MC10E1651

5V, -5V Dual ECL Output Comparator with Latch

The MC10E1651 is fabricated using ON Semiconductor's advanced MOSAIC III process. The MC10E1651 incorporates a fixed level of input hysteresis as well as output compatibility with 10 KH logic devices. In addition, a latch is available allowing a sample and hold function to be performed. The device is available in a 20-pin surface mount package.

The latch enable ($\overline{\mathrm{LEN}_{\mathrm{a}}}$ and $\overline{\mathrm{LEN}_{\mathrm{b}}}$) input pins operate from standard ECL 10 KH logic levels. When the latch enable is at a logic high level, the MC10E1651 acts as a comparator; hence, Q will be at a logic high level if $\mathrm{V} 1>\mathrm{V} 2(\mathrm{~V} 1$ is more positive than V 2$) . \overline{\mathrm{Q}}$ is the complement of Q . When the latch enable input goes to a low logic level, the outputs are latched in their present state providing the latch enable setup and hold time constraints are met.

Features

- Typical 3.0 dB Bandwidth $>1.0 \mathrm{GHz}$
- Typical V to Q Propagation Delay of 775 ps
- Typical Output Rise/Fall of 350 ps
- Common Mode Range -2.0 V to +3.0 V
- Individual Latch Enables
- Differential Outputs
- 28 mV Input Hysteresis
- Operating Mode: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$
- No Internal Input Pulldown Resistors
- ESD Protection: > 2 kV Human Body Model, > 100 V Machine Model
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 3

For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL 94 V-0 @ 0.125 in,

Oxygen Index: 28 to 34

- Transistor Count $=85$ devices
- These are $\mathrm{Pb}-$ Free Devices*
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MC10E1651

$\overline{Q a} \overline{L_{2}}{ }^{2}$ NC V2a V1a

* All V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ pins are NOT tied together on the die.

Warning: All V_{CC}, GND , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagrams and Pinout Assignments

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{aligned}
$$

Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Qa, $\overline{\text { Qa }}$	ECL Differential Outputs (a)
Qb, Qb	ECL Differential Outputs (b)
LENa, LENb	ECL Latch Enable
V1a, V1b	Input Comparator 1
V2a, V2b	Input Comparator 2
$V_{\text {CC }}$	Positive Supply
$V_{\text {EE }}$	Negative Supply
NC	No Connect
GND	Ground

Table 2. FUNCTION TABLE

LEN	V1, V2	Function
H	V1 $>$ V2	H
H	V1 $<$ V2	L
L	X	Latched

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
$V_{\text {SUP }}$	Total Supply Voltage	$\left\|\mathrm{V}_{\mathrm{EE}}\right\|+\left\|\mathrm{V}_{\mathrm{CC}}\right\|$		12.0	V	
V_{PP}	Differential Input Voltage	\|V1 - V2			3.7	V
V_{1}	Input Voltage			$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	V	
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			0 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \mathrm{lfpm} \end{aligned}$	$\begin{aligned} & 28 \text { PLCC } \\ & 28 \text { PLCC } \end{aligned}$	$\begin{aligned} & 63.5 \\ & 43.5 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	28 PLCC	22 to 26	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
V_{EE}	Operating Range	GND = 0 V		-4.2 to -5.7	V	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free	$\leq 3 \mathrm{sec}$ @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$, $\mathrm{GND}=0 \mathrm{~V}$ (Note 1)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V_{OH}	Output HIGH Voltage (Note 1)	-1020		-840	-980		-810	-920		-735	mV
V_{OL}	Output Low Voltage (Note 1)	-1950		-1630	-1950		-1630	-1950		-1600	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (LEN) (Note 1)	-1.95		-1.48	-1.95		-1.48	-1.95		-1.45	mV
V_{IH}	Input HIGH Voltage (LEN) (Note 1)	-1.17		-0.84	-1.13		-0.81	-1.07		-0.735	mV
$\begin{aligned} & \mathrm{II} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Current (V1, V2) Input HIGH Current (LEN)			$\begin{gathered} 65 \\ 150 \end{gathered}$			$\begin{gathered} 65 \\ 150 \end{gathered}$			$\begin{gathered} 65 \\ 150 \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	Positive Supply Current Negative Supply Current			$\begin{gathered} 50 \\ -55 \end{gathered}$			$\begin{gathered} 50 \\ -55 \end{gathered}$			$\begin{gathered} 50 \\ -55 \end{gathered}$	mA
VCMR	Common Mode Range (Note 2)	-2.0		3.0	-2.0		3.0	-2.0		3.0	V
Hys	Hysteresis		27			27			30		mV
$\mathrm{V}_{\text {skew }}$	Hysteresis Skew (Note 3)		-1.0			-1.0			0		mV
$\mathrm{C}_{\text {in }}$	Input Capacitance PLCC			2			2			2	pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input V_{IL} and V_{IH} parameters vary $1: 1$ with V_{CC}. Output V_{OH} and V_{OL} parameters vary $1: 1$ with GND.
2. VCMR Min varies $1: 1$ with $V_{E E}$; Max varies $1: 1$ with $V_{C C}$.
3. Hysteresis skew $\left(V_{\text {skew }}\right)$ is provided to indicate the offset of the hysteresis window. For example, at $25^{\circ} \mathrm{C}$ the nominal hysteresis value is 27 mV and the $V_{\text {skew }}$ value indicates that the hysteresis was skewed from the reference level by 1 mV in the negative direction. Hence the hysteresis window ranged from 14 mV below the reference level to 13 mV above the reference level. All hysteresis measurements were determined using a reference voltage of 0 mV .

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$, $\mathrm{GND}=0 \mathrm{~V}$ (Note 4)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Toggle Frequency		TBD			> 1.0			TBD		GHz
$\begin{array}{\|l\|l\|} \hline \text { tpLH } \\ t_{\text {PHL }} \end{array}$	Propagation Delay to Output (Note 4) V to Q LEN to Q	$\begin{aligned} & 750 \\ & 550 \end{aligned}$	$\begin{aligned} & 900 \\ & 725 \end{aligned}$	$\begin{gathered} 1050 \\ 900 \end{gathered}$	$\begin{aligned} & 775 \\ & 550 \end{aligned}$	$\begin{aligned} & 925 \\ & 750 \end{aligned}$	$\begin{gathered} 1075 \\ 900 \end{gathered}$	$\begin{aligned} & 850 \\ & 650 \end{aligned}$	$\begin{aligned} & 1025 \\ & 825 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1000 \end{aligned}$	ps
$\mathrm{t}_{\text {s }}$	Setup Time V	450	300		450	300		550	350		ps
t_{h}	Enable Hold Time V	-50	-250		-50	-250		-100	-250		ps
t_{pw}	Minimum Pulse Width LEN	400			400			400			ps
$\mathrm{t}_{\text {skew }}$	Within Device Skew (Note 5)		15			15			15		ps
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
$\mathrm{T}_{\text {DE }}$	Delay Dispersion (ECL Levels) (Notes 6, 7) (Notes 6, 8)					$\begin{aligned} & 100 \\ & 60 \end{aligned}$					ps
T_{DL}						$\begin{aligned} & 350 \\ & 100 \end{aligned}$					ps
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{f}} \end{array}$	$\begin{aligned} & \text { Rise/Fall Times } \\ & (20-80 \%) \end{aligned}$	225	325	475	225	325	475	250	375	500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. Input V_{IL} and V_{IH} parameters vary $1: 1$ with V_{CC}, output V_{OH} and V_{OL} parameters vary $1: 1$ with GND.
5. $t_{\text {skew }}$ is the propagation delay skew between comparator A and comparator B for a particular part under identical input conditions.
6. Refer to figure 4 and note that the input is at 850 mV ECL levels with the input threshold range between the 20% and 80% points. The delay is measured from the crosspoint of the input signal and the threshold value to the crosspoint of the Q and \bar{Q} output signals.
7. The slew rate is $0.25 \mathrm{~V} / \mathrm{NS}$ for input rising edges.
8. The slew rate is $0.75 \mathrm{~V} / \mathrm{NS}$ for input rising edges.
9. Refer to Figure 5 and note that the input is at 2.5 V TTL levels with the input threshold range between the 20% and 80% points. The delay is measured from the crosspoint of the input signal and the threshold value to the crosspoint of the Q and Q output signals.
10. The slew rate is $0.3 \mathrm{~V} / \mathrm{NS}$ for input rising edges.

APPLICATIONS INFORMATION

The timing diagram (Figure 3.) is presented to illustrate the MC10E1651's compare and latch features. When the signal on the LEN pin is at a logic high level, the device is operating in the "compare mode," and the signal on the input arrives at the output after a nominal propagation delay (tPHL^{2}, $t_{\text {PLH }}$). The input signal must be asserted for a time, t_{s}, prior to the negative going transition on $\overline{\mathrm{LEN}}$ and held for a time, t_{h}, after the LEN transition. After time t_{h}, the latch is operating in the "latch mode," thus transitions on the input do not appear at the output. The device continues to operate in the "latch mode" until the latch is asserted once again. Moreover, the LEN pulse must meet the minimum pulse width $\left(t_{\text {pw }}\right)$ requirement to effect the correct input-output relationship. Note that the $\overline{\text { LEN }}$ waveform in Figure 3. shows the $\overline{\mathrm{LEN}}$ signal swinging around a reference labeled $\mathrm{VBB}_{\text {INT }}$; this waveform emphasizes the requirement that $\overline{\text { LEN }}$ follow typical ECL 10KH logic levels because
$\mathrm{VBB}_{\text {INT }}$ is the internally generated reference level, hence is nominally at the ECL V_{BB} level.

Finally, V_{OD} is the input voltage overdrive and represents the voltage level beyond the threshold level ($\mathrm{V}_{\mathrm{THR}}$) to which the input is driven. As an example, if the threshold level is set on one of the comparator inputs as 80 mV and the input signal swing on the complementary input is from zero to 100 mV , the positive going overdrive would be 20 mV and the negative going overdrive would be 80 mV . The result of differing overdrive levels is that the devices have shorter propagation delays with greater overdrive because the threshold level is crossed sooner than the case of lower overdrive levels. Typically, semiconductor manufactures refer to the threshold voltage as the input offset voltage (VOS) since the threshold voltage is the sum of the externally supplied reference voltage and inherent device offset voltage.

Figure 3. Input/Output Timing Diagram

DELAY DISPERSION

Under a constant set of input conditions comparators have a specified nominal propagation delay. However, since propagation delay is a function of input slew rate and input voltage overdrive the delay dispersion parameters, T_{DE} and T_{DT}, are provided to allow the user to adjust for these variables (where $T_{D E}$ and $T_{D T}$ apply to inputs with standard ECL and TTL levels, respectively).

Figure 4 and Figure 5 define a range of input conditions which incorporate varying input slew rates and input voltage overdrive. For input parameters that adhere to these constraints the propagation delay can be described as:

$$
\mathrm{T}_{\mathrm{NOM}} \pm \mathrm{T}_{\mathrm{DE}}\left(\text { or } \mathrm{T}_{\mathrm{DT}}\right)
$$

Figure 4. ECL Dispersion Test Input Conditions
where $\mathrm{T}_{\text {NOM }}$ is the nominal propagation delay. $\mathrm{T}_{\text {NOM }}$ accounts for nonuniformity introduced by temperature and voltage variability, whereas the delay dispersion parameter takes into consideration input slew rate and input voltage overdrive variability. Thus a modified propagation delay can be approximated to account for the effects of input conditions that differ from those under which the parts where tested. For example, an application may specify an ECL input with a slew rate of $0.25 \mathrm{~V} / \mathrm{NS}$, an overdrive of 17 mV and a temperature of $25^{\circ} \mathrm{C}$, the delay dispersion parameter would be 100 ps . The modified propagation delay would be

$$
775 \mathrm{ps} \pm 100 \mathrm{ps}
$$

Figure 5. TTL Dispersion Test Input Conditions

Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping †
MC10E1651FNG	PLCC-20 (Pb-Free)	46 Units / Rail
MC10E1651FNR2G	PLCC-20 (Pb-Free)	$500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

AN1405/D	- ECL Clock Distribution Techniques
AN1406/D	- Designing with PECL (ECL at +5.0 V)
AN1503/D	- ECLinPS ${ }^{\text {™ }} \mathrm{I} / \mathrm{O}$ SPiCE Modeling Kit
AN1504/D	- Metastability and the ECLinPS Family
AN1568/D	- Interfacing Between LVDS and ECL
AN1672/D	- The ECL Translator Guide
AND8001/D	- Odd Number Counters Design
AND8002/D	- Marking and Date Codes
AND8020/D	- Termination of ECL Logic Devices
AND8066/D	- Interfacing with ECLinPS
AND8090/D	AC Characteristics of ECL Devic

PACKAGE DIMENSIONS

ON Semiconductor and (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LIterature fulfilument:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

