LB11862MC

Monolithic Digital IC Single-Phase Full-Wave Fan Motor Driver

Overview

The LB11862MC is a single-phase bipolar drive motor driver that easily implements direct PWM motor drive systems with excellent efficiency. The LB11862MC is optimal for fan motor drive in personal computer power supply systems and CPU cooling fan systems.

• Built-in thermal shutdown circuit.

Features

- Single-phase full-wave drive
- Built-in lock protection and automatic recovery circuits

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		17	V
Output current	IOUT max		0.8	А
Output withstand voltage	VOUT max		17	V
Output withstand voltage on RD output pin	V _R max		17	V
RD output current	I _R max		5	mA
HB output current	I _B max		10	mA
Input voltage ST pin	V _{ST} max		15	V
Allowable power dissipation	Pd max	When mounted on a circuit board *1	0.75	W
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

*1 Specified circuit board : $114.3 \times 76.1 \times 1.6$ mm³, glass epoxy.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LB11862MC

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.8 to 16.8	V
ST input High-level voltage	V _{ST} H		3 to 14	V
ST input Low-level voltage	VSTL		-0.3 to 0.4	V
Hall input common-mode input	VICM		0.2 to V _{CC} -1.5	V
voltage range				

Electrical Characteristics Unless otherwise specified $Ta = 25^{\circ}C$, $V_{CC} = 5V$

Paramotor	Symbol	Conditions	Ratings			Linit
Falameter	Symbol	Conditions	min	typ	max	Unit
Circuit current	I _{CC} 1	Operation mode (CT=L, ST=L)		12	17	mA
	I _{CC} 2	Lock protection mode (CT=H, ST=L)		2.5	4.0	mA
	I _{CC} 2	Standby mode (ST=H)		110	150	μA
Lock detection capacitor charging current	I _{CT} 1	V _{CT} = 0.2V	1.5	2.1	3.0	μA
Capacitor discharging current	I _{CT} 2	V _{CT} = 3.0V	0.21	0.35	0.50	μΑ
Capacitor charging / discharging current ratio	RCT	$R_{CD} = I_{CT} \frac{1}{I_{CT}^2}$	5.0	6.0	8.0	
CT charging voltage	V _{CT} 1		2.55	2.75	2.95	V
CT discharging voltage	V _{CT} 2		1.6	1.8	2.0	V
Output Low-level voltage	V _O L	I _O = 200mA		0.2	0.3	V
Output High-level voltage	V _О Н	I _O = 200mA	3.9	4.1		V
Hall input sensitivity	V _{HN}	Zero peak value (including offset hysteresis)		7	15	mA
RD output pin Low-level voltage	V _{RD} L	I _{RD} = 5mA		0.1	0.3	V
RD output pin leakage current	I _{RD} L	V _{RD} = 15V			30	μΑ
HB output Low-level voltage	V _{HB} L	I _{HB} = 5mA		1.0	1.3	V
ST pin input current	IST	V _{ST} = 5V		75	100	μA

Package Dimensions

unit : mm (typ) 3426A

Pin Assignment

Truth Table

ST	IN-	IN+	СТ	OUT1	OUT2	RD	HB	Mode
High	-	-	-	OFF	OFF	OFF	OFF	Standby
	High	Low		High	Low		Low	Operating
Low	Low	High	LOW	Low	High	Low		
			High	OFF	OFF	OFF	Low	Lock protection

(The RD output is latched at "Low"-level in operating mode and "High"-level in stop mode.)

Block Diagram

Application Circuit Example

- 1. D1 is for protection against breakdown in case of reverse connection of power supply and mat is deleted when there is no problem.
- 2. C2 is necessary to allow the kick-back regenerative current to flow when C2 is to be used with the coil current of 500mA or more.
- 3. CT to be connected to GND when not used.
- 4. RD, ST and HB pins to be OPEN when not used.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Af