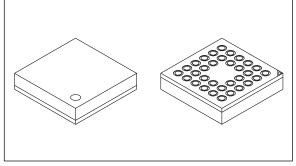
LV71402RA

Advance Information

Bi-CMOS LSI

1.5A, 2-Cell Li-ion Battery DC-DC USB Charger

3 Current Modes (500 mA / 900 mA / 1.5 A)


Overview

The LV71402RA is a 1ch DC-DC boost converter which is suitable for charge control usage such as charging 2Cell Li-ion battery (e.g. D-SLR, DVC) from USB port. Since it is corresponding to 3 current modes (500mA/900mA/1.5A) from the port, when it determines that there is no current capability on the port, it will automatically set suppliable current mode. By having a variety of internal protection circuits, inrush current generated by connecting/removing USBs or Li-ion batteries can be controlled – Enables safe charging.

LV71402RA also has an internal mode that is not only used as Li-ion battery charger, but also as a VOUT=8.35V Fixed boost converter which will enable set driving without batteries.

Function

- 1ch Synchronous boost converter (Internal FET)
- LDO Trickle charge at Low voltage
- 3-mode-compatible USB supply current (500mA/900mA/1.5A)
- USB Supply current capability auto-detection
- Internal Soft start function (Current slope : 10msec)
- Automatic recharging function
- (Recharges when VOUT is below 7.8V after judged as fully-charged)
- Switching frequency 1MHz/2MHz Switching function
- Charge/Boost Mode switching function
- LED Pin/CHG_OK Pin for Charging condition check
- Input voltage operation range : 4.0 to 6.0V
- Current at Shutdown < 1uA
- Full-charged voltage : 8.35V±0.5%
- High efficiency charge 93%
- Charging inception Anomaly detection
- (2 hours of LDO Trickle charge will set Standby mode)
- I/O over-voltage protection OVP
- I/O over-current protection OCP
- Thermal Shutdown
- Thermistor temperature detection
- Pin control/I²C bus control selectable

FLGA32(3.5X3.5)

This document contains information on a new product. Specifications and information herein are subject to change without notice.

* I²C Bus is a trademark of Philips Corporation.

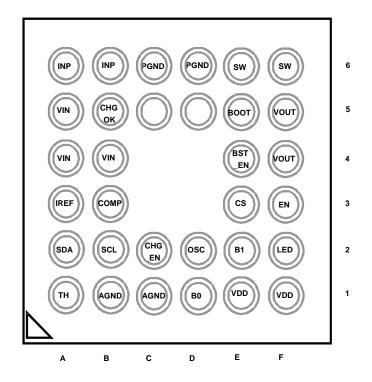
Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

PARAMETER	SYMBOL	CONDITION	RATING	UNIT
Supply voltage	VINmax	VIN	–0.3 to 9.0	V
	VPINmax1	B0,B1,CHG_EN,BST_EN,TH,SDA, SCL,CS,VDD,IREF,OSC,COMP, CHG_OK	-0.3 to 4.0	v
Pin voltage	VPINmax2	EN,LED,INP	-0.3 to 9.0	V
	VPINmax3	SWOUT,VOUT	-0.3 to 10.0	V
	VPINmax4	BOOT	-0.3 to 14.0	V
Allowable power consumption	Pd max	With a designated board *1	1.8	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-40 to +125	°C
Junction temperature	Tjmax		+150	°C

*1 : Designated board : 60×60×1.6 mm 2S2P_Glass epoxy

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

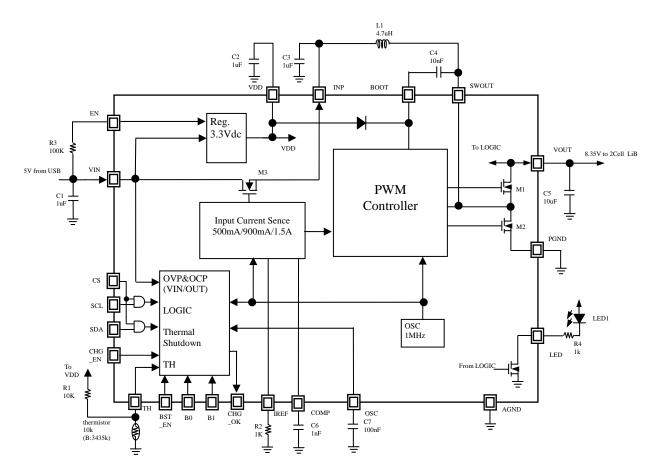

Recommended Operating Conditions at $Ta = 25^{\circ}C$

PARAMETER	SYMBOL	CONDITION	RATING	UNIT
Supply-voltage range	VIN		4.0 to 6.0	V

Electrical Characteristics at Ta = 25°C, VIN = 5.0V

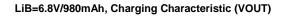
T_EN,
· · _ _ · · · ·
)
2)

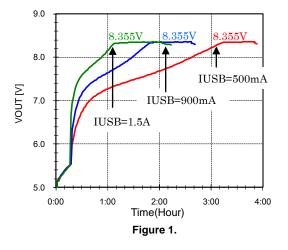
PIN CONFIGURATION (Top view)

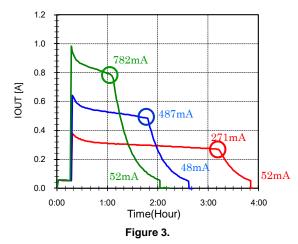


PIN FUNCTIONS

No.	PIN NAME	DESCRIPTION
E1,F1	VDD	Regulator output pin. Provides stable voltage of 3.3V from VIN power supply.
A4,A5,B4	VIN	Pin to provide 5V from USB port.
A6,B6	INP	Converter power supply pin after Input Current Limit FET (M3).
D1	B0	Logic input pin to determine the input current limitation.
E2	B1	Logic input pin to determine the input current limitation.
A3	IREF	Programmed current of the input current limitation. Connect a resistor in between this pin and GND to determine the input current value.
C2	CHG_EN	Charge Enable Input. L = Stop charging operation H = Charging operation
F3	EN	This ICs Enable pin. When EN pin is "H", VDD powers up and I ² C registers are ready for communication.
F4,F5	VOUT	Boost output pin. Boosted voltage will be generated by the converter operation. Executes charging by connecting a battery in between this pin and PGND. Also Connects 10µF capacitor in parallel with the battery.
E5	BOOT	Hi-side gate voltage driving pin of a converter. Connect capacitor in between SWOUT and BOOT pins.
E6,F6	SWOUT	Switching operation pin of a converter.
D2	OSC	Capacitor connecting pin for timing clock of an internal logic. The clock is set to 32Hz with a 0.1uF ceramic capacitor.
B3	COMP	GM amp phase compensating pin. Phase compensation R embedded. Determines time constant of GM Amp by its external capacity value.
E3	CS	I ² C interface enable input pin. When CS pin is "H", I ² C_data can be accepted.
F2	LED	Output pin to light up LED while charging the battery.
B1,C1	AGND	Analog Ground
C6,D6	PGND	Power Ground
A1	ТН	Thermistor input pin. Connect a NTC Thermistor from TH to GND. Connect a $10k\Omega$ resistor from TH to VDD. Charging is suspended when TH $\ge 2.4V$ and TH $\le 0.78V$. Set externals OPEN when not using temperature sensing function.
B5	CHG OK	Logic output pin. This will be "H" when fully-charged.
A2	SDA	I ² C data input pin.
B2	SCL	I ² C clock input pin.
E4	BST_EN	Charging/Boosting mode switching pin. "L" = Charge mode, "H" = Boost mode.


Total : 30PINS


BLOCK DIAGRAM


TYPICAL CHARACTERISTICS

(VIN = 5V, CIN = 1 μ F, CINP = 1 μ F, CVDD = 1 μ F, COUT = 10 μ F, LOUT = 4.7 μ H, Ta = +25°C)

LiB=6.8V/980mAh, Charging Characteristic (IOUT)

CC Mode Switching Waveform (VOUT = 7.4V, IUSB = 1.5A Mode)

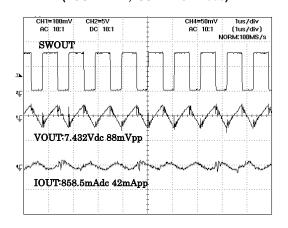
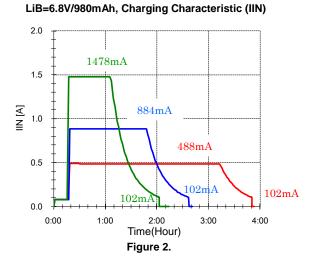
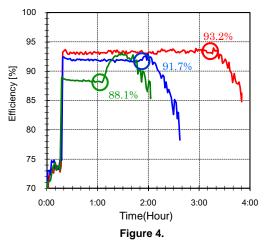




Figure 5.

USB Current Capability Detection Waveform (USB Supply Current = 0.7A, IUSB = 0.9A Mode)

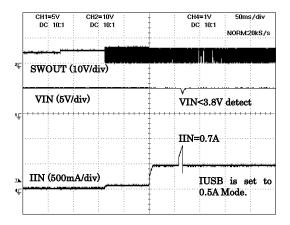
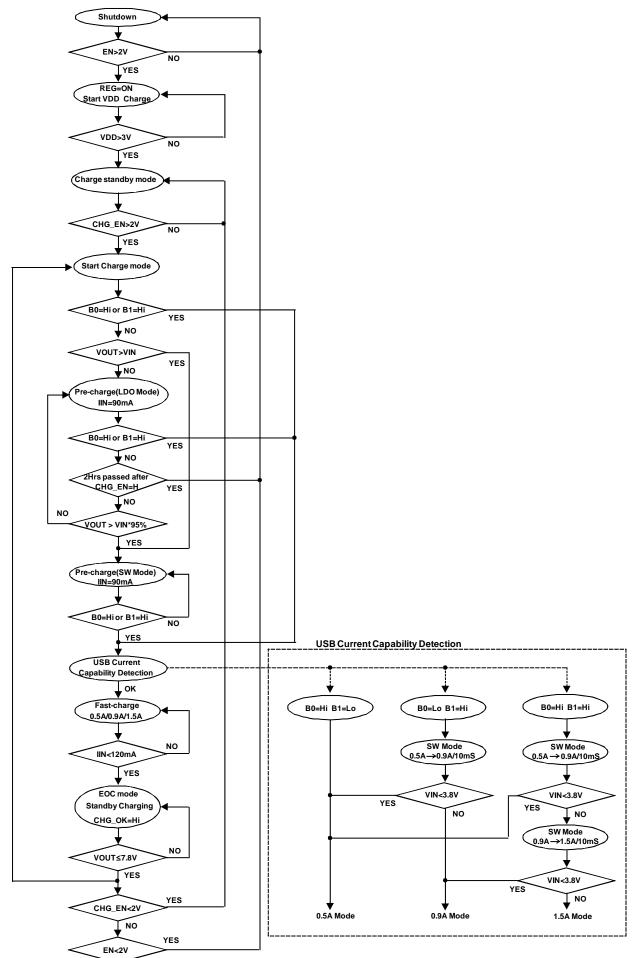



Figure 6.

FLOW CHART

ABOUT I²C-BUS

1. A Method of data transfer

This IC has adopted Serial data controlling method (I²C-BUS) and controls with SCL and SDA pins, and CS pin for noise suppression. When CS pin is "H", I²C interface accepts data transfer of SCL and SDA. When CS pin is "L", I²C interface doesn't accept them. If CS pin is not used, it must be pulled up to VDD pin. A Method of data transfer is below. First, set Data transfer start condition (*1) by using these two pins, then input 8-bit data to SDA pin. This 8-bit data needs to be synchronized to SCL pin clock. It is necessary to start transferring from MSB (Most Significant Bit) side. The 9th-bit is going to be the ACK (Data transfer acknowledge) period, and while SCL pin is "H", this IC will "Pull-down" an SDA pin. After transferring necessary data, complete transferring by setting End of data transfer condition (*2) by using two pins.

*1) Define by falling SDA while SCL is in "H" period.

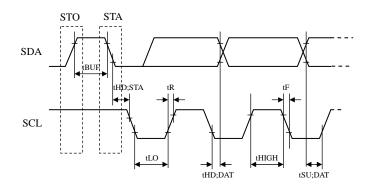
*2) Define by rising SDA while SCL is in "H" period.

2. Data transfer format

After transferring the Start condition, transfer Slave address, followed by sub-address, control data, Ending condition to the SDA pin (See Diagram 1). Since this IC does not have Auto address increment function, Slave address, Sub-address, and Control data must be transferred as a set. The slave-address is configured in 7-bit with having its 8th-bit as a READ/WRITE setting bit. Therefore, set "L" at WRITE mode, and set "H" at READ mode.

Write Mode

	STA	IC-ADD	R/W	Α	SUB-ADD	Α	DATA	Α	STO	
-	STA : Start Condition STO : Stop Condition A [1Bit] : ACK									
	IC-A	.DD [7Bit] : Sla	ave addre	SS	R/V	V[1Bit]	: Read/Write(R	lead:1/\	Nrite:0)	
	SUB	-ADD [8Bit] :	Sub addre	ess	DATA [88	Bit] : Da	ata Bits			


• Read Mode

	STA	IC-ADD	R/W	Α	STATUS1	Α	STATUS2	Α	STO
STATUS1/2[8Bit] : Status Bits									

Diagram 1 : Data configuration diagram

3. Input Timing

Transfer Input data in a timing shown in Diagram 2 (See Table 1).

STA : Start Condition STO : Stop Condition

Diagram 2 : Input timing

Table 1 : Electrical characteristics at Ta = 25 °C

		STAN	DARD	HIGH SPEE	Ð	
PARAMETER	SYMBOL		max.	min.	max.	UNIT
SCL Frequency	FSCL	0	100	0	400	kHz
BUS free time between stop - start	tBUF	4.7	-	1.3	-	μs
HOLD time of start, restart condition	tHD;STA	4.0	-	0.6	-	μs
L time of SCL	tLOW	4.7	-	1.3	-	μs
H time of SCL	tHIGH	4.0	-	0.6	-	μs
Set-up time of restart condition	tSU;STA	4.7	-	0.6	-	μs
HOLD time of SDA	tHD;DAT	0	-	0	0.9	μs
Set-up time of SDA	tSU;DAT	250	-	100	-	ns
Rising time of SDA, SCL	tR	-	1000	20+0.1Cb(*3)	300	ns
Falling time of SDA, SCL	tF	-	300	20+0.1Cb(*3)	300	ns

*3) Cb : Total capacitance of one BUS line (unit : pF)

I²C-BUS REGISTER MAP

WRITE : IC Address: 10111010

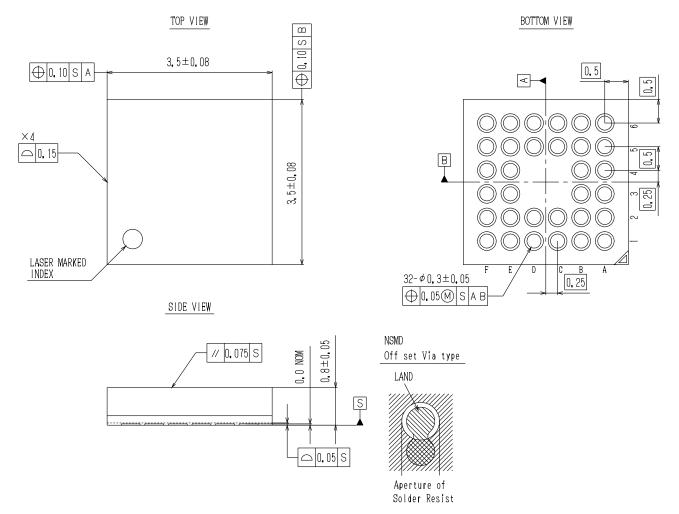
E.m.e	SUB	MSB							LSB
Func.	ADDRESS	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
CTL1	0	CHG_BUS	CHG_EN	BST_BUS	BST_EN	PWM_FREQ	IUSB_BUS	IUSB[1:0]	
CILI	0	0	0	0	0	0	0	0	0
CTL2	1	VRECH	IG[1:0]	EOC[1	:0]	SWPCI	HG[1:0]	LDOPO	CHG[1:0]
CILZ	I	1	0	0	0	0	0	0	0
CTL3	2	ERR_L	ED[1:0]						
CILS	2	1	0	0	0	0	0	0	0
	3								
	5	0	0	0	0	0	0	0	0
TEST1	4		TEST MODE (WRITE prohibited)						
TEST2	5			TES	ST MODE (V	VRITE prohibited	d)		
TEST3	6			TES	ST MODE (V	VRITE prohibited	d)		
TEST4	7			TES	ST MODE (V	VRITE prohibited	(t		
TEST5	8			TES	ST MODE (V	VRITE prohibited	(t		
TEST6	9		TEST MODE (WRITE prohibited)						
TEST7	10		TEST MODE (WRITE prohibited)						
TEST8	11		TEST MODE (WRITE prohibited)						
TEST9	12		TEST MODE (WRITE prohibited)						

READ : IC Address: 10111011

Function	MSB							LSB
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
READ1	CHG_OK	ERR	VIN_LO	UVLO	VIN_OVP	VOUT_OVP	VIN_OCP	LDO2H
READ2	TH	TSD	LDO_PG	SW_PG	BST_MODE	CHG_MODE	IUSB_	MODE

I²C-BUS Registers

WRITE : IC Address: 10111010


SUB_ ADDRESS	Bit	Name	Init	DESCRIPTION
	[7]	CHG_BUS	0b	Pin/I ² C Control : 0b = CHG_EN Pin control , 1b = I ² C control
	[6]	CHG_EN	0b	Charge Enable (When CHG_BUS = 1b) : 0b = Charge disable , 1b = Charge enable
	[5]	BST_BUS	0b	Pin/I^2C Control : 0b = BST_EN Pin control , 1b = I^2C control
0 [CTL1]	[4]	BST_EN	0b	Boost Mode Enable (When BST_BUS=1b) : 0b = Charge mode, 1b = Boost mode.
	[3]PWM_FREQ[2]IUSB_BUS	0b	PWM Frequency : 0b = 1MHz , 1b = 2MHz	
		0b	Pin/l^2C Control : 0b = B1/B0 Pin control , 1b = l^2C control	
	[1]		00b	USB Input Current Limit (When IUSB_BUS=1b) : 00b = LDOPCHG/SWPCHG Set value
	[0]	IUSB[1:0]		01b = 500mA, $10b = 900mA$, $11b = 1500mA$
	[7]	VRECHG[1:0]	10b	Battery Recharge Voltage :
	[6]			00b = 7.0V, 01b = 7.4V, 10b = 7.8V , 11b = Not Recharging
	[5]	EOC[1:0]	00b	End Of Charge (Input current is detected at IIN)
1 [CTL2]	[4]	200[1.0]	000	00b = 120mA , 01b = 150mA, 10b = 180mA, 11b = 210mA
	[3]	SWPCHG[1:0]	00b	Pre-Charge Current Limit (SW Mode) :
	[2]		000	00b = 90mA , 01b = 120mA, 10b = 150mA, 11b = 180mA
	[1]	LDOPCHG[1:0]	00b	Pre-Charge Current Limit (LDO Mode) :
	[0]		000	00b = 90mA , 01b = 120mA, 10b = 150mA, 11b = 180mA
2 (CTI 2)	[7]		10b	LED display at Anomaly detection (Charge suspend) 00b = Lights-out, 01b = blinking at 2Hz, 10b = blinking at 4Hz ,
2 [CTL3]	[6]	ERR_LED[1:0]	100	11b = Lights-on

READ : IC Address : 10111011

	Bit	Name	DESCRIPTION
	[7]	CHG_OK	End of charge Detection : 0b = Not End of charge, 1b = End of charge
	[6]	ERR	Charge Error : 0b = Not Error, 1b = Error (When protection circuits work)
READ1	[5]	VIN_LO	VIN Low Voltage Detection : 0b = VIN>3.8V, 1b = VIN<3.8V
	[4]	UVLO	VDD Low Voltage Detection : 0b = VDD>2.8V, 1b = VDD<2.8V
	[3]	VIN_OVP	VIN Over Voltage Detection : 0b = VIN<6.3V, 1b = VIN>6.3V
	[2]	VOUT_OVP	VOUT Over Voltage Detection : 0b = VOUT<9V, 1b = VOUT>9V
	[1]	VIN_OCP	VIN Over Current Detection : 0b = VIN Current< 2A, 1b = VIN Current > 2A
	[0]	LDO2H	LDO Mode Safety Timer Detection : 0b = LDO Mode<2hrs, 1b = LDO Mode>2hrs
	[7]	TH	Thermistor Sense Detection : 0b = Normal Charge, 1b = Thermistor Cold/Hot Temperature
	[6]	TSD	Thermal Shutdown Detection : 0b = Tj <140°C, 1b = Tj >160°C
	[5]	LDO_PG	VOUT Voltage Detection 1 : 0b = VOUT <vin*95%, 1b="VOUT">VIN*95%</vin*95%,>
READ2	[4]	SW_PG	VOUT Voltage Detection 2 : 0b = VOUT<7.8V, 1b = VOUT>7.8V
	[3]	BST_MODE	Boost Mode : 0b = Charge Mode, 1b = Boost Mode
	[2]	CHG_MODE	Charge Mode : 0b = LDO Mode, 1b = SW Mode
	[1] [0]	IUSB_MODE	USB Input Current Limit Condition (Internal Logic Condition) : 00b = Pre-Charge, 01b = 500mA, 10b = 900mA, 11b = 1500mA

Package Dimension

FLGA32(3.5X3.5) unit : mm

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemify and hold SCILLC and its officers, employees, subsidiaries, affliates, and feastributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright have and is not for resale in any manner.