Small Signal MOSFET

60 V, 310 mA, Single, N-Channel, SOT-23

Features

- Low R_{DS(on)}
- Small Footprint Surface Mount Package
- Trench Technology
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Level Shift Circuits
- DC–DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

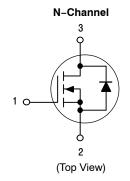
(•	,				
Rating		Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	60	V		
Gate-to-Source Voltage		V _{GS}	±20	V	
Drain Current (Note 1) Steady State t < 5 s	$T_{A} = 25^{\circ}C \\ T_{A} = 85^{\circ}C \\ T_{A} = 25^{\circ}C \\ T_{A} = 85^{\circ}C \\ T_{A} = 85$	ID	260 190 310 220	mA	
Power Dissipation (Note 1) Steady State t < 5 s		P _D	300 420	mW	
Pulsed Drain Current (t _p = 10 μs	I _{DM}	1.2	А		
Operating Junction and Storage Temperature Range	T _J , T _{STG}	–55 to +150	°C		
Source Current (Body Diode)	۱ _S	300	mA		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

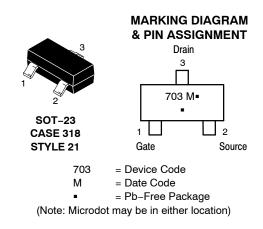
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	417	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	300	

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)




ON Semiconductor®

http://onsemi.com

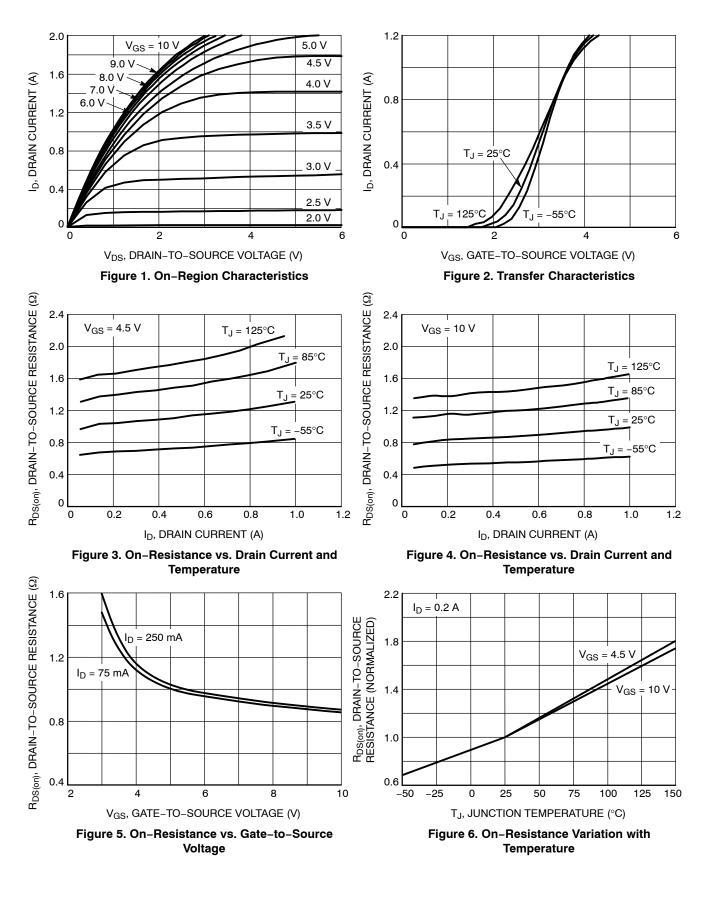
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)	
60 V	3.0 Ω @ 4.5 V	310 mA	
	2.5 Ω @ 10 V		

Simplified Schematic

ORDERING INFORMATION

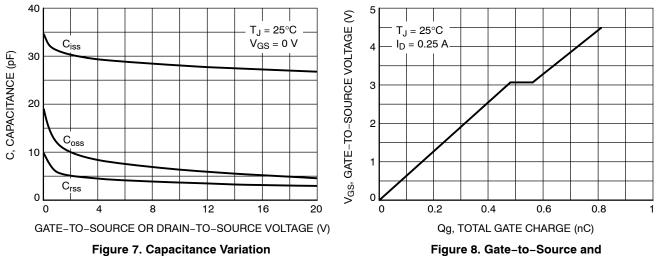
Device	Package	Shipping [†]
2N7002ET1G	SOT-23 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS	-	•		•			-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				75		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_{\rm J} = 25^{\circ}C$			1	μΑ
		$V_{\rm DS} = 60 \text{ V}$	T _J = 125°C			500	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)				•			
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 250 μA	1.0		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 240 mA		0.86	2.5	Ω
		V _{GS} = 4.5 V, I _D = 50 mA			1.1	3.0	1
Forward Transconductance	9 FS	V _{DS} = 5 V, I _D = 200 mA			530		mS
CHARGES AND CAPACITANCES		•					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			26.7	40	pF
Output Capacitance	C _{OSS}				4.6		1
Reverse Transfer Capacitance	C _{RSS}	VDS 1	- 23 V		2.9		1
Total Gate Charge	Q _{G(TOT)}				0.81		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5 V, V _{DS} = 10 V;			0.31		1
Gate-to-Source Charge	Q _{GS}		40 mA		0.48		
Gate-to-Drain Charge	Q _{GD}				0.08		
SWITCHING CHARACTERISTICS, V _{GS}	= V (Note 3)	-		•		-	-
Turn-On Delay Time	t _{d(ON)}				1.7		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 30 V, I _D = 200 mA, R _G = 10 Ω			1.2		1
Turn-Off Delay Time	t _{d(OFF)}				4.8		1
Fall Time	t _f				3.6		1
DRAIN-SOURCE DIODE CHARACTER	ISTICS	-		-	-		-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 200 mA	$T_{J} = 25^{\circ}C$ $T_{J} = 85^{\circ}C$		0.79 0.7	1.2	V

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 3. Switching characteristics are independent of operating junction temperatures

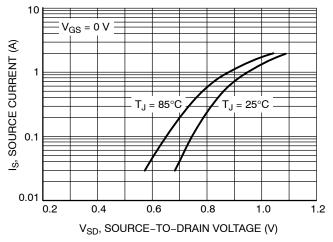
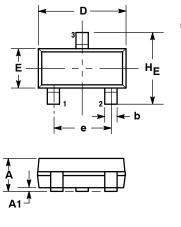

www.BDhtp://httml.com.com/ON/

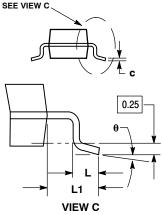
TYPICAL CHARACTERISTICS

www.BDhtp://digeni.comcom/ON/

TYPICAL CHARACTERISTICS

Drain-to-Source Voltage vs. Total Charge

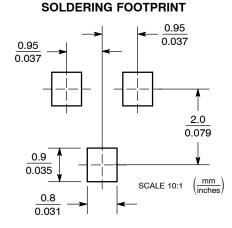

Figure 9. Diode Forward Voltage vs. Current

www.BDhtp://dagemil.com Com/ON/

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AP

NOTES:


STYLE 21: PIN 1. GATE

3. DRAIN

2. SOURCE

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
Е	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
ΗE	2.10	2.40	2.64	0.083	0.094	0.104	
θ	0°		10°	0°		10°	

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro-ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

vww.BDTIC.com/ON/

2N7002E/D