

Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

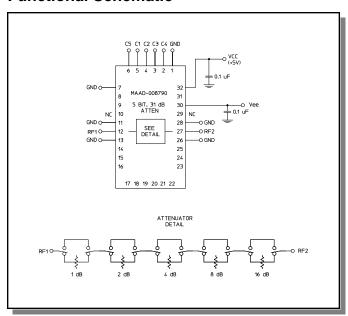
Rev. V1

Features

- Attenuation: 1.0 dB Steps to 31.0 dB Phase error: ± 3° Typical at 2 GHz
- Low DC Power Consumption
- Small Footprint, PQFN Package
- Integral TTL Driver
- 50 ohm Impedance
- Test Boards are Available
- RoHS* Compliant

Description

M/A-COM's MAAD-008790-000100 is a GaAs pHEMT 5-bit digital attenuator with integral TTL driver. This attenuator was designed to minimize phase variation over attenuation. Step size is 1.0 dB providing a 31.0 dB total attenuation range. This device is in an PQFN plastic surface mount package. MAAD-008790-000100 is ideally suited for use where accuracy, constant phase over attenuation, very low power consumption and low costs are required.


Ordering Information

Commitment to produce in volume is not g

Part Number	Package
MAAD-008790-000100	Bulk Packaging
MAAD-008790-0001TR	1000 piece reel
MAAD-008790-0001TB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration¹

Pin No.	Function	Pin No.	Function	
1	GND	17	NC	
2	C4	18	NC	
3	C3	19	NC	
4	C2	20	NC	
5	C1	21	NC	
6	C5	22	NC	
7	GND	23	NC	
8	NC	24	NC	
9	NC	25	NC	
10	NC ²	26	GND	
11	GND	27	RF2	
12	RF1	28	GND	
13	GND	29	NC ²	
14	NC	30	Vee	
15	NC	31	NC	
16	NC	32	+Vcc	

- The exposed pad centered on the package bottom must be connected to RF and DC ground. (For PQFN Packages)
- Pins 10 & 29 must be isolated

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 India Tel: +91.80.43537383

is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples

MAAD-008790-000100

Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

Rev. V1

Electrical Specifications: $T_A = 25^{\circ}C$, $Z_0 = 50\Omega$, $V_{CC} = +5.0V$, $V_{EE} = -5.0V$

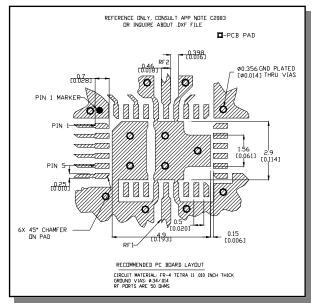
Parameter	Test Conditions	Frequency	Units	Min	Тур	Мах
Operating Power	_	_	dBm	_	_	+20
Reference Insertion Loss	_	DC - 2.0 GHz 2.0 - 4.0 GHz	dB dB	_	_	5.0 5.5
Attenuation Accuracy ³ Relative to Reference Loss State	Any Single Bit Any Combination of Bits	DC - 4.0 GHz DC - 4.0 GHz		±(0.3 +3% of atten setting in dB) ±(0.3 +3% of atten setting in dB)		
Phase Accuracy Relative to Reference Loss State	Any Single Bit Any Single Bit Any Combination of Bits Any Combination of Bits	DC - 2.0 GHz 2.0 - 4.0 GHz DC - 2.0 GHz 2.0 - 4.0 GHz	deg deg deg deg	_ _ _ _		±3° ±5° ±5° ±9°
VSWR	Full Range	DC - 4.0 GHz	Ratio	_	_	1.8:1
Switching Speed Ton Toff Trise Tfall	1.3 V Cntl to 90% RF 1.3 V Cntl to 10% RF 10% RF to 90% RF 90% RF to 10% RF	_ _ _	ns ns ns ns	_ _ _ _	See Table 13 See Table 3	_ _ _ _
1 dB Compression ⁴	Reference State Reference State	0.05 GHz 0.5 - 4.0 GHz	dBm dBm	_	>+27 >+27	=
Input IP3	Two-tone inputs up to +5 dBm	0.05-4.0 GHz	dBm	_	See Table	_
Input IP2	Two-tone inputs up to +5 dBm	0.05-4.0 GHz	dBm	_	See Table	_
Vcc Vee			V V	4.5 -8.0	5.0 -5.0	5.5 -4.5
V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage	11	V	0.0 2.0	0.0 5.0	0.8 5.0
lin (Input Leakage Current)	Vin = V _{CC} or GND	_	uA	-1	_	1
Icc (Quiescent Supply Current)	Vcntrl = V _{CC} or GND	_	uA	_	250	400
∆Icc (Additional Supply Current Per TTL Input Pin)	V _{CC} = Max Vcntrl = V _{CC} - 2.1 V	_	mA	_	_	1.5
IEE	VEE min to max Vin = V _{IL} or V _{IH}	_	mA	-1.0	-0.2	_
Thermal Resistance θjc	_	_	°C/W	_	35	_

^{3.} This attenuator is guaranteed monotonic.

typical. Mechanical outline has been fixed. Engineering samples my Commitment to produce in volume is not guard teed.

^{4. 1} dB Compression was measured up to +27 dBm, which is the absolute maximum rating for this device.

Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz


Rev. V1

Absolute Maximum Ratings 5,6

Parameter	Absolute Maximum
Max. Input Power	+27 dBm
V _{CC}	-0.5V ≤ V _{CC} ≤ +7.0V
V _{EE}	-8.5V ≤ V _{EE} ≤ +0.5V
V _{CC} - V _{EE}	$-0.5V \le V_{CC} - V_{EE} \le 14.5V$
Vin ⁷	-0.5V ≤ Vin ≤ V _{CC} + 0.5V
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +125°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Recommended PCB Configuration 8

Application Note S2083 is available on line at www.macom.com

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Moisture Sensitivity

The MSL rating for this part is defined as Level 2 per IPC/JEDEC J-STD-020. Parts shall be stored and/or baked as required for MSL Level 2 parts.

Truth Table (Digital Attenuator)

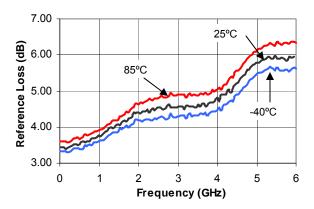
C5	C4	C3	C2	C1	Attenuation
0	0	0	0	0	Loss, Reference
0	0	0	0	1	1.0 dB
0	0	0	1	0	2.0 dB
0	0	1	0	0	4.0 dB
0	1	0	0	0	8.0 dB
1	0	0	0	0	16.0 dB
1	1	1	1	1	31.0 dB

0 = TTL Low; 1 = TTL High

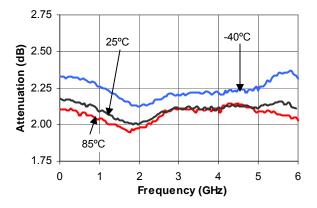
typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not o

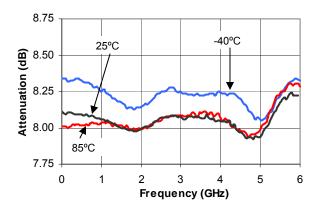
- India Tel: +91.80.43537383
- China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

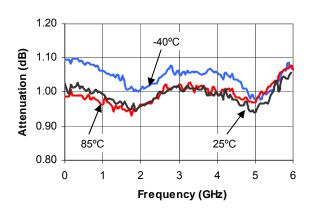


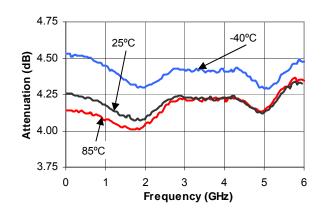
Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

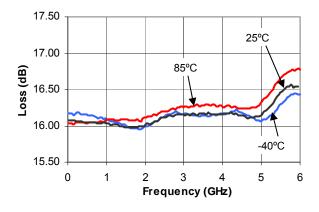

Rev. V1

Typical Performance Curves


Reference Loss vs. Frequency


Attenuation - 2 dB Bit vs. Frequency


Attenuation - 8 dB Bit vs. Frequency


Attenuation - 1 dB Bit vs. Frequency

Attenuation - 4 dB Bit vs. Frequency

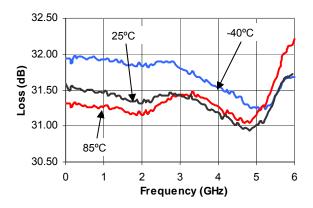
Attenuation - 16 dB Bit vs. Frequency

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
- and/or prototype measurements. Commitment to develop is not guaranteed.

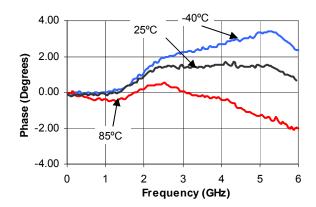
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

 Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples

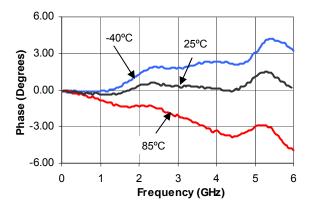
 Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Europe Tel: +353.21.244.6400
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

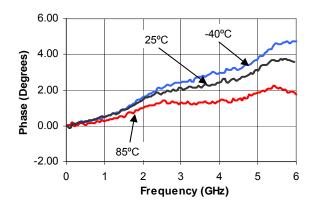


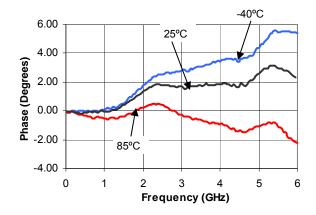
Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

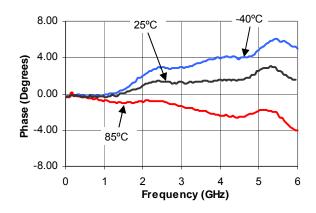

Rev. V1

Typical Performance Curves


Attenuation - 31 dB Attenuation vs. Frequency


Phase - 2 dB Bit vs. Frequency Relative to Reference Loss State


Phase - 8 dB Bit vs. Frequency Relative to Reference Loss State

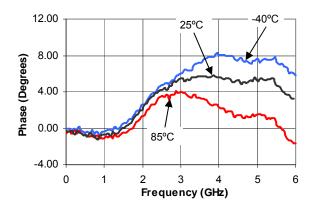

Phase - 1 dB Bit vs. Frequency Relative to Reference Loss State

Phase - 4 dB Bit vs. Frequency Relative to Reference Loss State

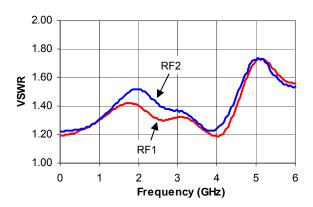
Phase - 16 dB Bit vs. Frequency Relative to Reference Loss State

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples into creative armay be available. Commitment to produce in volume is not guaranteed.

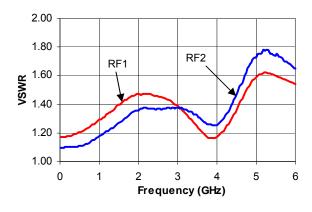
North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

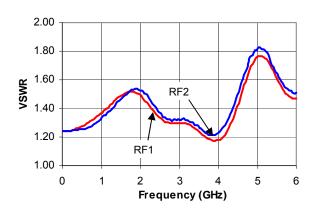


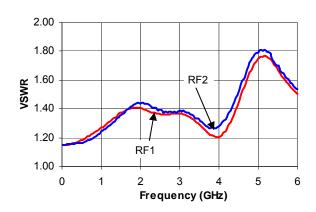
Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

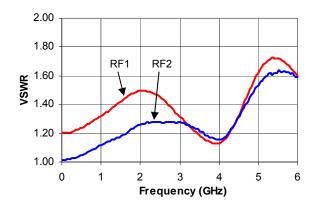

Rev. V1

Typical Performance Curves


Phase - 31 dB Attenuation vs. Frequency Relative to Reference Loss State


VSWR - 1 dB Bit vs. Frequency


VSWR - 4 dB Bit vs. Frequency


VSWR - Reference State vs. Frequency

VSWR - 2 dB Bit vs. Frequency

VSWR - 8 dB Bit vs. Frequency

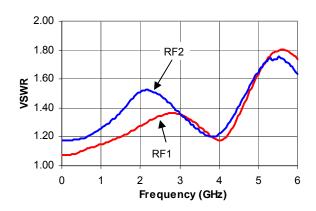
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

and/or prototype measurements. Commitment to develop is not guaranteed.

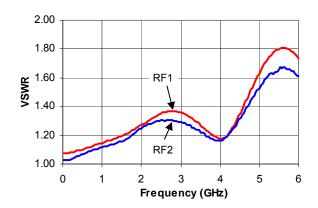
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples into the true at may be available. Commitment to produce in volume is not guaranteed.

North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Europe Tel: +353.21.244.6400
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.



Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz


Rev. V1

Typical Performance Curves

VSWR - 16 dB Bit vs. Frequency

VSWR - 31 dB Attenuation vs. Frequency

Typical Input IP2 and IP3 at Room Temperature9

Attenuation	IP2			IP3			Units
Attenuation	50 MHz	500 MHz	2 GHz	50 MHz	500 MHz	2 GHz	Units
Reference State	50	68	70	39	43	42	dBm
1 dB	50	68	70	39	43	37	dBm
2 dB	50	68	70	39	43	37	dBm
4 dB	50	68	70	37	37	37	dBm
8 dB	50	68	70	37	37	37	dBm
16 dB	50	68	65	31	32	32	dBm
31 dB	50	50	50	31	30	29	dBm

IP2 and IP3 are measured with two-tone inputs F1 and F2 up to +5 dBm with 1 MHz spacing.

Typical Switching Speed at Room Temperature

Testing Condition	Ton	Trise	Units
Ref. State ↔ 1 dB	3.6	3.6	μS
Ref. State ↔ 2 dB	3.6	3.6	μs
Ref. State ↔ 4 dB	3.7	3.7	μS
Ref. State ↔ 8 dB	3.3	3.3	μS
Ref. State ↔ 16 dB	4.5	4.5	μS
Ref. State ↔ 31 dB	30.5	30.5	μ\$

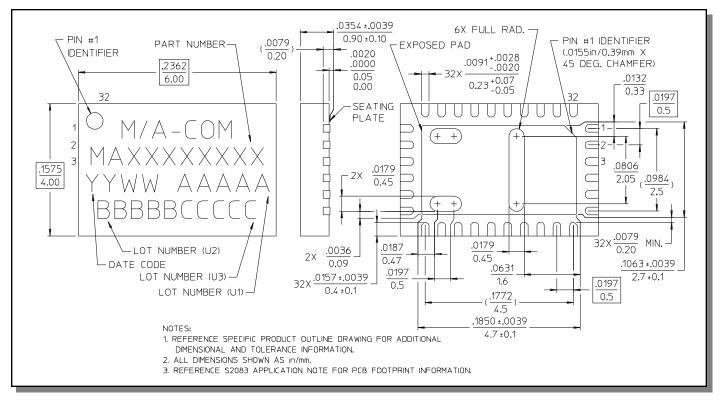
Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

[•] India Tel: +91.80.43537383

[•] China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.


MAAD-008790-000100

Constant Phase Digital Attenuator 31.0 dB, 5-Bit, TTL Driver, DC-4.0 GHz

Rev. V1

CSP-1, 4 x 6 mm, 32-lead PQFN[†]

Reference Application Note M538 for lead-free solder reflow recommendations

typical. Mechanical outline has been fixed. Engineering samples in Commitment to produce in volume is not guaranteed.

 India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

• China Tel: +86.21.2407.1588