

Typical Applications

The HMC546LP2 / HMC546LP2E is ideal for:

- LNA Protection, WiMAX & WiBro
- Cellular/PCS/3G & TD-SCDMA Infrastructure
- Private Mobile Radio & Public Safety Handsets
- Automotive Telematics

Functional Diagram

HMC546LP2 / 546LP2E

GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

Features

High Input P0.1dB: +40 dBm Tx Low Insertion Loss: 0.4 dB High Input IP3: +67 dBm Positive Control: 0/+3V to 0/+8V Failsafe Operation - Tx "On" When Unpowered

General Description

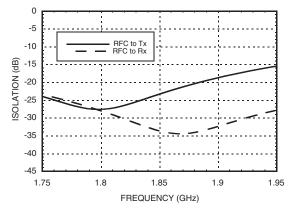
The HMC546LP2 & HMC546LP2E are failsafe SPDT switches in leadless DFN surface mount plastic packages for use in transmit-receive, and LNA protection applications which require very low distortion and high power handling of up to 10 watts. The device can control signals from 200 -2700 MHz* and is especially suited for WiMAX and WiBro repeaters, PMR and automotive telematic applications. The design provides exceptional P0.1dB of +40 dBm and +65 dBm IIP3 on the Transmit (Tx) port. The failsafe topology allows the switch to provide a low loss path from RFC to Tx, when no DC power is available.

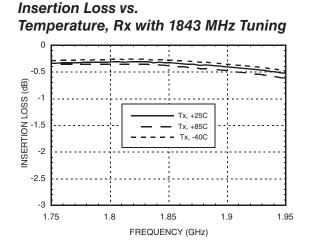
Pai	rameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max	Units
Frequency Range		18	805 - 19	10	20	10 - 20	25	23	00 - 24	80	2500 - 2700		MHz	
Insertion Loss	Tx - RFC RFC - Rx		0.3 0.4	0.6 0.7		0.4 0.3	0.7 0.6		0.6 1.1	0.8 1.5		0.5 0.7	0.8 1.1	dB dB
Isolation	Tx - RFC RFC - Rx	15 22	23 30		14 20	22 27		15 25	20 30		10 30	15 40		dB dB
Return Loss	Tx - RFC RFC - Rx		25 25			20 25			22 10			20 12		dB dB
Input Power for 0.1 dB Compression	Tx - RFC RFC - Rx	38 19	40 21		39 19	41 21		36.5 17	38.5 19		38.5 18	40.5 20		dBm dBm
Input Third Order Intercept (Two-tone input power = +19 dBm each tone)	Tx - RFC Vctl = 0/+3V RFC - Rx Tx - RFC Vctl = 0/+5V RFC - Rx		65 33 66 44			64 32 64 45			67 33 67 45			62 32 62 43		dBm dBm dBm dBm
Switching Characteristics	tRISE, tFALL (10/90% RF) tON, (50% CTL to 90% RF) tOFF (50% CTL to 10% RF)		21 102 36			21 102 36			21 102 36			21 102 36		ns ns ns

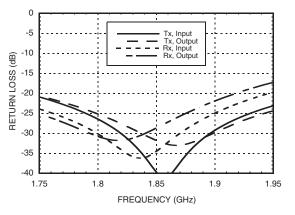
Electrical Specifications, $T_A = +25^{\circ}$ C, Vctl = 0/+3 Vdc, 50 Ohm System*

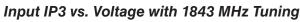
$T_{A} = +25^{\circ} C$, Vctl & Vdd Unpowered

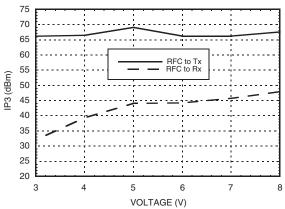
Insertion Loss	Tx - RFC		0.3	0.6		0.4	0.7		0.6	0.8		0.5	0.8	dB
Isolation	RFC - Rx	15	23		15	22		15	20		10	15		dB
Return Loss	Tx - RFC		25			20			22			20		dB
Input Power for 0.1 dB Compression	Tx - RFC	38	40		39	41		36.5	38.5		38.5	40.5		dBm


* Specifications and data reflect HMC546LP2(E) measured using the respective application circuits for each designated frequency band found herein

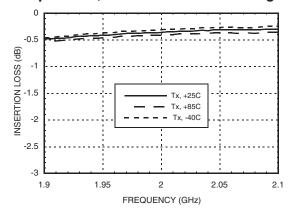


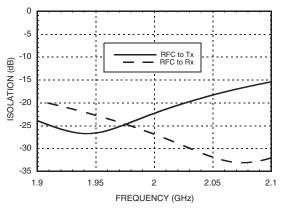

GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz


Isolation with 1843 MHz Tuning

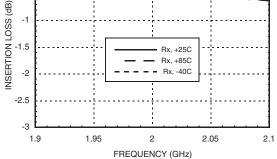


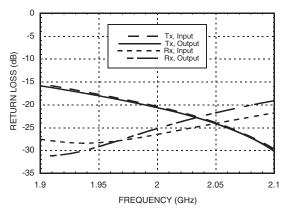
Return Loss with 1843 MHz Tuning

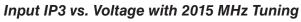


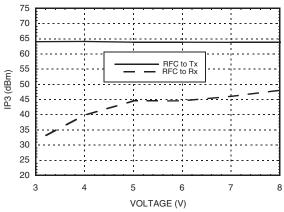


GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz


Insertion Loss vs. Temperature, Tx with 2015 MHz Tuning


Isolation with 2015 MHz Tuning




Insertion Loss vs. Temperature, Rx with 2015 MHz Tuning

Return Loss with 2015 MHz Tuning

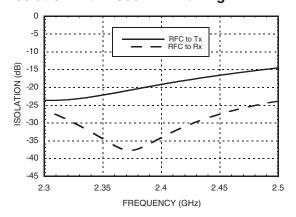
-3

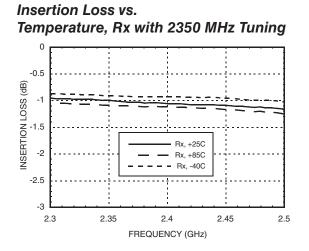
2.3

HMC546LP2 / 546LP2E

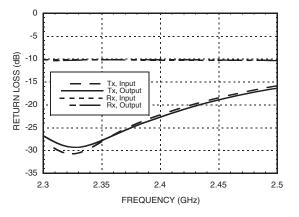
GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

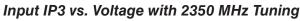
2.4

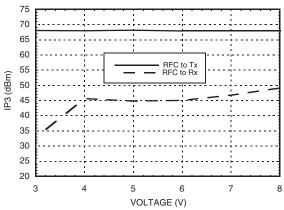

FREQUENCY (GHz)


2.45

2.5


Isolation with 2350 MHz Tuning

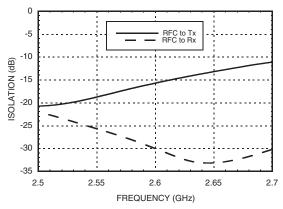

2.35



Return Loss with 2350 MHz Tuning

For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373




GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

Insertion Loss vs.

Insertion Loss vs. Temperature, Tx with 2600 MHz Tuning

Isolation with 2600 MHz Tuning

 Temperature, Rx with 2600 MHz Tuning

 0
 0

 -0.5
 0

 -0.5
 0

 -0.5
 0

 -1
 0

 0
 0

 -1
 0

 0
 0

 -1
 0

 0
 0

 -1
 0

 0
 0

 -1
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

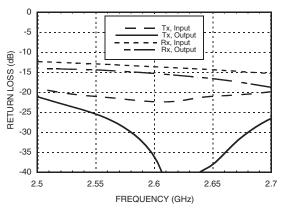
 0
 0

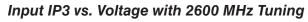
 0
 0

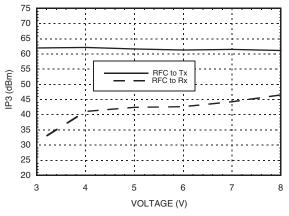
 0

2.6

FREQUENCY (GHz)


2.7


2.65



2.55

2.5

ROHS V

GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

Absolute Maximum Ratings

		Vdd = 3V	Vdd = 5V
Max. CW Input Power [1][2]	Tx Port Rx Port	40 dBm 24 dBm	40 dBm 29 dBm
Max Channel Temp.		150 °C	150 °C
Thermal Resistance	Tx Port Rx Port	54 °C/W 68 °C/W	54 °C/W 86 °C/W
Continuous Dissipated Power	Tx Port Rx Port	1.12 W 73 mW	1.12 W 232 mW
Supply Voltage (Vdd)	+10V		
Control Voltage Range (Vctl)	-0.2 to Vdd + 1V		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 1A		

[1] Do not "hot switch" power levels greater than +24 dBm.

[2] Max input power can be higher for duty cycle <100%

Outline Drawing

Truth Table

Contro	ol Input	Signal Path State				
Vctl	Vdd	RFC To Tx	RFC to Rx			
0.0	Vdd	OFF	ON			
Vdd	Vdd	ON	OFF			
0	0	ON	OFF			
High Z	High Z	ON	OFF			

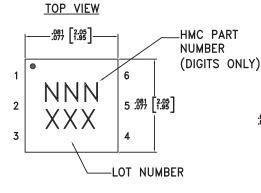
Vdd = +3V to +8VControl Input Voltage Tolerances are ± 0.2 Vdc.

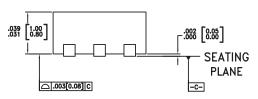
DC blocking capacitors are required at ports RFC, Tx and Rx.

-.014 [0.35] REF

.057 [1.45] .053 [1.35]

EXPOSED


GROUND PADDLE


.012 0.30

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

BOTTOM VIEW

SIDE VIEW

NOTES:

.033 0.85 .029 0.75

.030 0.75 .022 0.55

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM. 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE
- 6. ALL GROUND LEADS AND GROUND PADDLE N SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

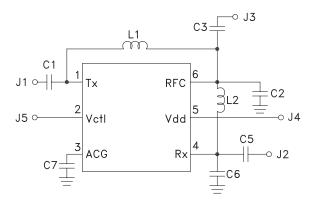
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC546LP2	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	546 XXX
HMC546LP2E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>546</u> XXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX


ROHS V

GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Тх	This pin is DC coupled and matched to 50 Ohms.	
2	Vctl	See Truth Table.	
3	ACG	External capacitor to ground is required. See application circuit herein.	
4	Rx	This pin is DC coupled and matched to 50 Ohms.	
5	Vdd	Supply Voltage	
6	RFC	This pin is DC coupled and matched to 50 Ohms.	
	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground.	

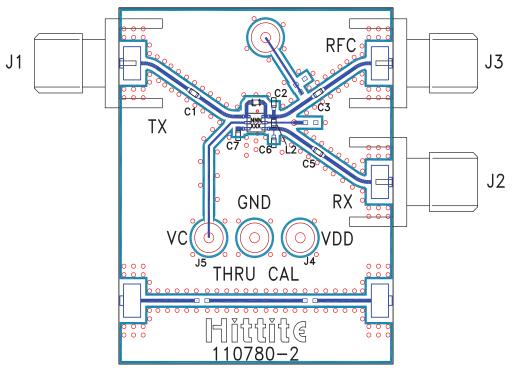
Application Circuit

Components for Selected Frequencies

Tuned Frequency	1843 MHz	2015 MHz	2350 MHz	2600 MHz
Evaluation PCB Number	110782	115201	115202	115203
C1, C3, C5 ^[1]	330 pF	330 pF	330 pF	330 pF
C2	1.2 pF	0.8 pF	0.6 pF	0.7 pF
C6	0.5 pF	N/A	N/A	N/A
C7	3.0 pF	2.4 pF	2.0 pF	1.5 pF
L1	5.1nH ^[2]	4.3 nH ^[2]	2.0 nH ^[2]	1.6 nH ^[3]
L2 ^[2]	4.3 nH	3.9 nH	3.3 nH	2.7 nH

[1] DC blocking capacitors

[2] 0402 inductors, 5% tolerance


[3] 0603 inductor, 5% tolerance

GaAs MMIC 10W FAILSAFE SWITCH 0.2 - 2.7 GHz

Evaluation PCB

List of Materials for Evaluation PCB^[1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C3 ^[2]	Capacitor, 0402 Pkg.
L1 - L2 ^[2]	Inductor
U1	HMC546LP2 / HMC546LP2E T/R Switch
PCB ^[3]	110780 Evaluation PCB

[1] When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table "Components for Selected Frequencies."

[2] Please refer to 'Components for Selected Frequencies' table for values.

[3] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.