

Typical Applications

The HMC641LC4 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space Hybrids
- Test Instrumentation
- SATCOM & Sensors

Functional Diagram

Features

Broadband Performance: DC - 20 GHz

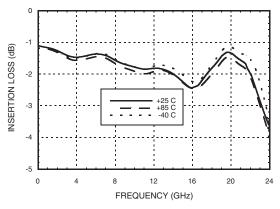
High Isolation: 42 dB @ 12 GHz

Low Insertion Loss: 2.1 dB @ 12 GHz

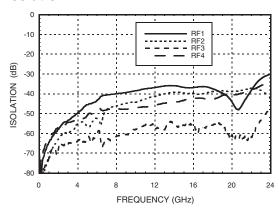
Integrated 2:4 TTL Decoder

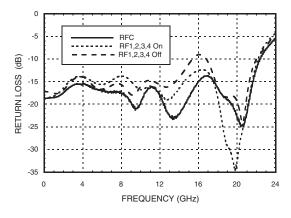
24 Lead 4x4mm SMT Package: 16mm²

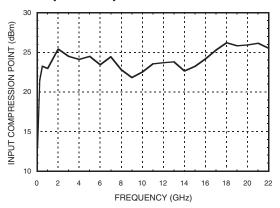
General Description

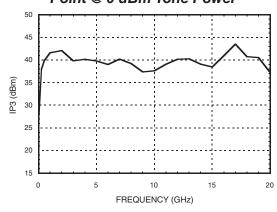

The HMC641LC4 is a broadband non-reflective GaAs pHEMT SP4T switch in a compact 4x4 mm ceramic package. Covering DC to 20 GHz, this switch offers high isolation, low insertion loss and on-chip termination of isolated ports. This switch also includes an on board binary decoder circuit which reduces the number of required logic control lines from four to two. The HMC641LC4 is controlled with 0/ -5V logic, exhibits fast switching speed and consumes much less DC current than pin diode based solutions. The HMC641LC4 is also available in die form as the HMC641.

Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/-5V Control, Vss = -5V, 50 Ohm System


Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 12 GHz DC - 20 GHz		1.6 2.3	2.8 3.5	dB dB
Isolation (RFC to RF1 - RF4)		DC - 12 GHz DC - 20 GHz	30 30	42 40		dB dB
Return Loss	"On State"	DC - 12 GHz DC - 20 GHz		18 17		dB dB
Return Loss	"Off State"	DC - 20 GHz		13		dB
Input Power for 1 dB Compression		0.05 - 0.25 GHz 0.25- 20 GHz	10 20	15 23		dBm dBm
Input Third Order Intercept (Two-Tone Input Power= +14 dBm Each Tone)		0.05 - 0.25 GHz 0.25 - 20 GHz		30 39		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 20 GHz		15 88		ns ns


Insertion Loss vs. Temperature


Isolation


Return Loss

1 dB Input Compression Point

Input Third Order Intercept Point @ 0 dBm Tone Power

pplic at In Sup

Absolute Maximum Ratings

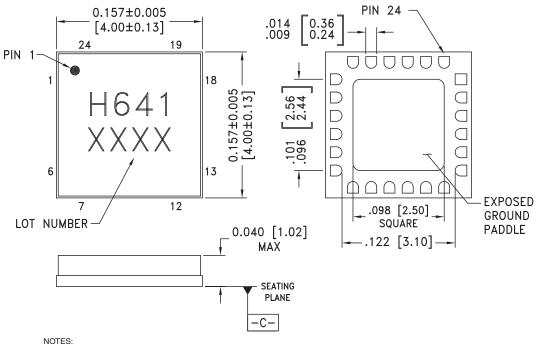
Bias Voltage (Vss)	-7V
Control Voltage Range (A & B)	Vss -0.5V to +1V
Maximum Input Power	+24 dBm
Channel Temperature	150 °C
Thermal Resistance Channel to die bottom (Insertion Loss Path)	199 °C/W
Thermal Resistance Channel to die bottom (Terminated Path)	219 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Truth Table

Control Input		Signal Path State	
Α	В	RFC to:	
High	High	RF1	
Low	High	RF2	
High	Low	RF3	
Low	Low	RF4	

Bias Voltage & Current

Vss Range= -5.0 Vdc ±10%			
Vss (Vdc)	Iss (Typ) (mA)	Iss (Max) (mA)	
-5	1.7	5.0	

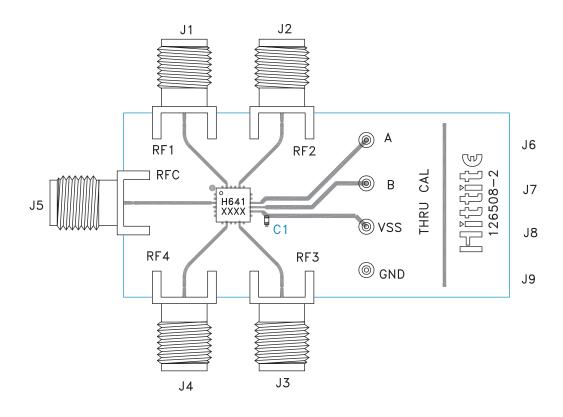

TTL/CMOS Control Voltages

State	Bias Condition	
Low	-2.5V to 0V @ 30 μA Typ.	
High	-5V to -3.8V @ 1.7 μA Typ.	

Outline Drawing

BOTTOM VIEW

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.


Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 5, 6, 13, 18	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.		
2, 4, 7, 9, 10, 12, 17, 19, 21, 22, 24 Ground Paddle	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	= GND	
3, 8, 11, 20, 23	RFC, RF1, RF2, RF3, RF4	These pads are DC coupled and matched to 50 Ohms. Blocking capacitors are required if RF line potential is not equal to 0V.		
14	Vss	Supply Voltage -5 Vdc ± 10%.		
15	CTLB	See Truth Table and Control Voltage Table.	CTLA OTLB	
16	CTLA	See Truth Table and Control Voltage Table.	OVss =	

Application Suppor Phon 1978-250-3343.

Evaluation PCB

List of Materials for Evaluation PCB 126511 [1]

Item	Description
J1 - J5	PCB Mount SMA Connector
C1	1000 pF Capacitor, 0402 Pkg.
U1	HMC641LC4 Switch
PCB [2]	126508 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon FR4