3.3V LVTTL/LVCMOS to Differential LVECL Translator

Description

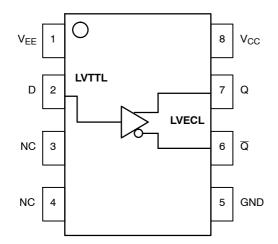
The MC100EPT24 is a LVTTL/LVCMOS to differential LVECL translator. Because LVECL levels and LVTTL/LVCMOS levels are used, a -3.3 V, +3.3 V and ground are required. The small outline 8–lead package and the single gate of the EPT24 makes it ideal for those applications where space, performance, and low power are at a premium.

Features

- 350 ps Typical Propagation Delay
- Maximum Input Clock Frequency > 1.0 GHz Typical
- The 100 Series Contains Temperature Compensation
- Operating Range: V_{CC} = 3.0 V to 3.6 V;
 V_{EE} = -3.6 V to -3.0 V; GND = 0 V
- PNP LVTTL Input for Minimal Loading
- Q Output will Default HIGH with Input Open
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com


MARKING DIAGRAMS*

8	SOIC-8 D SUFFIX CASE 751	8 A A A A KPT24 ALYW 1 U U U
8 🦋	TSSOP-8 DT SUFFIX CASE 948R	8 8 8 8 8 KA24 ALYW- 0 - 1 8 8 8
	DFN8 MN SUFFIX CASE 506AA	₩
A L Y W M	= Assembly Loc = Wafer Lot = Year = Work Week = Date Code = Pb-Free Pack	
(Note: Microd	lot may be in eithe	er location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

	FUNCTION
PIN	FUNCTION
Q, <u>Q</u>	Differential LVECL Outputs
D	LVTTL Input
V _{CC}	Positive Supply
GND	Ground
V_{EE}	Negative Supply
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Characterist	Value		
Internal Input Pulldown Resistor	N/A		
Internal Input Pullup Resistor		N,	/A
ESD Protection	Human Body Model Machine Model Charged Device Model	> 200 V	
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
	SOIC-8 TSSOP-8 DFN8	Level 1 Level 1 Level 1	Level 1 Level 3 Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0	@ 0.125 in
Transistor Count		181 D	evices
Meets or exceeds JEDEC Spec EIA,	JESD78 IC Latchup Test		

Table 2. ATTRIBUTES

1. For additional information, see Application Note AND8003/D.

www.BDhtp://themi.com/ON/

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	V _{EE} = -3.3V	3.8	V
V_{EE}	Negative Power Supply	GND = 0 V	V _{CC} = 3.3V	-3.8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to V _{CC}	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. LVTTL INPUT DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}, V_{EE} = -3.6 \text{ V}$ to $-3.0 \text{ V}, \text{ GND} = 0.0 \text{ V}; T_A = -40^{\circ}\text{C}$ to 85°C

Symbol	Characteristic	Condition — —	Min_	Тур	Max	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V			20	μΑ
I _{IHH}	Input HIGH Current HIGH Voltage	$V_{CC} = V_{IN} = 3.8 V$			100	μΑ
IIL	Input LOW Current	V _{IN} = 0.5 V			-0.6	mA
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA			-1.0	V
VIH	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 5. NECL OUTPUT DC CHARACTERISTICS V_{CC} = 3.3 V, V_{EE} = -3.3 V, GND = 0.0 V (Note 3)

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (Note 4)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1030	-895	mV
V _{OL}	Output LOW Voltage (Note 4)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
I _{CC}	Positive Power Supply Current		2.0	4.0		2.0	4.0		2.0	4.0	mA
I _{EE}	Negative Power Supply Current	20	30	38	20	30	38	20	30	38	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Output levels will vary 1:1 with GND. V_{EE} can vary \pm 0.3 V.

4. Outputs are terminated through a 50 Ω resistor to GND – 2 V.

www.BDhtp://chsemil.com/on/

		–40°C 25°C		85°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Input Clock Frequency (Fig- ure 2)		> 1			> 1			> 1		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 6)	300	500	800	300	530	800	300	560	800	ps
t JITTER	RMS Random Clock Jitter (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
t _r t _f	Output Rise/Fall Times Q, Q (20% – 80%) @ 50 MHz	70	125	170	80	130	180	100	150	200	ps

Table 6. AC CHARACTERISTICS $V_{CC} = 0 V$; $V_{EE} = -3.0 V$ to -5.5 V or $V_{CC} = 3.0 V$ to 5.5 V; $V_{EE} = 0 V$ (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Measured using a LVTTL source, 50% duty cycle clock source. All loading with 50 Ω to GND – 2.0 V.

6. Specifications for standard TTL input signal.

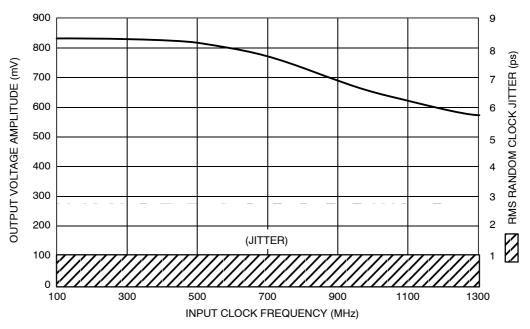


Figure 2. Output Voltage Amplitude (V_{OUTpp})/RMS Jitter vs. Input Clock Frequency at Ambient Temperature

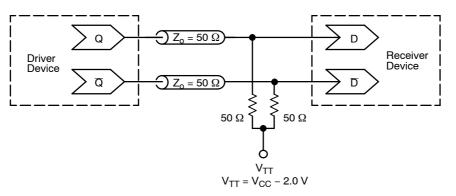


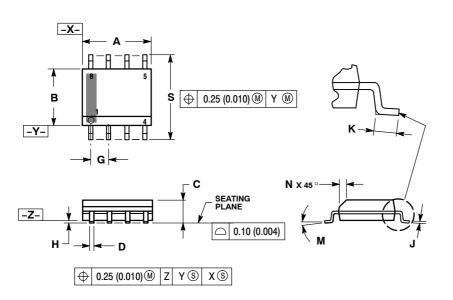
Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

www.BDhtp://htemi.com/ON/

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EPT24D	SOIC-8	98 Units / Rail
MC100EPT24DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100EPT24DR2	SOIC-8	2500 / Tape & Reel
MC100EPT24DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100EPT24DT	TSSOP-8	100 Units / Rail
MC100EPT24DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EPT24DTR2	TSSOP-8	2500 / Tape & Reel
MC100EPT24DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EPT24MNR4	DFN8	1000 / Tape & Reel
MC100EPT24MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Resource Reference	e of Application Notes
--------------------	------------------------

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

www.BDhtp://themi.com/ON/

PACKAGE DIMENSIONS

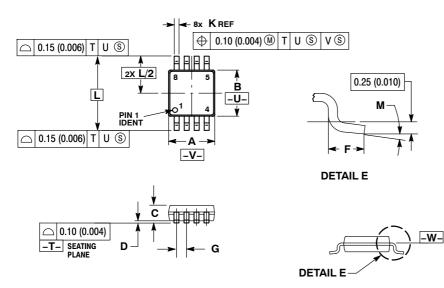
SOIC-8 NB CASE 751-07 **ISSUE AH**

NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) DEB SUB
- PER SIDE.
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDADD IS 751-07
- STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
в	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
к	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

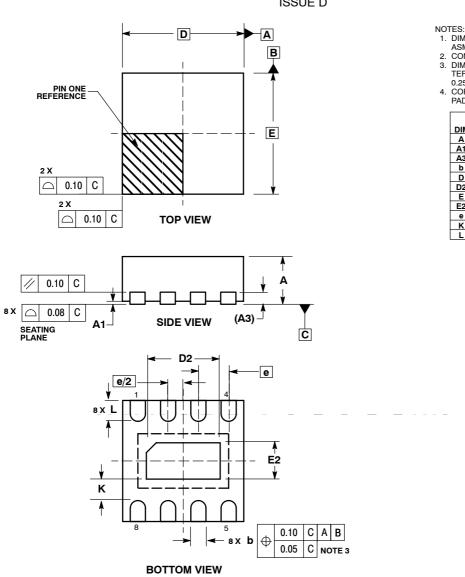


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

www.BD^{ht}p://nsemi.com

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- 0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

			-			
	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2.90	3.10	0.114	0.122		
В	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65	BSC	0.026	BSC		
K	0.25	0.40	0.010	0.016		
L	4.90	BSC	0.193 BSC			
M	0°	6 °	0°	6°		

www.BDftFi/Insfmi.comcom/OI

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.

 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED

PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
Α	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.00 BSC	
D2	1.10	1.30
E	2.00 BSC	
E2	0.70	0.90
е	0.50 BSC	
к	0.20	
L	0.25	0.35

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent is SCILLC was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

WWW.BDTIC.com/ON/ MC100EPT24/D