics ...232

22 Electrical Characteristics .. 233
22.1 Absolute Maximum Ratings* ...233

22.2 DC Characteristics ...233

22.3 Speed Grades ..235

22.4 Clock Characteristics ...235

22.5 RESET Characteristics ..236

22.6 Internal Voltage Characteristics ...237

22.7 Current Source Characteristics ..238

22.8 ADC Characteristics ...238

22.9 Parallel Programming Characteristics ..240

22.10 SPI Timing Characteristics ...242

23 Decoupling Capacitors .. 244

24 Typical Characteristics .. 245
24.1 Active Supply Current ..245

24.2 Idle Supply Current ..247

24.3 Supply Current of I/O modules ...248

24.4 Power-down Supply Current ..249

24.5 Pin Pull-up ..250

24.6 Pin Driver Strength ...252

24.7 Internal Oscillator Speed ..254

24.8 Current Consumption in Reset ...255

25 Register Summary ... 257

26 Instruction Set Summary ... 261

27 Ordering Information ... 263

28 Packaging Information .. 263
28.1 SOIC20 ..264

28.2 QFN32 ..265

28.3 TSSOP20 ...266

29 Errata ... 267
29.1 Errata Summary ...267
 v
7728A–AUTO–07/08

29.2 Errata Description ..267

30 Datasheet Revision History for ATtiny167 .. 270
30.1 Document Creation ..270
 vi
7728A–AUTO–07/08

ATtiny167

7728A–AUTO–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1. Description
	1.1 Part Description
	1.2 Automotive Quality Grade
	1.3 Disclaimer
	1.4 Block Diagram
	1.5 Pin Configuration
	1.6 Pin Description
	1.6.1 Vcc
	1.6.2 GND
	1.6.3 AVcc
	1.6.4 AGND
	1.6.5 Port A (PA7..PA0)
	1.6.6 Port B (PB7..PB0)

	1.7 Resources
	1.8 About Code Examples

	2. AVR CPU Core
	2.1 Overview
	2.2 ALU - Arithmetic Logic Unit
	2.3 Status Register
	2.3.1 SREG - AVR Status Register

	2.4 General Purpose Register File
	2.4.1 The X-register, Y-register, and Z-register

	2.5 Stack Pointer
	2.5.1 SPH and SPL - Stack Pointer Register

	2.6 Instruction Execution Timing
	2.7 Reset and Interrupt Handling
	2.7.1 Interrupt behavior
	2.7.2 Interrupt Response Time

	3. AVR Memories
	3.1 In-System Re-programmable Flash Program Memory
	3.2 SRAM Data Memory
	3.2.1 Data Memory Access Times

	3.3 EEPROM Data Memory
	3.3.1 EEPROM Read/Write Access
	3.3.2 Atomic Byte Programming
	3.3.3 Split Byte Programming
	3.3.4 Erase
	3.3.5 Write
	3.3.6 Preventing EEPROM Corruption

	3.4 I/O Memory
	3.4.1 General Purpose I/O Registers

	3.5 Register Description
	3.5.1 EEARH and EEARL - EEPROM Address Register
	3.5.2 EEDR - EEPROM Data Register
	3.5.3 EECR - EEPROM Control Register
	3.5.4 General Purpose I/O Register 2 - GPIOR2
	3.5.5 General Purpose I/O Register 1 - GPIOR1
	3.5.6 General Purpose I/O Register 0 - GPIOR0

	4. System Clock and Clock Options
	4.1 Clock Systems and their Distribution
	4.1.1 CPU Clock - clkCPU
	4.1.2 I/O Clock - clkI/O
	4.1.3 Flash Clock - clkFLASH
	4.1.4 Asynchronous Timer Clock - clkASY
	4.1.5 ADC Clock - clkADC

	4.2 Clock Sources
	4.2.1 Default Clock Source
	4.2.2 Calibrated Internal RC Oscillator
	4.2.3 128 KHz Internal Oscillator
	4.2.4 Crystal Oscillator
	4.2.5 Low-frequency Crystal Oscillator
	4.2.6 External Clock
	4.2.7 Clock Output Buffer

	4.3 Dynamic Clock Switch
	4.3.1 Features
	4.3.2 CLKSELR Register
	4.3.2.1 Fuses Substitution
	4.3.2.2 Source Selection
	4.3.2.3 Source Recovering

	4.3.3 Enable/Disable Clock Source
	4.3.4 COUT Command
	4.3.5 Clock Availability
	4.3.6 System Clock Source Recovering
	4.3.7 Clock Switching
	1. Calibrated internal RC oscillator 8.0 MHz,
	2. Internal watchdog oscillator 128 kHz,
	3. External clock,
	4. External low-frequency oscillator,
	5. External Crystal/Ceramic Resonator.

	4.3.8 Clock Monitoring

	4.4 System Clock Prescaler
	4.4.1 Features
	4.4.2 Switching Time

	4.5 Register Description
	4.5.1 OSCCAL - Oscillator Calibration Register
	4.5.2 CLKPR - Clock Prescaler Register
	4.5.3 CLKCSR - Clock Control & Status Register
	4.5.4 CLKSELR - Clock Selection Register

	5. Power Management and Sleep Modes
	5.1 Sleep Modes
	5.2 BOD Disable
	5.3 Idle Mode
	5.4 ADC Noise Reduction Mode
	5.5 Power-down Mode
	5.6 Power-save Mode
	5.7 Power Reduction Register
	5.8 Minimizing Power Consumption
	5.8.1 Analog to Digital Converter
	5.8.2 Analog Comparator
	5.8.3 Brown-out Detector
	5.8.4 Internal Voltage Reference
	5.8.5 Internal Current Source
	5.8.6 Watchdog Timer
	5.8.7 Port Pins
	5.8.8 On-chip Debug System

	5.9 Register Description
	5.9.1 SMCR - Sleep Mode Control Register
	5.9.2 MCUCR - MCU Control Register
	5.9.3 PRR - Power Reduction Register

	6. System Control and Reset
	6.1 Reset
	6.1.1 Resetting the AVR
	6.1.2 Reset Sources
	6.1.3 Power-on Reset
	6.1.4 External Reset
	6.1.5 Brown-out Detection
	6.1.6 Watchdog System Reset
	6.1.7 MCU Status Register - MCUSR

	6.2 Internal Voltage Reference
	6.2.1 Voltage Reference Enable Signals and Start-up Time

	6.3 Watchdog Timer
	6.3.1 Watchdog Timer Behavior
	6.3.2 Clock monitoring
	6.3.3 Watchdog Timer Control Register - WDTCR

	7. Interrupts
	7.1 Interrupt Vectors in ATtiny167
	7.2 Program Setup in ATtiny167

	8. External Interrupts
	8.1 Overview
	8.2 Pin Change Interrupt Timing
	8.3 External Interrupts Register Description
	8.3.1 External Interrupt Control Register A - EICRA
	8.3.2 External Interrupt Mask Register - EIMSK
	8.3.3 External Interrupt Flag Register - EIFR
	8.3.4 Pin Change Interrupt Control Register - PCICR
	8.3.5 Pin Change Interrupt Flag Register - PCIFR
	8.3.6 Pin Change Mask Register 1 - PCMSK1
	8.3.7 Pin Change Mask Register 0 - PCMSK0

	9. I/O-Ports
	9.1 Introduction
	9.2 Ports as General Digital I/O
	9.2.1 Configuring the Pin
	9.2.2 Toggling the Pin
	9.2.3 Break-Before-Make Switching
	9.2.4 Switching Between Input and Output
	9.2.5 Reading the Pin Value
	9.2.6 Digital Input Enable and Sleep Modes
	9.2.7 Unconnected Pins

	9.3 Alternate Port Functions
	9.3.1 MCU Control Register - MCUCR
	9.3.2 Port Control Register - PORTCR
	9.3.3 Alternate Functions of Port A
	9.3.4 Alternate Functions of Port B

	9.4 Register Description for I/O Ports
	9.4.1 Port A Data Register - PORTA
	9.4.2 Port A Data Direction Register - DDRA
	9.4.3 Port A Input Pins Register - PINA
	9.4.4 Port B Data Register - PORTB
	9.4.5 Port B Data Direction Register - DDRB
	9.4.6 Port B Input Pins Register - PINB

	10. 8-bit Timer/Counter0 and Asynchronous Operation
	10.1 Features
	10.2 Overview
	10.2.1 Definitions

	10.3 Timer/Counter Clock Sources
	10.4 Counter Unit
	10.5 Output Compare Unit
	10.5.1 Force Output Compare
	10.5.2 Compare Match Blocking by TCNT0 Write
	10.5.3 Using the Output Compare Unit

	10.6 Compare Match Output Unit
	10.6.1 Compare Output Function
	10.6.2 Compare Output Mode and Waveform Generation

	10.7 Modes of Operation
	10.7.1 Normal Mode
	10.7.2 Clear Timer on Compare Match (CTC) Mode
	10.7.3 Fast PWM Mode
	10.7.4 Phase Correct PWM Mode

	10.8 Timer/Counter Timing Diagrams
	10.9 Asynchronous Operation of Timer/Counter0
	10.10 Timer/Counter0 Prescaler
	10.11 8-bit Timer/Counter Register Description
	10.11.1 Timer/Counter0 Control Register A - TCCR0A
	10.11.2 Timer/Counter0 Control Register B - TCCR0B
	10.11.3 Timer/Counter0 Register - TCNT0
	10.11.4 Output Compare Register A - OCR0A
	10.11.5 Asynchronous Status Register - ASSR
	10.11.6 Timer/Counter0 Interrupt Mask Register - TIMSK0
	10.11.7 Timer/Counter0 Interrupt Flag Register - TIFR0
	10.11.8 General Timer/Counter Control Register - GTCCR

	11. Timer/Counter1 Prescaler
	11.1 Overview
	11.1.1 Internal Clock Source
	11.1.2 Prescaler Reset
	11.1.3 External Clock Source

	11.2 Timer/Counter1 Prescalers Register Description
	11.2.1 General Timer/Counter Control Register - GTCCR

	12. 16-bit Timer/Counter1
	12.1 Features
	12.2 Overview
	12.2.1 Registers
	12.2.2 Definitions

	12.3 Accessing 16-bit Registers
	12.3.1 Code Examples
	12.3.2 Reusing the Temporary High Byte Register

	12.4 Timer/Counter Clock Sources
	12.5 Counter Unit
	12.6 Input Capture Unit
	12.6.1 Input Capture Trigger Source
	12.6.2 Noise Canceler
	12.6.3 Using the Input Capture Unit

	12.7 Output Compare Units
	12.7.1 Force Output Compare
	12.7.2 Compare Match Blocking by TCNT1 Write
	12.7.3 Using the Output Compare Unit

	12.8 Compare Match Output Unit
	12.8.1 Compare Output Function
	12.8.2 Compare Output Mode and Waveform Generation

	12.9 Modes of Operation
	12.9.1 Normal Mode
	12.9.2 Clear Timer on Compare Match (CTC) Mode
	12.9.3 Fast PWM Mode
	12.9.4 Phase Correct PWM Mode
	12.9.5 Phase and Frequency Correct PWM Mode

	12.10 Timer/Counter Timing Diagrams
	12.11 16-bit Timer/Counter Register Description
	12.11.1 Timer/Counter1 Control Register A - TCCR1A
	12.11.2 Timer/Counter1 Control Register B - TCCR1B
	12.11.3 Timer/Counter1 Control Register C - TCCR1C
	12.11.4 Timer/Counter1 Control Register D - TCCR1D
	12.11.5 Timer/Counter1 - TCNT1H and TCNT1L
	12.11.6 Output Compare Register A - OCR1AH and OCR1AL
	12.11.7 Output Compare Register B - OCR1BH and OCR1BL
	12.11.8 Input Capture Register - ICR1H and ICR1L
	12.11.9 Timer/Counter1 Interrupt Mask Register - TIMSK1
	12.11.10 Timer/Counter1 Interrupt Flag Register - TIFR1

	13. SPI - Serial Peripheral Interface
	13.1 Features
	13.2 SS Pin Functionality
	13.2.1 Slave Mode
	13.2.2 Master Mode
	13.2.3 SPI Control Register - SPCR
	13.2.4 SPI Status Register - SPSR
	13.2.5 SPI Data Register - SPDR

	13.3 Data Modes

	14. USI - Universal Serial Interface
	14.1 Features
	14.2 Overview
	14.3 Functional Descriptions
	14.3.1 Three-wire Mode
	14.3.2 SPI Master Operation Example
	14.3.3 SPI Slave Operation Example
	14.3.4 Two-wire Mode
	14.3.5 Start Condition Detector

	14.4 Alternative USI Usage
	14.4.1 Half-duplex Asynchronous Data Transfer
	14.4.2 4-bit Counter
	14.4.3 12-bit Timer/Counter
	14.4.4 Edge Triggered External Interrupt
	14.4.5 Software Interrupt

	14.5 Register Descriptions
	14.5.1 USIDR - USI Data Register
	14.5.2 USIBR - USI Buffer Register
	14.5.3 USISR - USI Status Register
	14.5.4 USICR - USI Control Register
	14.5.5 USIPP - USI Pin Position

	15. LIN / UART - Local Interconnect Network Controller or UART
	15.1 LIN Features
	15.2 UART Features
	15.3 LIN Protocol
	15.3.1 Master and Slave
	15.3.2 Frames
	15.3.3 Data Transport
	15.3.4 Schedule Table
	15.3.5 Compatibility with LIN 1.3

	15.4 LIN / UART Controller
	15.4.1 LIN Overview
	15.4.2 UART Overview
	15.4.3 LIN/UART Controller Structure
	15.4.4 LIN/UART Command Overview
	15.4.5 Enable / Disable
	15.4.6 LIN Commands
	15.4.6.1 Rx Header / LIN Abort Function
	15.4.6.2 Tx Header Function
	15.4.6.3 Rx & TX Response Functions
	15.4.6.4 Handling Data of LIN response

	15.4.7 UART Commands
	15.4.7.1 Data Handling
	15.4.7.2 Rx Service
	15.4.7.3 Tx Service

	15.5 LIN / UART Description
	15.5.1 Reset
	15.5.2 Clock
	15.5.3 LIN Protocol Selection
	15.5.4 Configuration
	15.5.5 Busy Signal
	15.5.5.1 Busy Signal in LIN Mode
	15.5.5.2 Busy Signal in UART Mode

	15.5.6 Bit Timing
	15.5.6.1 Baud rate Generator
	15.5.6.2 Re-synchronization in LIN Mode
	15.5.6.3 Handling LBT[5..0]

	15.5.7 Data Length
	15.5.7.1 Data Length in LIN 2.1
	15.5.7.2 Data Length in LIN 1.3
	15.5.7.3 Data Length in Rx Response
	15.5.7.4 Data Length in Tx Response
	15.5.7.5 Data Length after Error
	15.5.7.6 Data Length in UART Mode

	15.5.8 xxOK Flags
	15.5.9 xxERR Flags
	15.5.10 Frame Time Out
	15.5.11 Break-in-data
	15.5.12 Checksum
	15.5.13 Interrupts
	15.5.14 Message Filtering
	15.5.15 Data Management
	15.5.15.1 LIN FIFO Data Buffer
	15.5.15.2 UART Data Register

	15.5.16 OCD Support

	15.6 LIN / UART Register Description
	15.6.1 LIN Control Register - LINCR
	15.6.2 LIN Status and Interrupt Register - LINSIR
	15.6.3 LIN Enable Interrupt Register - LINENIR
	15.6.4 LIN Error Register - LINERR
	15.6.5 LIN Bit Timing Register - LINBTR
	15.6.6 LIN Baud Rate Register - LINBRR
	15.6.7 LIN Data Length Register - LINDLR
	15.6.8 LIN Identifier Register - LINIDR
	15.6.9 LIN Data Buffer Selection Register - LINSEL
	15.6.10 LIN Data Register - LINDAT

	16. ISRC - Current Source
	16.1 Features
	16.2 Typical applications
	16.2.1 LIN Current Source
	16.2.2 Current Source for Low Cost Transducer
	16.2.3 Voltage Reference for External Devices
	16.2.4 Threshold Reference for Internal Analog Comparator

	16.3 Control Register
	16.3.1 AMISCR - Analog Miscellaneous Control Register

	17. ADC - Analog to Digital Converter
	17.1 Features
	17.2 Overview
	17.3 Operation
	17.4 Starting a Conversion
	17.5 Prescaling and Conversion Timing
	17.6 Changing Channel or Reference Selection
	17.6.1 ADC Input Channels
	17.6.2 ADC Voltage Reference

	17.7 ADC Noise Canceler
	17.7.1 Analog Input Circuitry
	17.7.2 Analog Noise Canceling Techniques
	17.7.3 ADC Accuracy Definitions

	17.8 ADC Conversion Result
	17.8.1 Single Ended Conversion
	17.8.2 Unipolar Differential Conversion
	17.8.3 Bipolar Differential Conversion

	17.9 Temperature Measurement
	17.9.1 User Calibration
	17.9.2 Manufacturing Calibration

	17.10 Internal Voltage Reference Output
	17.11 Register Description
	17.11.1 ADMUX - ADC Multiplexer Selection Register
	17.11.2 ADCSRA - ADC Control and Status Register A
	17.11.3 ADCL and ADCH - The ADC Data Register
	17.11.3.1 ADLAR = 0
	17.11.3.2 ADLAR = 1

	17.11.4 ADCSRB - ADC Control and Status Register B
	17.11.5 DIDR0 - Digital Input Disable Register 0
	17.11.6 DIDR1 - Digital Input Disable Register 1
	17.11.7 AMISCR - Analog Miscellaneous Control Register

	18. AnaComp - Analog Comparator
	18.1 Register Description
	18.1.1 ADC Control and Status Register B - ADCSRB
	18.1.2 ACSR - Analog Comparator Control and Status Register
	18.1.3 DIDR0 - Digital Input Disable Register 0

	18.2 Analog Comparator Inputs
	18.2.1 Analog Compare Positive Input
	18.2.2 Analog Compare Negative Input

	19. DebugWIRE On-chip Debug System
	19.1 Features
	19.2 Overview
	19.3 Physical Interface
	19.4 Software Break Points
	19.5 Limitations of DebugWIRE
	19.6 DebugWIRE Related Register in I/O Memory
	19.6.1 DebugWIRE Data Register - DWDR

	20. Flash Programming
	20.1 Self-Programming the Flash
	20.1.1 Performing Page Erase by SPM
	20.1.2 Filling the Temporary Buffer (Page Loading)
	20.1.3 Performing a Page Write

	20.2 Addressing the Flash During Self-Programming
	20.2.1 Store Program Memory Control and Status Register - SPMCSR
	20.2.2 EEPROM Write Prevents Writing to SPMCSR
	20.2.3 Reading the Fuse and Lock Bits from Software
	20.2.4 Reading the Signature Row from Software
	20.2.5 Preventing Flash Corruption
	20.2.6 Programming Time for Flash when Using SPM
	20.2.7 Simple Assembly Code Example for a Boot Loader

	21. Memory Programming
	21.1 Program and Data Memory Lock Bits
	21.2 Fuse Bits
	21.2.1 Latching of Fuses

	21.3 Signature Bytes
	21.4 Calibration Byte
	21.5 Page Size
	21.6 Parallel Programming Parameters, Pin Mapping, and Commands
	21.6.1 Signal Names

	21.7 Parallel Programming
	21.7.1 Enter Programming Mode
	21.7.2 Considerations for Efficient Programming
	21.7.3 Chip Erase
	21.7.4 Programming the Flash
	21.7.5 Programming the EEPROM
	21.7.6 Reading the Flash
	21.7.7 Reading the EEPROM
	21.7.8 Programming the Fuse Low Bits
	21.7.9 Programming the Fuse High Bits
	21.7.10 Programming the Extended Fuse Bits
	21.7.11 Programming the Lock Bits
	21.7.12 Reading the Fuse and Lock Bits
	21.7.13 Reading the Signature Bytes
	21.7.14 Reading the 8 MHz RC Oscillator Calibration Byte
	21.7.15 Reading the Temperature Sensor Parameter Bytes

	21.8 Serial Downloading
	21.8.1 Serial Programming Algorithm
	21.8.2 Serial Programming Instruction set

	21.9 Serial Programming Characteristics

	22. Electrical Characteristics
	22.1 Absolute Maximum Ratings*
	22.2 DC Characteristics
	22.3 Speed Grades
	22.4 Clock Characteristics
	22.4.1 Calibrated Internal RC Oscillator Accuracy
	22.4.2 External Clock Drive Waveforms
	22.4.3 External Clock Drive

	22.5 RESET Characteristics
	22.6 Internal Voltage Characteristics
	22.7 Current Source Characteristics
	22.8 ADC Characteristics
	22.9 Parallel Programming Characteristics
	22.10 SPI Timing Characteristics

	23. Decoupling Capacitors
	24. Typical Characteristics
	24.1 Active Supply Current
	24.2 Idle Supply Current
	24.3 Supply Current of I/O modules
	24.4 Power-down Supply Current
	24.5 Pin Pull-up
	24.6 Pin Driver Strength
	24.7 Internal Oscillator Speed
	24.8 Current Consumption in Reset

	25. Register Summary
	26. Instruction Set Summary
	27. Ordering Information
	28. Packaging Information
	28.1 SOIC20
	28.2 QFN32
	28.3 TSSOP20

	29. Errata
	29.1 Errata Summary
	29.1.1 ATtiny167 RevA (Date code >1207)

	29.2 Errata Description

	30. Datasheet Revision History for ATtiny167
	30.1 Document Creation

