Digital Transistors (BRT) R1 = 2.2 k\Omega, R2 = 47 k\Omega

NPN Transistors with Monolithic Bias Resistor Network

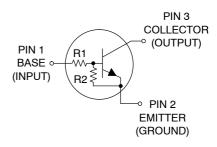
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

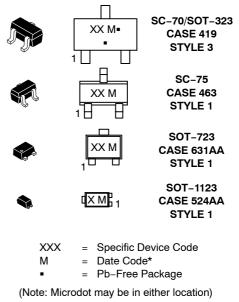
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	12	Vdc
Input Reverse Voltage	V _{IN(rev)}	5	Vdc


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

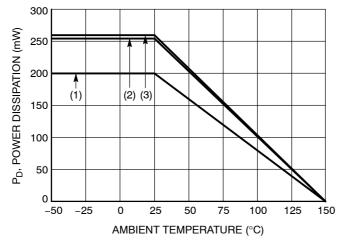

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN5235T1G, SMUN5235T1G	8M	SC-70/SOT-323	3,000 / Tape & Reel
DTC123JET1G	8M	SC-75	3,000 / Tape & Reel
DTC123JM3T5G	8M	SOT-723	8,000 / Tape & Reel
NSBC123JF3T5G	V	SOT-1123	8,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SC-75 and SC-70/SOT-323; Minimum Pad
 SOT-1123; 100 mm², 1 oz. copper trace
 SOT-723; Minimum Pad

Figure 1. Derating Curve

www.BDhtp://themi.comcom/ON/

Table 2. THERMAL CHARACTERISTICS

Characteristic		Symbol	Max	Unit
THERMAL CHARACTERISTICS (SC-70/SOT-323) (MUN5235)				•
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	202 310 1.6 2.5	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	618 403	°C/W
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$R_{ extsf{ heta}JL}$	280 332	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
Thermal Characteristics (SC-75) (DTC123JE)				•
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	200 300 1.6 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	600 400	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
Thermal Characteristics (SOT-723) (DTC123JM3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	260 600 2.0 4.8	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	480 205	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
Thermal Characteristics (SOT-1123) (NSBC123JF3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 3) (Note 4) (Note 3) (Note 4)	P _D	254 29 2.0 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient		R_{\thetaJA}	493 421	°C/W
Thermal Resistance, Junction to Lead	(Note 3)	$R_{\theta JL}$	193	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C

FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

www.BDfr://frem.com/ON/

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	-	100	nAdc	
Collector-Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	_	500	nAdc	
Emitter-Base Cutoff Current ($V_{EB} = 6.0 \text{ V}, I_C = 0$)	I _{EBO}	_	_	0.2	mAdc	
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _{(BR)CBO}	50	_	-	Vdc	
Collector-Emitter Breakdown Voltage (Note 5) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _(BR) CEO	50	_	-	Vdc	
ON CHARACTERISTICS		-	-		-	
DC Current Gain (Note 5) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	80	140	-		
Collector – Emitter Saturation Voltage (Note 5) $(I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA})$	V _{CE(sat)}	-	_	0.25	Vdc	
Input Voltage (off) (V _{CE} = 5.0 V, I _C = 100 μ A)	V _{i(off)}	-	0.6	-	Vdc	
Input Voltage (on) $(V_{CE} = 0.2 \text{ V}, I_C = 5.0 \text{ mA})$	V _{i(on)}	-	0.8	_	Vdc	
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	-	_	0.2	Vdc	
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, \text{ V}_{\text{B}} = 0.5 \text{ V}, \text{ R}_{\text{L}} = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	_	_	Vdc	
Input Resistor	R1	1.5	2.2	2.9	kΩ	
Resistor Ratio	R ₁ /R ₂	0.038	0.047	0.056		

5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

www.BDhtp://fremi.com/ON/

TYPICAL CHARACTERISTICS MUN5235, DTC123JE, DTC123JM3

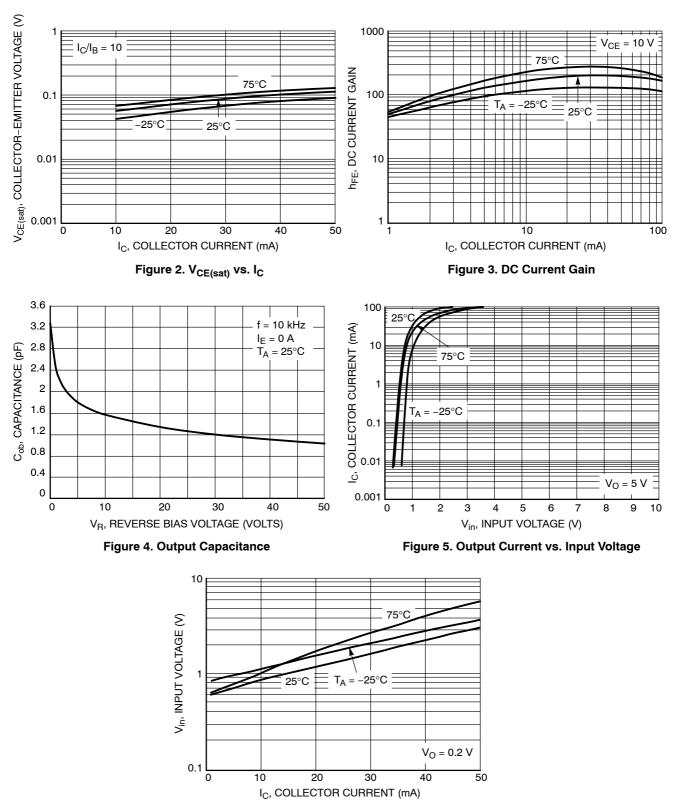
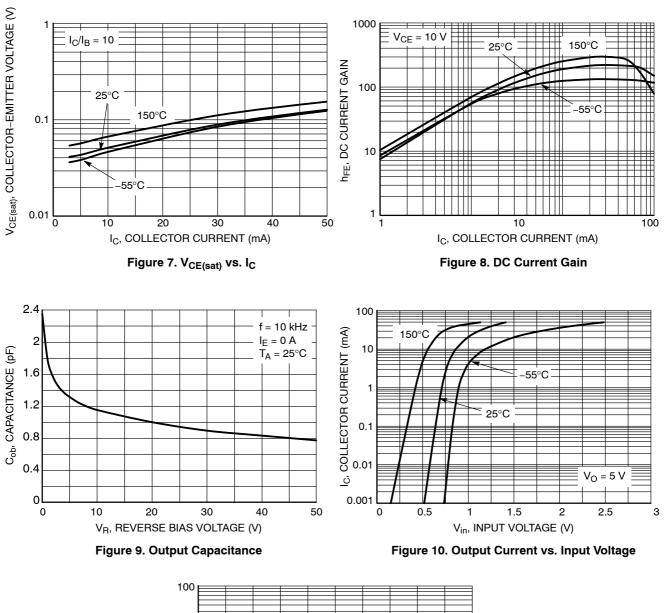



Figure 6. Input Voltage vs. Output Current

www.BDhelline.com/ON/

TYPICAL CHARACTERISTICS NSBC123JF3

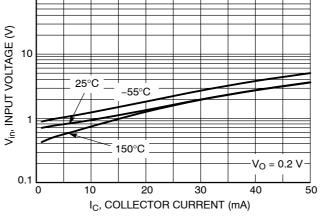
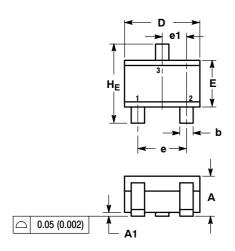



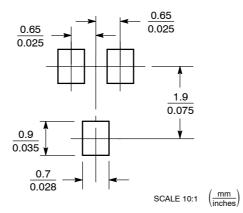
Figure 11. Input Voltage vs. Output Current

www.BDhtp://unsemil.com.com/ON/

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE N**

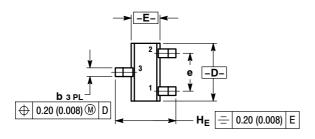
A2

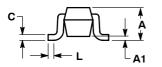

NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF				0.028 REF	-
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
Е	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC		0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*




*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

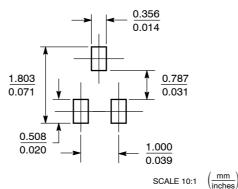
www.BDhtp://nsemi.com.com

PACKAGE DIMENSIONS

SC-75/SOT-416 **CASE 463 ISSUE F**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

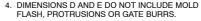

2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

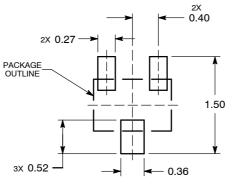
SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


www.BDhtp://Insemil.com

PACKAGE DIMENSIONS

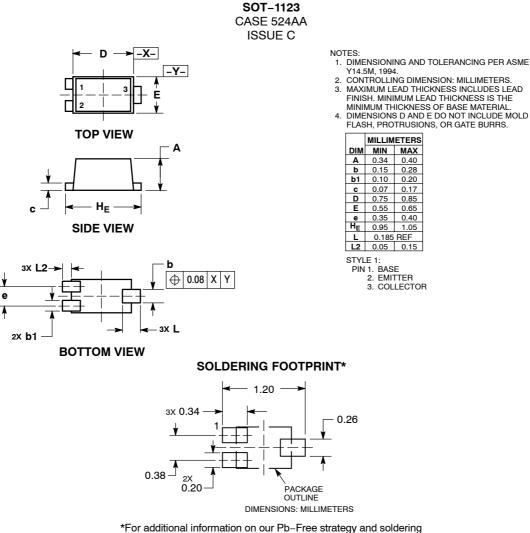
NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS				
DIM	MIN NOM MAX				
Α	0.45	0.50	0.55		
b	0.15	0.21	0.27		
b1	0.25	0.31	0.37		
С	0.07	0.12	0.17		
D	1.15	1.20	1.25		
Е	0.75	0.80	0.85		
е	0.40 BSC				
ΗE	1.15	1.20	1.25		
L	0.29 REF				
L2	0.15	0.20	0.25		
STYLE 1:					

PIN 1. BASE 2. EMITTER 3. COLLECTOR

RECOMMENDED **SOLDERING FOOTPRINT***



DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

www.BDhtp://hsemi.comcom/

PACKAGE DIMENSIONS

*For additional information on our PD-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC preserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

www.BDTIC.com/ON/

Phone: 421 33 790 2910

Phone: 81-3-5817-1050

Japan Customer Focus Center