MAAD-009195-000100

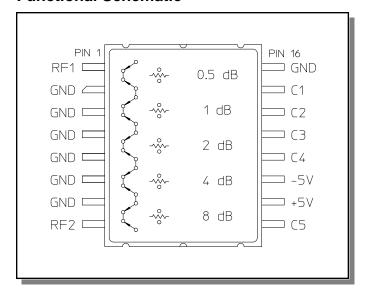
Constant Phase Digital Attenuator 15.5 dB, 5-Bit, TTL Driver, DC-3.0 GHz

Rev. V1

Features

- Attenuation: 0.5 dB steps to 15.5 dB
- Minimal Phase Variation over Attenuation Range
- Low DC Power Consumption
- Hermetic Surface Mount Package
- Integral TTL Driver
- 50 Ohm Nominal Impedance
- 260°C Reflow Compatible
- RoHS* Compliant

Description


M/A-COM's MAAD-009195-000100 is a GaAs FET 5-bit digital attenuator with a 0.5 dB minimum step size and 15.5 dB total attenuation. The design has been optimized to minimize phase variation over the attenuation range. This attenuator and integral TTL driver is in a hermetically sealed ceramic 16-lead surface mount package. The MAAD-009195-000100 is ideally suited for use where accuracy, fast switching, very low power consumption and low intermodulation products are required. Typical applications include dynamic range setting in precision receiver circuits and other gain/leveling control circuits. Environmental screening is available. Contact the factory for information.

Ordering Information

Part Number	Package
MAAD-009195-000100	Bulk Packaging
MAAD-009195-0001TB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ¹

Pin No.	Function	Pin No.	Function	
1	RF1	9	C5	
2	GND	10	+5V	
3	GND	11	-5V	
4	GND	12	C4	
5	GND	13	C3	
6	GND	14	C2	
7	GND	15	C1	
8	RF2	16	GND	

 The metal bottom of the case must be connected to RF and DC ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

MAAD-009195-000100

Constant Phase Digital Attenuator 15.5 dB, 5-Bit, TTL Driver, DC-3.0 GHz

Rev. V1

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50\Omega$, $V_{CC} = +5.0V$, $V_{EE} = -5.0V$

Parameter	Test Conditions	Frequency	Units	Min	Тур	Max		
Operating Power ²	_	_	dBm	_	_	+20		
Reference Insertion Loss	_	DC - 1.0 GHz DC - 2.0 GHz DC - 3.0 GHz	dB dB dB		_ _ _	4.0 5.0 5.3		
Attenuation Accuracy ³	Any Single Bit Any Combination of Bits	DC - 3.0 GHz DC - 3.0 GHz		2% of attenuation setting in dB) dB 2% of attenuation setting in dB) dB				
Phase Accuracy Relative to Reference Loss State	Any Single Bit Any Single Bit Any Combination of Bits Any Combination of Bits Any Combination of Bits	DC - 2.0 GHz 2.0 - 3.0 GHz DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz	deg deg deg deg deg	±3 ±4 ±3 ±4 ±7				
VSWR	_	DC - 3.0 GHz	Ratio	_	_	1.8:1		
Switching Speed Ton Toff Trise Tfall	1.3 V Cntl to 90% RF 1.3 V Cntl to 10% RF 10% RF to 90% RF 90% RF to 10% RF	= =	ns ns ns ns	_ _ _ _	47 24 23 13	_ _ _ _		
1 dB Compression ⁴	Reference State Reference State	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	>+26 >+26	_		
Input IP3	For two-tone Input Power up to +5 dBm	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	+43 +40	_		
Input IP2	For two-tone Input Power up to +5 dBm	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	+50 +72	_		
Vcc Vee	_	_	V V	4.5 -8.0	5.0 -5.0	5.5 -4.5		
V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage	=	V V	0.0 2.0	0.0 5.0	0.8 5.0		
lin (Input Leakage Current)	Vin = V _{CC} or GND	_	uA	-1	_	1		
Icc (Quiescent Supply Current)	Vcntrl = V _{CC} or GND	_	uA	_	250	400		
Δlcc (Additional Supply Current Per TTL Input Pin)	V _{CC} = Max Vcntrl = V _{CC} - 2.1 V	_	mA	1		1.5		
lee	VEE min to max Vin = V _{IL} or V _{IH}	_	mA	-1.0	-0.2	_		
Thermal Resistance θjc	_	_	°C/W	_	50	_		

^{2.} Maximum input power is specified with power applied to RF1. If power is applied to RF2, then maximum operating power is +16 dBm.

^{3.} This attenuator is guaranteed monotonic.

^{4. 1} dB Compression was measured up to +26 dBm, which is the absolute maximum rating for this device.

is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples into the true at may be a apillable. Commitment to produce in volume is not guaranteed.

[•] India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

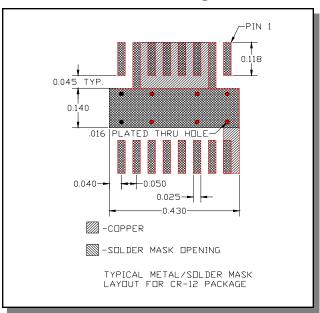
Visit www.macomtech.com for additional data sheets and product information.

Rev. V1

Absolute Maximum Ratings 5,6

Parameter	Absolute Maximum			
Max Input Power ⁷ DC - 3.0 GHz	+26 dBm			
V _{CC}	-0.5V ≤ V _{CC} ≤ +7.0V			
V _{EE}	-8.5V ≤ V _{EE} ≤ +0.5V			
V _{CC} - V _{EE}	-0.5V ≤ V _{CC} - V _{EE} ≤ 14.5V			
Vin ⁸	-0.5V ≤ Vin ≤ V _{CC} + 0.5V			
Operating Temperature	-55°C to +125°C			
Storage Temperature	-65°C to +150°C			

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- Maximum input power is specified with power applied to RF1. If power is applied to RF2, then maximum input power is +22 dBm.
- Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

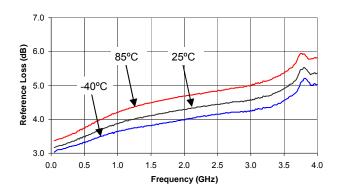
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

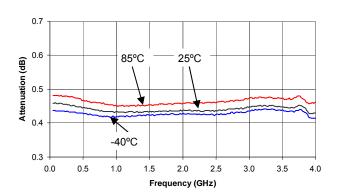
Recommended PCB Configuration

Truth Table (Digital Attenuator)

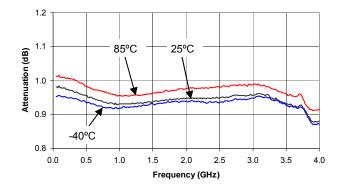
Control Inputs								
C5	C4	СЗ	C2	C1	Attenuation			
0	0	0	0	0	Reference			
0	0	0	0	1	0.5 dB			
0	0	0	1	0	1 dB			
0	0	1	0	0	2 dB			
0	1	0	0	0	4 dB			
1	0	0	0	0	8 dB			
1	1	1	1	1	31 dB			

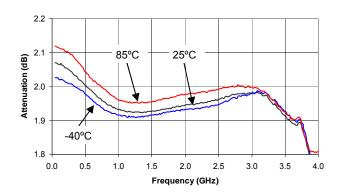
0 = TTL Low; 1 = TTL High


- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.


Rev. V1

Typical Performance Curves

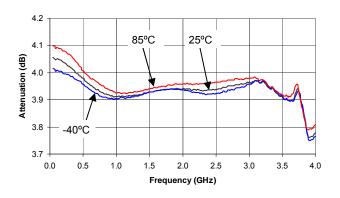

Reference Loss vs. Frequency

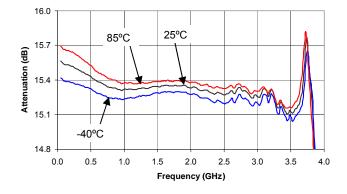

Attenuation - 0.5 dB Bit vs. Frequency

Attenuation - 1 dB Bit vs. Frequency

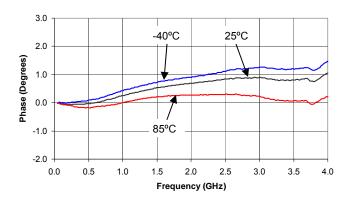
Attenuation - 2 dB Bit vs. Frequency

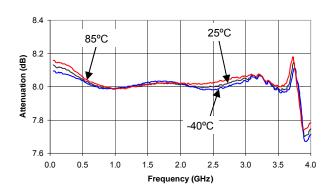
typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guardited.

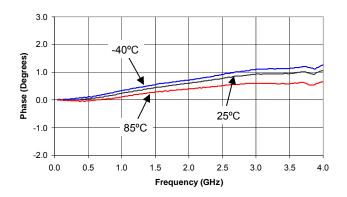

ined herein without notice.

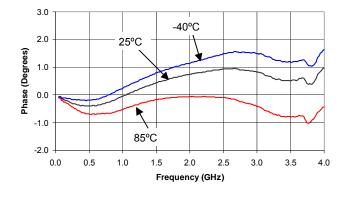

Rev. V1

Typical Performance Curves


Attenuation - 4 dB Bit vs. Frequency


Attenuation - 15.5 dB Attenuation vs. Frequency


Phase - 1 dB Bit vs. Frequency Relative to Reference Loss State

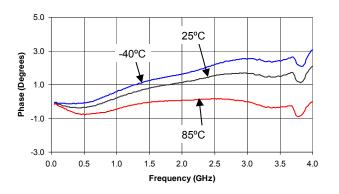

Attenuation - 8 dB Bit vs. Frequency

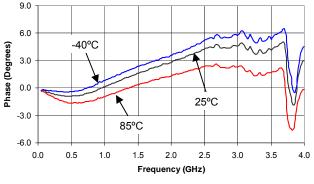
Phase - 0.5 dB Bit vs. Frequency Relative to Reference Loss State

Phase - 2 dB Bit vs. Frequency Relative to Reference Loss State

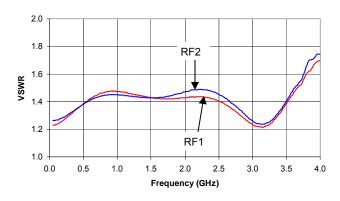
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples motor to produce in volume is not guaranteed.

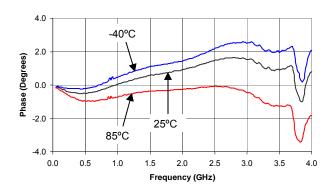
India Tel: +91.80.4155721
 Visit www.macomtech.com for

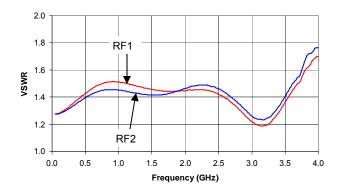

North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588

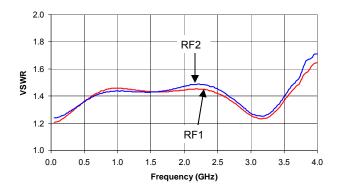

Rev. V1

Typical Performance Curves


Phase - 4 dB Bit vs. Frequency Relative to Reference Loss State


Phase - 15.5 dB Attenuation vs. Frequency Relative to Reference Loss State


VSWR - 0.5 dB Bit vs. Frequency


Phase - 8 dB Bit vs. Frequency Relative to Reference Loss State

VSWR - Reference Loss State vs. Frequency

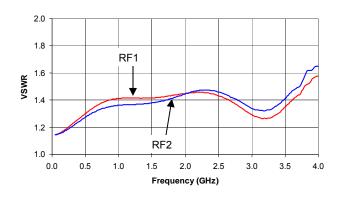
VSWR - 1 dB Bit vs. Frequency

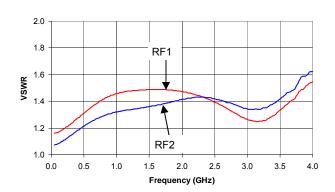
typical. Mechanical outline has been fixed. Engineering samples and Commitment to produce in volume is not guaranteed.

• India Tel: +91.80.4155721

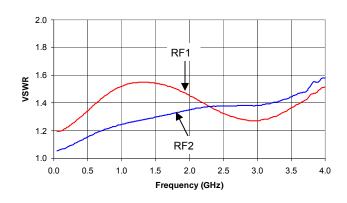
• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588

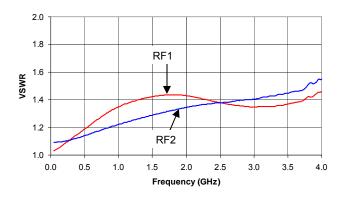
Visit www.macomtech.com for additional data sheets and product information.


⁶


Rev. V1

Typical Performance Curves


VSWR - 2 dB Bit vs. Frequency


VSWR - 4 dB Bit vs. Frequency

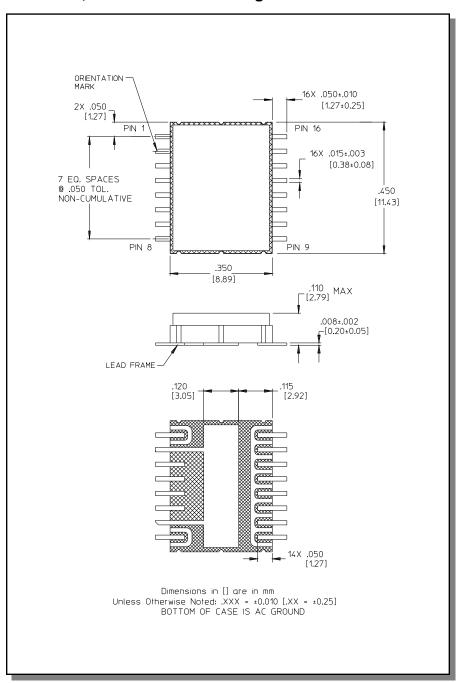
VSWR - 8 dB Bit vs. Frequency

VSWR - 15.5 dB Attenuation vs. Frequency

Typical Input IP2 and IP3 at Room Temperature 9

Attenuation	IP2			IP3			Units	
Atteriuation	50 MHz	500 MHz	2 GHz	50 MHz	500 MHz	2 GHz	Units	
Reference State	50	72	73	43	40	44	dBm	
0.5 dB	51	73	74	43	41	44	dBm	
1 dB	51	73	75	43	41	44	dBm	
2 dB	51	73	74	43	41	45	dBm	
4 dB	51	73	74	43	41	45	dBm	
8 dB	50	71	75	41	43	41	dBm	
15.5 dB	53	74	79	43	42	44	dBm	

^{9.} IP2 and IP3 are measured with two-tone inputs F1 and F2 up to +5 dBm with 1 MHz spacing.


[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

Rev. V1

Lead-Free, CR-12 Ceramic Package[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/o rest us a may be a gilable. Commitment to produce in volume is not guaranteed.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.