MAC997 Series

Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed for use in solid state relays, MPU interface, TTL logic and any other light industrial or consumer application. Supplied in an inexpensive TO-92 package which is readily adaptable for use in automatic insertion equipment.

- One-Piece, Injection-Molded Package
- Blocking Voltage to 600 Volts
- Sensitive Gate Triggering in Four Trigger Modes (Quadrants) for all possible Combinations of Trigger Sources, and especially for Circuits that Source Gate Drives
- All Diffused and Glassivated Junctions for Maximum Uniformity of Parameters and Reliability
- Improved Noise Immunity (dv/dt Minimum of $20 \mathrm{~V} / \mu \mathrm{sec}$ at $110^{\circ} \mathrm{C}$)
- Commutating di/dt of $1.6 \mathrm{Amps} / \mathrm{msec}$ at $110^{\circ} \mathrm{C}$
- High Surge Current of 8 Amps
- Device Marking: Device Type, e.g., for MAC997A6: MAC7A6, Date Code
- These devices are available in Pb -free package(s). Specifications herein apply to both standard and $\mathrm{Pb}-\mathrm{free}$ devices. Please see our website at www.onsemi.com for specific $\mathbf{P b}$-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.
MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage $\left(\mathrm{T}_{J}=-40 \text { to }+110^{\circ} \mathrm{C}\right)^{(1)}$ Sine Wave 50 to 60 Hz , Gate Open MAC997A6,B6 MAC997A8,B8	$V_{\text {DRM, }}$ $V_{\text {RRM }}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	Volts
On-State RMS Current Full Cycle Sine Wave 50 to 60 Hz ($\mathrm{T}_{\mathrm{C}}=+50^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {T(RMS })}$	0.8	Amp
Peak Non-Repetitive Surge Current One Full Cycle, Sine Wave 60 Hz ($\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$)	$I_{\text {TSM }}$	8.0	Amps
Circuit Fusing Considerations ($\mathrm{t}=8.3 \mathrm{~ms}$)	${ }^{12} \mathrm{t}$. 26	$\mathrm{A}^{2} \mathrm{~s}$
Peak Gate Voltage $\left(\mathrm{t} \leq 2.0 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=+80^{\circ} \mathrm{C}\right)$	V_{GM}	5.0	Volts
Peak Gate Power $\left(\mathrm{t} \leq 2.0 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=+80^{\circ} \mathrm{C}\right)$	P_{GM}	5.0	Watts
Average Gate Power $\left(\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}, \mathrm{t} \leq 8.3 \mathrm{~ms}\right)$	$\mathrm{PG}_{\mathrm{G}}(\mathrm{AV})$	0.1	Watt
Peak Gate Current $\left(\mathrm{t} \leq 2.0 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=+80^{\circ} \mathrm{C}\right)$	I_{GM}	1.0	Amp
Operating Junction Temperature Range	TJ	$\begin{gathered} -40 \text { to } \\ +110 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\begin{gathered} -40 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

ON Semiconductor

http://onsemi.com

TRIACS
 0.8 AMPERE RMS 400 thru 600 VOLTS

MT2

MT1

TO-92 (TO-226AA) CASE 029 STYLE 12

PIN ASSIGNMENT	
1	Main Terminal 1
2	Gate
3	Main Terminal 2

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.
(1) $V_{\text {DRM }}$ and $V_{\text {RRM }}$ for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{AC}}$	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\theta \mathrm{\theta A}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current ($\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}, \mathrm{V}_{\mathrm{RRM}}$; Gate Open)	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=+110^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {DRM }}$, IRRM	-	-	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

ON CHARACTERISTICS

Peak On-State Voltage (ттм $= \pm .85$ A Peak; Pulse Width $\leq 2.0 \mathrm{~ms}$, Duty Cycle $\leq 2.0 \%$)	$\mathrm{V}_{\text {TM }}$	-	-	1.9	Volts
$\begin{array}{ll} \text { Gate Trigger Current (Continuous dc) } \\ \left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=100\right. \text { Ohms) } \\ \text { MT2(+), G(+) } & \text { MAC997A6,A8 } \\ \text { MT2(+), G(-) } & \\ \text { MT2(-), G(-) } & \\ \text { MT2(-), G(+) } & \\ \text { MT2(+), G(+) } & \\ \text { MT2(+), G(-) } & \\ \text { MT2(-), G(-) } & \\ \text { MT2(-), G(+) } & \end{array}$	IGT	- - - - - -	$-$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 7.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	mA
Latching Current ($\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}$) MT2(+), G(+) All Types MT2(+), G(-) All Types MT2(-), G(-) All Types MT2(-), G(+) All Types	I_{L}	-	$\begin{gathered} 1.6 \\ 10.5 \\ 1.5 \\ 2.5 \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	mA
Gate Trigger Voltage (Continuous dc) ($\mathrm{V}_{\mathrm{D}}=12 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{Ohms}$) MT2(+), G(+) All Types MT2(+), G(-) All Types MT2(-), G(-) All Types MT2(-), G(+) All Types	V_{GT}	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & .66 \\ & .77 \\ & .84 \\ & .88 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	Volts
Gate Non-Trigger Voltage $\left(V_{D}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { Ohms, } \mathrm{T}_{J}=110^{\circ} \mathrm{C}\right)$ All Four Quadrants	V_{GD}	0.1	-	-	Volts
Holding Current ($\mathrm{V}_{\mathrm{D}}=12 \mathrm{Vdc}$, Initiating Current = 200 mA , Gate Open)	I_{H}	-	1.5	10	mA
Turn-On Time $\left(\mathrm{V}_{\mathrm{D}}=\text { Rated } \mathrm{V}_{\mathrm{DRM}}, \mathrm{I}_{\mathrm{TM}}=1.0 \mathrm{Apk}, \mathrm{I}_{\mathrm{G}}=25 \mathrm{~mA}\right)$	t_{gt}	-	2.0	-	$\mu \mathrm{S}$

DYNAMIC CHARACTERISTICS

Rate of Change of Commutating Current $\left(V_{D}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=.84 \mathrm{~A}\right.$, Commutating dv/dt $=1.5 \mathrm{~V} / \mathrm{us}$, Gate Open, $\mathrm{T}_{J}=110^{\circ} \mathrm{C}, \mathrm{f}=250 \mathrm{~Hz}$, with Snubber $)$	$\mathrm{di} / \mathrm{dt}(\mathrm{c})$	1.6	-	-	A / ms
Critical Rate of Rise of Off-State Voltage $\left(\mathrm{V}_{\mathrm{D}}=\right.$ Rated $\mathrm{V}_{\mathrm{DRM}}$, Exponential Waveform, Gate Open, $\left.\mathrm{T}_{J}=110^{\circ} \mathrm{C}\right)$	$\mathrm{dv} / \mathrm{dt}$	20	60	-	V / us
Repetitive Critical Rate of Rise of On-State Current Pulse Width $=20 \mu \mathrm{~s}$, IPKmax $=15 \mathrm{~A}$, diG $/ \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}, \mathrm{f}=60 \mathrm{~Hz}$	$\mathrm{di} / \mathrm{dt}$	-	-	10	$\mathrm{~A} / \mathrm{ms}$

Voltage Current Characteristic of Triacs

(Bidirectional Device)

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. RMS Current Derating

Figure 3. Power Dissipation

Figure 2. RMS Current Derating

Figure 4. On-State Characteristics

Figure 5. Transient Thermal Response

Figure 7. Typical Gate Trigger Current versus Junction Temperature

Figure 9. Typical Latching Current versus Junction Temperature

Figure 6. Maximum Allowable Surge Current

Figure 8. Typical Gate Trigger Voltage versus Junction Temperature

Figure 10. Typical Holding Current versus Junction Temperature

MAC997 Series

Note: Component values are for verification of rated $(\mathrm{di} / \mathrm{dt})_{c}$. See AN1048 for additional information.
Figure 11. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

Figure 12. Device Positioning on Tape

Symbol	Item	Specification			
		Inches		Millimeter	
		Min	Max	Min	Max
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8
H	Bottom of Component to Seating Plane	. 059	. 156	1.5	4.0
H1	Feedhole Location	0.3346	0.3741	8.5	9.5
H2A	Deflection Left or Right	0	0.039	0	1.0
H2B	Deflection Front or Rear	0	0.051	0	1.0
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5
L	Defective Unit Clipped Dimension	0.3346	0.433	8.5	11
L1	Lead Wire Enclosure	0.09842	-	2.5	-
P	Feedhole Pitch	0.4921	0.5079	12.5	12.9
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75
P2	First Lead Spacing Dimension	0.1397	0.1556	3.55	3.95
T	Adhesive Tape Thickness	0.06	0.08	0.15	0.20
T1	Overall Taped Package Thickness	-	0.0567	-	1.44
T2	Carrier Strip Thickness	0.014	0.027	0.35	0.65
W	Carrier Strip Width	0.6889	0.7481	17.5	19
W1	Adhesive Tape Width	0.2165	0.2841	5.5	6.3
W2	Adhesive Tape Position	. 0059	0.01968	. 15	0.5

NOTES:

1. Maximum alignment deviation between leads not to be greater than 0.2 mm .
2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
3. Component lead to tape adhesion must meet the pull test requirements.
4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
6. No more than 1 consecutive missing component is permitted.
7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
8. Splices will not interfere with the sprocket feed holes.

MAC997 Series

ORDERING \& SHIPPING INFORMATION: MAC97 Series packaging options, Device Suffix

U.S.	Europe Equivalent	Shipping	Description of TO92 Tape Orientation
	MAC997A6RL1, A8RL1 MAC997B6RL1, B8RL1	Radial Tape and Reel (2K/Reel)	Flat side of TO92 and adhesive tape visible
MAC997A6,A8 MAC997B6,B8		Bulk in Box (5K/Box)	N/A, Bulk
MAC997A6RLRP, A8RLRP MAC997B6RLRP, B8RLRP		Radial Tape and Fan Fold Box (2K/Box)	Round side of TO92 and adhesive tape visible

PACKAGE DIMENSIONS

TO-92 (TO-226AA)

CASE 029-11
ISSUE AJ

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: INCH.
2. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
3. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

STYLE 12:
PIN 1. MAIN TERMINAL 1
3. MAIN TERMINAL 2

Notes

Notes

ON Semiconductor and (OiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Fax: 480-829-7709 or 800-3
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

