

Typical Applications

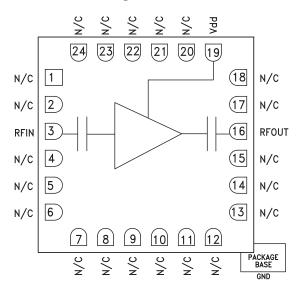
The HMC383LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- LO Driver for HMC Mixers
- Military & Space

Features

Gain: 15 dB

Saturated Output Power: +18 dBm


Output IP3: +25 dBm

Single Positive Supply: +5V @ 100 mA

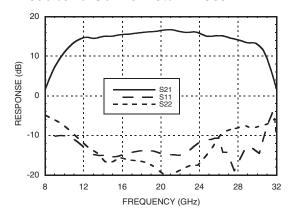
50 Ohm Matched Input/Output

RoHS Compliant 4x4 mm Package

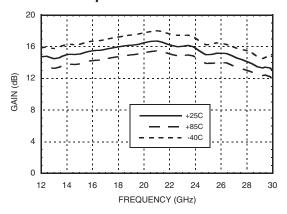
Functional Diagram

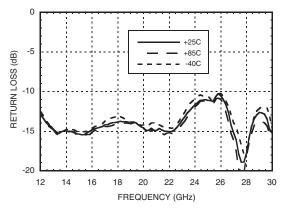
General Description

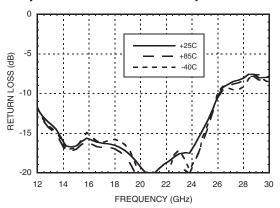
The HMC383LC4 is a general purpose GaAs PHEMT MMIC Driver Amplifier housed in a leadless RoHS compliant SMT package. The amplifier provides 15 dB of gain and +18 dBm of saturated power from a single +5V supply. Consistent gain and output power across the operating band make it possible to use a common driver/LO amplifier approach in multiple radio bands. The RF I/Os are DC blocked and matched to 50 Ohms for ease of use. The HMC383LC4 is housed in a RoHS compliant leadless 4x4 mm package allowing the use of surface mount manufacturing techniques.

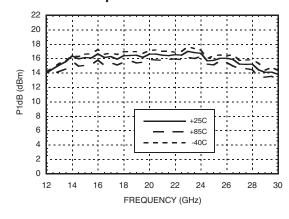

Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd = +5V

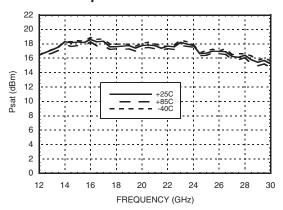
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	12 - 16		16 -24		24 - 28		28 - 30			GHz			
Gain	12	15		13	16		12	15		10	13		dB
Gain Variation Over Temperature		0.02	0.03		0.02	0.03		0.02	0.03		0.02	0.03	dB/ °C
Input Return Loss		14			14			11			13		dB
Output Return Loss		14			17			10			8		dB
Output Power for 1 dB Compression (P1dB)	12	15		13.5	16.5		13	16		12	15		dBm
Saturated Output Power (Psat)		17			18			17			16		dBm
Output Third Order Intercept (IP3)		24			25			25			23		dBm
Noise Figure		10.5			8			7.5			8		dB
Supply Current (Idd)	75	100	135	75	100	135	75	100	135	75	100	135	mA



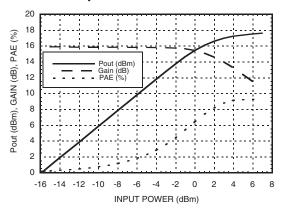

Broadband Gain & Return Loss

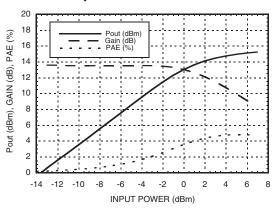

Gain vs. Temperature

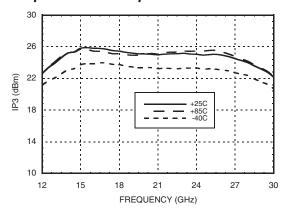

Input Return Loss vs. Temperature

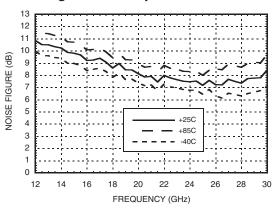

Output Return Loss vs. Temperature

P1dB vs. Temperature

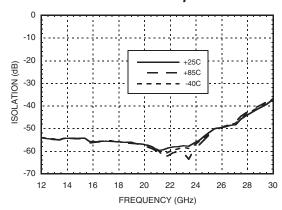

Psat vs. Temperature




Power Compression @ 18 GHz


Power Compression @ 30 GHz

Output IP3 vs. Temperature

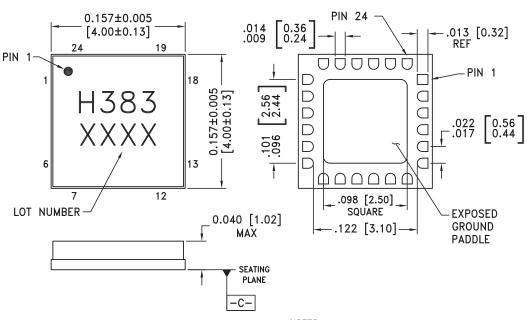

Noise Figure vs. Temperature

Gain & Power vs. Supply Voltage @ 18 GHz

Reverse Isolation vs. Temperature

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+5.5 Vdc		
RF Input Power (RFIN)(Vdd = +5Vdc)	+10 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T= 85 °C) (derate 10 mW/°C above 85 °C)	0.92 W		
Thermal Resistance (channel to ground paddle)	98 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 1A		


Vdd (V)	Idd (mA)
+4.5	99
+5.0	100
+5.5	101

Note: Amplifier will operate over full voltage ranges shown above

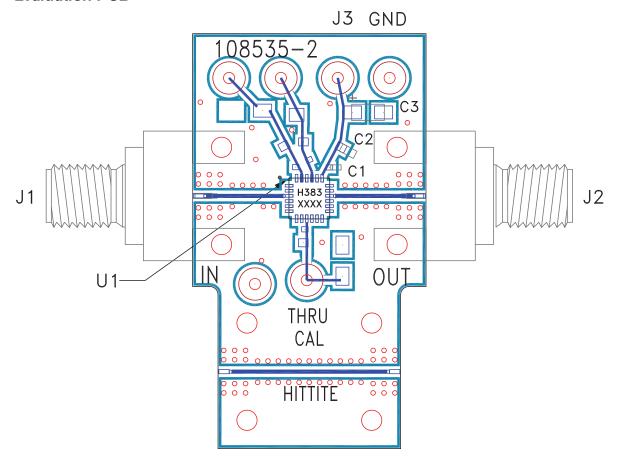
Outline Drawing

BOTTOM VIEW

- 1 PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. ALL DIMENSIONS ARE IN INCHES [MM]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4-15, 17, 18, 20-24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance if using grounded coplanar wave guide transmission lines.	
3	RFIN	This pad is AC coupled and matched to 50 Ohms.	RFINO— —
16	RFOUT	This pad is AC coupled and matched to 50 Ohms.	— —○ RFOUT
19	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd
	GND	Package base has an exposed metal ground that must be connected to RF/DC ground. Vias under the device are required	GND =


Application Circuit

Component	Value	
C1	100 pF	Vdd
C2	1,000 pF	φ
C3	2.2 μF	
		RFIN $\begin{array}{c} C1 \\ = \end{array}$

Evaluation PCB

List of Materials for Evaluation PCB 122198 [1]

Item	Description		
J1, J2	2.92 mm PCB mount K-connector		
J3, J4	DC Pin		
C1	100 pF capacitor, 0402 pkg.		
C2	1,000 pF Capacitor, 0603 pkg.		
C3	2.2µF Capacitor, Tantalum		
U1	HMC383LC4 Amplifier		
PCB [2]	108535 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350.