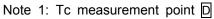


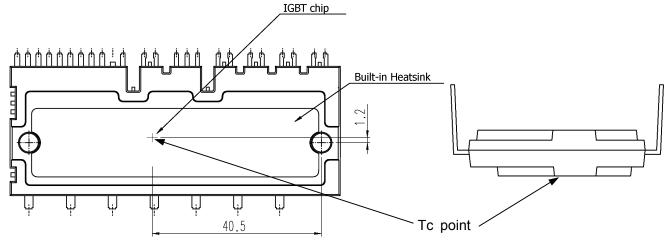
DIPIPM and CSTBT are registered trademarks of MITSUBISHI ELECTRIC CORPORATION in Japan.

DIPIPM	DPH-5546e-D			

Transfer-Mold Type Insulated Type

Maximum Ratings (Tj=25°C, unless otherwise noted): Inverter Part:


Item	Symbol	Condition	Rating	Unit
Supply voltage	V _{CC}	Applied between P-NU,NV,NW	900	V
Supply voltage (surge)	V _{CC(surge)}	Applied between P-NU,NV,NW	1000	V
Collector-emitter voltage	V _{CES}		1200	V
Each IGBT collector current	±I _C	Tc=25°C	35	А
Each IGBT collector current (peak)	±I _{CP}	Tc=25°C, less than 1ms	70	А
Collector dissipation	Pc	Tc=25°C, per 1 chip	(129.9)	W
Junction temperature	T _j		-20~+150	°C


Control (Protection) Part

Item	Symbol	Condition	Rating	Unit
Control supply voltage	VD	Applied between V _{P1} -V _{PC} ,V _{N1} -V _{NC}	20	V
Control supply voltage	V _{DB}	Applied between V _{UFB} -V _{UFS} , V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}	20	V
Input voltage	V _{IN}	$\begin{array}{l} \text{Applied between } U_{P}, V_{P}, W_{P} \text{-} V_{PC}, \\ U_{N}, V_{N}, W_{N} \text{-} V_{NC} \end{array}$	-0.5~V _D +0.5	V
Fault output supply voltage	V _{FO}	Applied between Fo-V _{NC}	-0.5~V _D +0.5	V
Fault output current	I _{FO}	Sink current at Fo terminal	1	mA
Current sensing input voltage	V _{SC}	Applied between CIN-V _{NC}	-0.5~V _D +0.5	V

Total System

Item	Symbol	Condition	Rating	Unit
Self protection supply voltage limit (short circuit protection capability)	V _{CC(PROT)}	V _D =13.5~16.5V, Inverter part Tj=125°C, non-repetitive less than 2µs	800	V
Module case operation temperature	Тс	(Note 1)	-20~+100	°C
Storage temperature	Tstg		-40~+125	°C
Isolation voltage	Viso	60Hz, Sinusoidal, AC 1 minute, connection pins to heat sink plate	2500	Vrms

DIPIPM	DPH-5546e-D	

Thermal Resistance :

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to case thermal	R _{th(j-c)Q}	Inverter IGBT part (per 1/6 module)	-	-	(0.77)	°C / W
resistance	R _{th(j-c)F}	Inverter FWDi part (per 1/6 module)	-	-	(1.25)	

(Note 2) Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100µm~+200µm on the contacting surface of DIPIPM and heat sink.

Electrical Characteristics (Tj=25°C, unless otherwise noted) :

Inverter Part

Item	Symbol	Conditior	า	Min.	Тур.	Max.	Unit
Collector-emitter	V _{CE(sat)}	V _D =V _{DB} =15V	Tj=25°C	-	(1.9)	(2.6)	V
saturation voltage		V_{IN} =5V, I_{C} =35A,	Tj=125°C	-	(2.0)	(2.7)	V
FWDi forward voltage B	V _{EC}	V _{IN} =0V, -I _C =35A		-	(2.8)	(3.3)	V
Switching time A	t _{on}	V_{CC} =600V, V_{D} = V_{DB} =15V	/	(0.8)	(1.5)	(2.2)	
	t _{rr}	I _C =35A, V _{IN} =0-5V		-	(0.3)	-	
	t _{c(on)}	Tj=125°C	Tj=125°C		(0.6)	(0.9)	μs
	t _{off}	Inductive load		-	(2.8)	(3.8)	
t _c				-	(0.7)	(1.0)	
Collector-emitter	I _{CES}	V _{CE} =V _{CES}	Tj=25°C	-	-	1	mA
cut-off current			Tj=125°C	-	-	10	ШA

Control (Protection) Part :

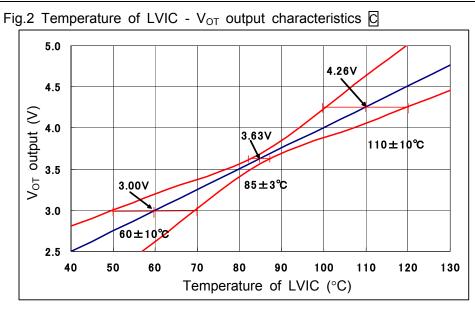
Item	Symbol		Condi	tion	Min.	Тур.	Max.	Unit
Circuit current	I _D	V _D =V _{DB} =15V	Total of V	V _{P1} -V _{PC} ,V _{N1} -V _{NC}	-	-	(3.70)	
		V _{IN} =5V	V _{UFB} -V _{UFS}	,V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}	-	-	(1.30)	m۸
		V _D =V _{DB} =15V	Total of V	V _{P1} -V _{PC} ,V _{N1} -V _{NC}	-	-	(3.50)	mA
		V _{IN} =0V	V _{UFB} -V _{UFS}	,V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}	-	-	(1.30)	
Fo output voltage	V_{FOH}	Vsc=0V, Fo te	erminal pull	-up to 5V by 10kΩ	4.9	-	-	V
	V_{FOL}	Vsc=1V, I _{FO} =1	mA		-	-	1.10	~
Input current	I _{IN}	V _{IN} =5V	V _{IN} =5V			1.5	2.0	mA
Short circuit trip level C	I _{SC}	-20°C≤Tj≤125°	C, V _D =15V	(Note 3)	(59.5)	-	(-)	А
	UV _{DBt}	Tj≤125°C		Trip level	10.0	-	12.0	
Control supply under-	UV_{DBr}			Reset level	10.5	-	12.5	V
voltage protection	UV _{Dt}			Trip level	10.3	-	12.5	v
	UV _{Dr}			Reset level	10.8	-	13.0	
Fault output pulse width	t _{FO}	C _{FO} =22nF		(Note 4)	(1.6)	(2.4)	-	ms
ON threshold voltage A	Vth(on)	Applied between U _P ,V _P ,W _P -V _{PC} ,			-	-	(3.5)	
OFF threshold voltage	Vth(off)	$U_N, V_N, W_N - V_{NC}$			(0.8)	-	-	V
Temperature output C	V _{OT}	LVIC temperat	ure = 85°	C (Note 5)	(3.50)	(3.63)	(3.76)	V
(Nete 2) Chest size vit protocion in functioning only for N aido ICDTs								

(Note 3) Short circuit protection is functioning only for N-side IGBTs.

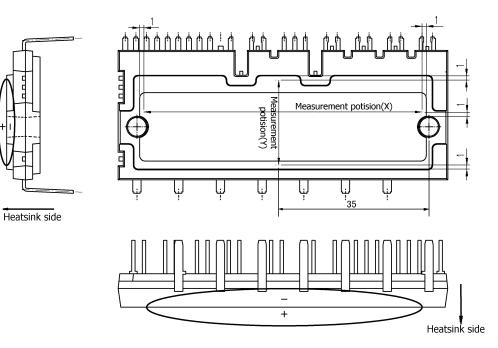
About rating and external resistance Rs for detecting short circuit are under consideration.

(Note 4) Fault signal is output when short circuit or control supply under-voltage protective functions operate at N-side.

The fault output pulse-width t_{FO} depends on the capacitance value of C_{FO} (C_{FO} = 9.3 × 10⁻⁶ × t_{FO} [F])


(Note 5) DIPIPM don't shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protect level that customer defined, controller (MCU) should stop the DIPIPM.

DIPIPM	DPH-5546e-D	
--------	-------------	--


PS22A78-E

Mechanical Characteristics and Ratings:

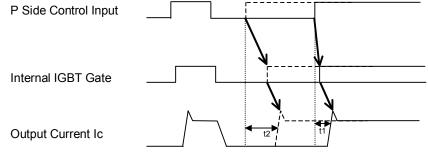
Item	Condition			Тур.	Max.	Unit
Mounting torque	Mounting screw: (M4)	Recommended: 1.18N·m	(0.98)	_	(1.47)	N∙m
Weight			_	(65)	-	g
Heat sink flatness		(Note 6)	(–50)		(100)	μm

Note 6: Flatness measurement position D

DIPIPM	DPH-5546e-D	
	(4/10)	

Transfer-Mold Type Insulated Type

Recommended Operation Conditions :


Item	Symbol	Condition	Rec	commen	ded	Unit
			Min.	Тур.	Max.	
Supply voltage	V _{CC}	Applied between P-NU,NV,NW	350	600	800	V
Control supply voltage	VD	Applied between V _{P1} -V _{PC} ,V _{N1} -V _{NC}	13.5	15.0	16.5	V
Control supply voltage	V _{DB}	Applied between V _{UFB} -V _{UFS} ,V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}	13.0	15.0	18.5	V
Control supply variation	$\Delta V_D, \Delta V_{DB}$		-1	-	+1	V/µs
Arm-shoot-through blocking time	t _{dead}	For each input signal, T _C ≤100°C	(3.3)	-	-	μs
PWM input frequency	f _{PWM}	T _C ≤100°C, T _i ≤125°C	-	-	(15)	kHz
Allowable rms current	Ι _Ο	V_{CC} =600V, V_{D} =15V, f _C =15kHz, P.F=0.8, Sinusoidal PWM, T _C ≤100°C, T _i ≤125°C (Note 7)	-	-	(12.8)	A _{rms}
	PWIN(on)	(Note 8)	(-)	-	-	
Minimum input pulse width D	PWIN(off)	$\begin{array}{c c} 350 \leq V_{CC} \leq 800V, \\ 13.5 \leq V_D \leq 16.5V, \\ 13.5 \leq V_{DB} \leq 16.5V, \end{array} \qquad I_C \leq 35A \\ \end{array}$	(-)	-	-	μs
		$\begin{array}{c c} -20 \leq T_C \leq 100 ^{\circ}\text{C}, \\ \text{N line wiring inductance} \\ \text{less than 10nH (Note 9)} \end{array} 35 < I_C \leq 59.5 \text{A}$	(-)	-	-	
V _{NC} variation	V _{NC}	Potential difference between V _{NC} -NU,NV,NW including surge voltage	-5.0	-	+5.0	V
Junction temperature	Tj		-20	-	125	°C

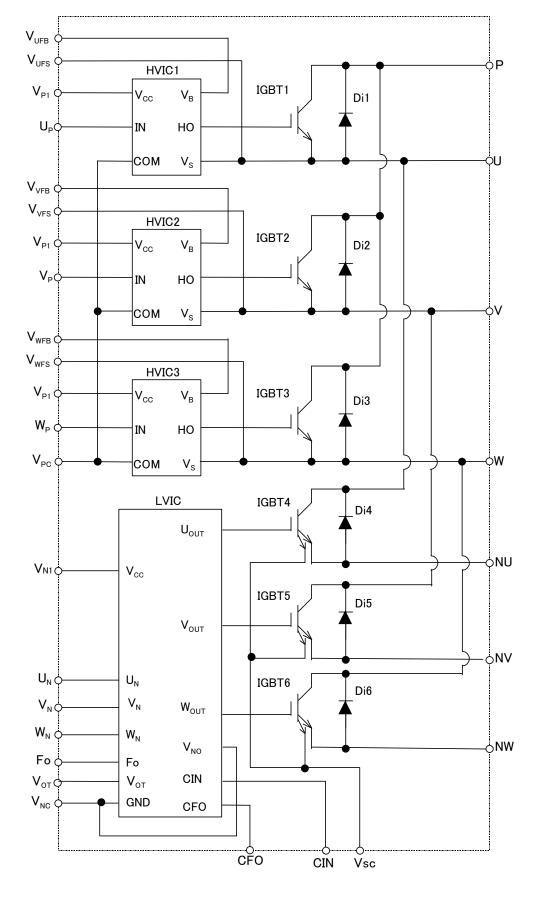
(Note 7) The allowable output rms current also depends on user application conditions.

(Note 8) DIPIPM might make no response to the input on signal with pulse width less than PWIN(on).

(Note 9) IPM might make delayed response (less than about 2µs) or no response for the input signal with off pulse width less than PWIN(off). Please refer Fig. 3 about delayed response.

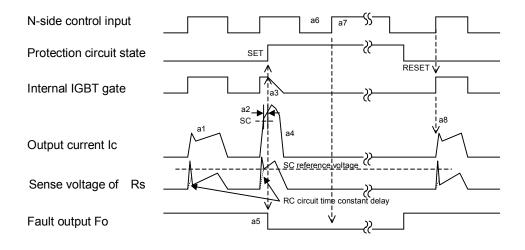
Fig.3 About Delayed Response Against Shorter Input Off Signal Than PWIN(off) (P side only)

Real line…off pulse width>PWIN(off); turn on time t1 Broken line…off pulse width<PWIN(off); turn on time t2

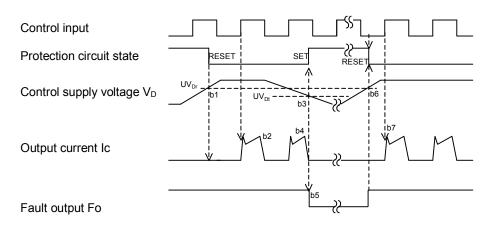

DIPIPM	DPH-5546e-D	
	(5/10)	

Insulated Type

Fig.4 DIPIPM Internal Circuit

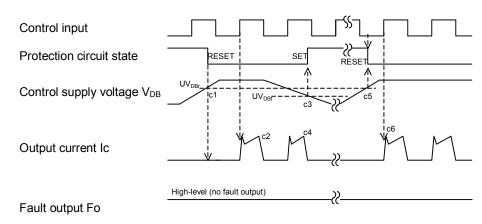

DIPIPM	DPH-5546e-D	
	(6/10)	

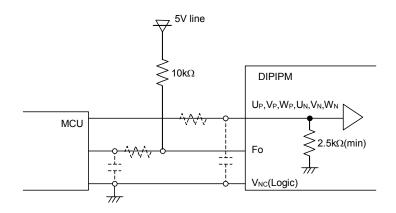
Transfer-Mold Type Insulated Type


Fig.5 Timing Charts of the Protective Functions

[A] Short-Circuit Protection (N-side only, with external resistor and RC filter)

- a1. Normal operation: IGBT turn on and carry current.
- a2. Short circuit current detected (SC trigger).
- a3. All N-side IGBTs' gates are hard interrupted.
- a4. All N-side IGBTs turn OFF.
- a5. Fo output with a fixed pulse width (determined by the external capacitance C_{FO}).
- a6. Input "L": IGBT off.
- a7. Input "H": IGBT on, but during the Fo output period the IGBT will not turn on.
- a8. IGBT turns ON when $L \rightarrow H$ signal is input after Fo is reset.


- [B] Under- Voltage Protection (N-side, UV_D)
- b1. Control supply voltage V_D rises: After V_D level reaches under voltage reset level (UV_{Dr)}, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT turn on and carry current.
- b3. V_D level dips to under voltage trip level. (UV_{Dt}).
- b4. All N-side IGBTs turn OFF in spite of control input condition.
- b5. Fo is output for the period determined by the capacitance C_{FO} but continuously during UV period. b6. V_D level reaches UV_{Dr}.
- b7. Normal operation: IGBT turn on and carry current.


DIPIPM	DPH-5546e-D	
	(7/10)	

Transfer-Mold Type Insulated Type

- [C] Under- Voltage Protection (P-side, $\mathsf{UV}_{\mathsf{DB}}$)
- c1. Control supply voltage V_{DB} rises : After V_{DB} level reaches under voltage reset level (UV_{DBr}), the circuits start to operate when next input is applied.
- c2. Normal operation: IGBT turn on and carry current.
- c3. V_{DB} level dips to under voltage trip level (UV_{\text{DBt}}).
- c4. P-side IGBT turns OFF in spite of control input signal level, but there is no Fo signal output.
- c5. V_{DB} level reaches UV_{DBr} .
- c6. Normal operation: IGBT turn on and carry current.

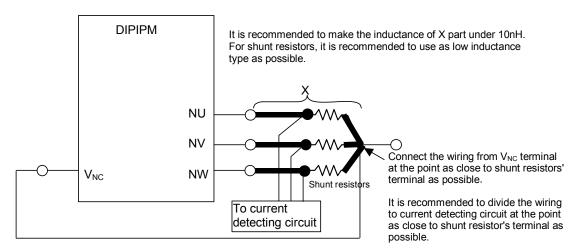
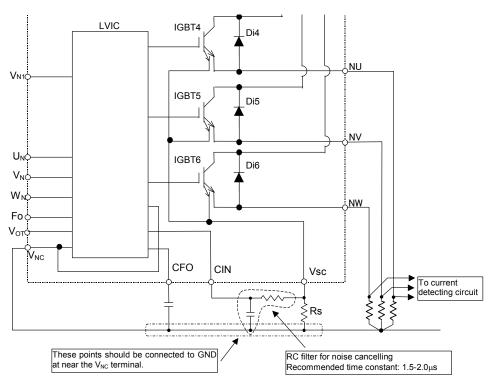


Fig.6 An Instance of Interface Circuit

Note) RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The DIPIPM input signal section integrates a $2.5k\Omega(min)$ pull-down resistor. Therefore, when using a external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.


DIPIPM	DPH-5546e-D	
(8/10)		

Insulated Type

DIPIPM	DPH-5546e-D	
(9/10)		

Transfer-Mold Type

Insulated Type

TENTATIVE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but these are always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1) placement of substitutive, auxiliary circuits, (2) use of non-flammable material or (3) prevention against any malfunction or mishap.

Notice regarding these materials

These materials are intended as reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, chart, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation bv various means. includina the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

DIPIPM	DPH-5546e-D	
	DI II 0040C D	