CAT884

Quad Voltage Supervisor

Description

The CAT884 is a four-channel power supply supervisory circuit with high accuracy reset thresholds and very low power consumption. The device features an active-low open-drain output with manual reset to perform basic system reset and voltage monitoring functions for a wide range of electronic products.

CAT884 monitors four system voltages maintaining its reset output active until all the power supply voltages exceed the specified threshold values. The four threshold voltages are user controlled and can be set for system specific requirements over a range of 0.635 V to 5.5 V using external resistor dividers.

The CAT884 lowers system costs and saves board space by integrating four channels into a single, small SOIC 8-lead package and operates over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Quad Voltage Monitoring
- Adjustable Threshold Voltages down to 0.635 V with $\pm 2 \%$ Accuracy
- Low Supply Current: $3 \mu \mathrm{~A}$ (typ)
- $\overline{\text { RESET }}$ Valid to $\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}$
- Immune to Short Supply Transients
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Monitoring of Multiple Power Supply Voltages in μ P Based Systems

Figure 1. Typical Application Circuit

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
SOIC-8
V SUFFIX
CASE 751BD

MARKING DIAGRAM
\# 月 - 月

884V = Device Code
Y = Production Year (Last Digit)
M = Production Month: 1-9, A, B, C
ORDERING INFORMATION

Device	Package	Shipping †
CAT884RVI-GT3	SOIC-8 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

CAT884

Figure 2. CAT884 Block Diagram

Table 1. PIN FUNCTION

Pin Number	Pin Name	
1	VDD	Chip power supply
2	RESET	Open Drain active LOW reset output
3	$\overline{\text { MR }}$	Manual Reset
4	GND	Ground
5	V4	Fourth adjustable under-voltage detector input
6	V3	Third adjustable under-voltage detector input
7	V2	Second adjustable under-voltage detector input
8	V1	First adjustable under-voltage detector input

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 1-\mathrm{V} 4, \overline{\mathrm{MR}}$, RESET to GND	-0.3 to +6.0	V
Continuous RESET Current	20	mA
Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s)	+300	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

CAT884

Table 3. ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Note 1))

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$V_{\text {DD }}$	Operating Voltage		1.5		5.5	V
IDD	Supply Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		3	9	$\mu \mathrm{A}$
VPOR_{-}	V ${ }_{\text {DD }}$ Input Voltage Threshold	V_{DD} low \rightarrow High		2.6		V
		V_{DD} High \rightarrow Low		2.4		

RESET OUTPUT

$\mathrm{V}_{\text {OL }}$	RESET Output Low	$\mathrm{V}_{\mathrm{CC}} \geq 5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA}$		0.05	0.4	V
		$\mathrm{V}_{\mathrm{CC}}<3.3 \mathrm{~V}$, $\mathrm{I}_{\text {SINK }}=1.5 \mathrm{~mA}$		0.05	0.4	
RIN	Internal Pull-Up Resistor			20		k Ω
$\mathrm{TCV}_{\text {TH }}$	Reset Threshold Temperature Coefficient			60		ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {RPD }}$	Delay; $\mathrm{V}_{\text {IN }}$ to Reset	$\mathrm{V}_{\text {IN }}$ falling at $10 \mathrm{mV} / \mathrm{us}$ from V_{TH} to $\left(\mathrm{V}_{\mathrm{TH}}-50 \mathrm{mV}\right)$	1	1.5		$\mu \mathrm{s}$

VOLTAGE THRESHOLD

$\mathrm{V}_{\text {TH }}$	Adjustable Threshold	Monitored voltage decreasing	0.619	0.635	0.651	V
$\mathrm{V}_{\text {HYST }}$	Reset Threshold Hysteresis	Monitored voltage increasing compared to monitored voltage decreasing		10		mV
VTH_VAR	Variance of $\mathrm{V}_{\text {TH }}$ voltages	$\mathrm{V}_{\text {TH }}(\mathrm{max})-\mathrm{V}_{\text {TH }}(\mathrm{min})($ Note 4)		1.8		mV
$\mathrm{t}_{\text {FIL }}$	Glitch Filter Delay	$\mathrm{V}_{\text {MON }}$ glitch to RST low Filter		30		$\mu \mathrm{s}$
$t_{\text {RD }}$	Delay; $\mathrm{V}_{\text {MON }}$ to Reset	$\mathrm{V}_{\text {MON }}$ falling at $10 \mathrm{mV} / \mathrm{\mu s}$ from V_{TH} to $\left(V_{T H}-50 \mathrm{mV}\right)$	1	2		$\mu \mathrm{s}$

MANUAL RESET INPUT

VTHL	MR Input Voltage Low				0.8	V
VTHH	MR Input Voltage High		VDD 0.6			V
$\mathrm{~T}_{\text {PW }}$	MR Minimum Pulse Width		20			ns
IPU	Pull-Up Current			10		$\mu \mathrm{~A}$
t_{MD}	MR to Deassert Reset output delay		40	ns		
$\mathrm{t}_{\text {MR }}$	MR to Assert Reset output delay			30		ns

1. 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature guaranteed by design.
2. The devices are powered from $V_{D D}$.
3. The RESET output is guaranteed to be in the correct state for V_{DD} down to 1 V .
4. Not tested in production but guaranteed by design.

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless specified otherwise.)

Figure 3. $I_{D D}$ Input Current vs. Temperature

Figure 5. Monitored Voltages Decreasing

Figure 4. V_{DD} Input Voltage Threshold (High to Low)

Figure 6. Glitch Filter Delay for Voltage Monitors

Detailed Description

The CAT884 is a space-saving, low-power, quad voltage microprocessor supervisory circuit designed monitor 4 voltage supplies.

Applications Information Reset Output

CAT884 provides an active LOW system reset signal via an open drain output which requires an external pull-up resistor to an external power supply. This supply can be less than or greater than V_{DD}, but should not exceed 5.5 V . When the external pull-up voltage is greater than V_{DD} reverse current flow from the external pull-up voltage to V_{DD} is prevented by CAT884's internal circuitry.
V_{DD} is also a monitored voltage in CAT884 with thresholds set for 2.6 V rising and 2.4 V falling. When any monitored supply drops below its threshold, the reset output asserts LOW and remains LOW as long as V_{DD} is above 1.0 V .

Figure 7. Interfacing to Different Logic-Supply Voltage

Figure 8. Operational Timing Diagram

Adjustable Thresholds

CAT884 allows users to create 4 custom voltage thresholds. The threshold voltage at each adjustable input is typically 0.635 V . Monitoring of voltages greater than 0.635 V requires a resistor-divider network to be connected to the circuit (Figure 9).

$$
\mathrm{V}_{\mathrm{IN}}=0.635 \mathrm{~V} \times \frac{(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2}
$$

or, written in terms of R1:

$$
\mathrm{R} 1=\mathrm{R} 2\left(\left(\frac{\mathrm{~V}_{\mathrm{IN}}}{0.635 \mathrm{~V}}\right)-1\right)
$$

Because the CAT884 has a guaranteed input current of less than 50 nA on the monitoring inputs, resistor values up to $1,000 \mathrm{k} \Omega$ can be used for R 2 with $<1 \%$ error.

Each of the 4 monitor inputs is also equipped with a glitch canceling circuit which filters out noise spikes and transients $30 \mu \mathrm{~s}$ or shorter in duration. For applications where greater noise immunity is required, connect a capacitor between each input pin and ground (in parallel with R2), placing the capacitor and resistor very close to CAT884's package.

Unused Inputs

Connect any unused monitor inputs to a supply voltage greater in magnitude than their specified threshold voltages; use V_{DD} for normal operation (device power-supply pin). Do not connect unused monitor inputs to ground or allow them to float.

POR

Applying power to the CAT884 activates a POR circuit which activates the reset output (active LOW). At power-up POR prevents the system microprocessor from starting to operate with insufficient voltage and prior to stabilization of the clock oscillator. It ensures that operation is precluded until internal registers are properly loaded and FPGA's have downloaded their configuration data. The reset signal remains active until all monitored power supplies have risen above their minimum preset voltage levels.

Power-Supply Bypassing

While not required for proper operation it is good practice to bypass CAT884's power supply with a $0.1 \mu \mathrm{~F}$ capacitor placed close to the VDD pin.

Figure 9. Setting Monitor Voltage

PACKAGE DIMENSIONS

SOIC 8, 150 mils
CASE 751BD-01
ISSUE O

SYMBOL	MIN	NOM	MAX	
A	1.35		1.75	
A1	0.10		0.25	
b	0.33		0.51	
c	0.19		0.25	
D	4.80		5.00	
E	5.80		6.20	
E1	3.80		4.00	
e	1.27 BSC			
h	0.25		0.50	
L	0.40		1.27	
θ	0°			

TOP VIEW

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MS-012.

Example of Ordering Information (Note 7)

5. All packages are RoHS-compliant (Lead-free, Halogen-free).
6. The standard plated finish is NiPdAu.
7. The device used in the above example is a CAT884RVI-GT3 (Trip Level, SOIC, Industrial Temperature, NiPdAu, Tape \& Reel, 3,000/Reel).
8. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and (iN) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative

