14-Bit Binary Counter

The MC14020B 14-stage binary counter is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 14 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and frequency-dividing circuits.

Features

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from stages 1 and 4 thru 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4020B
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	_V -
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

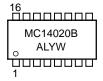
ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

PDIP-16 P SUFFIX CASE 648 16<u>KM M M M M M M M</u>
MC14020BCP
O AWLYYWW
1

SOIC-16 D SUFFIX CASE 751B



TSSOP-16 DT SUFFIX CASE 948F

SOEIAJ-16 F SUFFIX CASE 966

A = Assembly Location

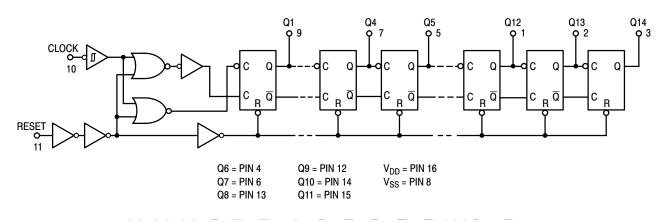
WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PIN ASSIGNMENT


Q12 [1 ●	16	D V _{DD}
Q13 [2	15	Q11
Q14 [3	14	Q10
Q6 [4	13	Q8
Q5 [5	12	Q9
Q7 [6	11	R
Q4 [7	10	С
V _{SS} [8	9	Q1

TRUTH TABLE

Clock	Reset	Output State
	0	No Change
_	0	Advance to Next State
X	1	All Outputs are Low

X = Don't Care

LOGIC DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14020BCP	PDIP-16	500 Units / Rail
MC14020BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14020BD	SOIC-16	48 Units / Rail
MC14020BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14020BDR2	SOIC-16	2500 Units / Tape & Reel
MC14020BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14020BDT	TSSOP-16*	96 Units / Rail
MC14020BFEL	SOEIAJ-16	2000 Units / Tape & Reel
MC14020BFELG	SOEIAJ-16 (Pb-Free)	2000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb–Free.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				- 5	5°C		25°C		12	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" $V_{in} = V_{DD} \text{ or } 0$	" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	- - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	- - -	- 1.7 - 0.36 - 0.9 - 2.4	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	l _{OL}	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	_	± 0.1	-	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	_	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		_ I _{DĐ}	5.0 10 15	- - -	5.0 10 20	<u>-</u> - -	0.005 0.010 0.015	5.0_ 10 20	- - -	150 300 600	μAdc
Total Supply Current (Notes 3 (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs buffers switching)	,	Ι _Τ	5.0 10 15			$I_T = (0$		f + I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

^{4.} To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q1 $t_{PHL},t_{PLH}=(1.7\;\text{ns/pF})\;C_L+175\;\text{ns}$ $t_{PHL},t_{PLH}=(0.66\;\text{ns/pF})\;C_L+82\;\text{ns}$ $t_{PHL},t_{PLH}=(0.5\;\text{ns/pF})\;C_L+55\;\text{ns}$	t _{PLH} , t _{PHL}	5.0 10 15	- - -	260 115 80	520 230 160	ns
Clock to Q14 t_{PHL} , t_{PLH} – (1.7 ns/pF) C_L + 1735 ns t_{PHL} , t_{PLH} = (0.66 ns/pF) C_L + 772 ns t_{PHL} , t_{PLH} = (0.5 ns/pF) C_L + 535 ns		5.0 10 15	- - -	1820 805 560	3900 1725 1200	ns
Propagation Delay Time Reset to Q_n $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 285 \text{ ns}$ $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 122 \text{ ns}$ $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$	t _{PHL}	5.0 10 15	- - -	370 155 115	740 310 230	ns
Clock Pulse Width	t _{WH}	5.0 10 15	500 165 125	140 55 38	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	2.0 6.0 8.0	1.0 3.0 4.0	MHz
Clock Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15		No Limit		-
Reset Pulse Width	t _{WL}	_ 5.0 10 15	3000 _ 550 420	_320 120 80	- - -	ns
Reset Removal Time	t _{rem}	5.0 10 15	130 50 30	65 25 15	- - -	ns

^{5.} The formulas given are for the typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

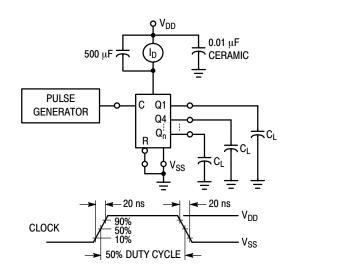


Figure 1. Power Dissipation Test Circuit and Waveform

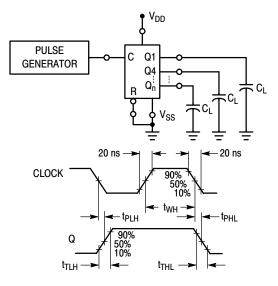


Figure 2. Switching Time Test Circuit and Waveforms

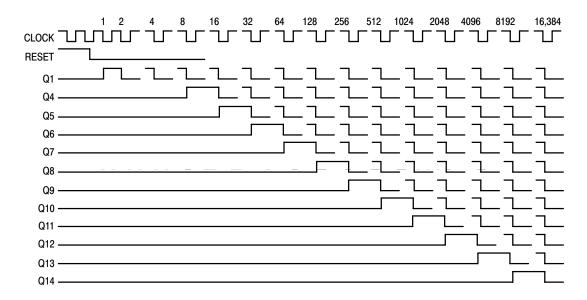
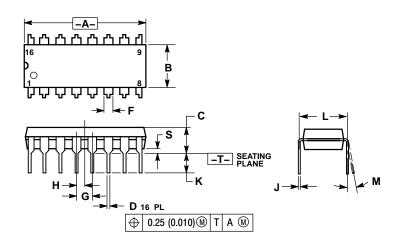
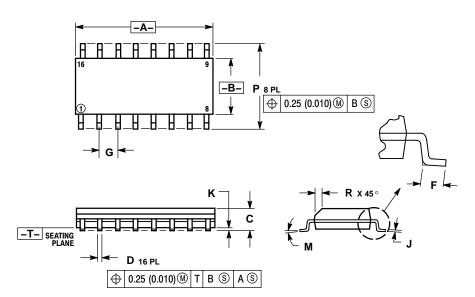



Figure 3. Timing Diagram

PACKAGE DIMENSIONS

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 **ISSUE T**

NOTES:


- DIMENSIONING AND TOLERANCING PER

- In DIMENSIONING AND TOLERANCING FANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD ELASH.
- MOLD FLASH.

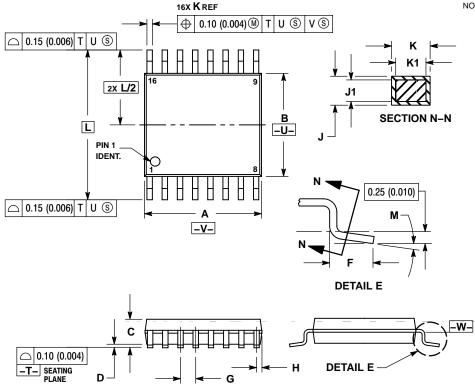
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54 BSC	
Н	0.050	BSC 1.27 BS		BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0°	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

SOIC-16 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751B-05 ISSUE-J

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.


 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR DIMENSION DECENTION INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.010

PACKAGE DIMENSIONS

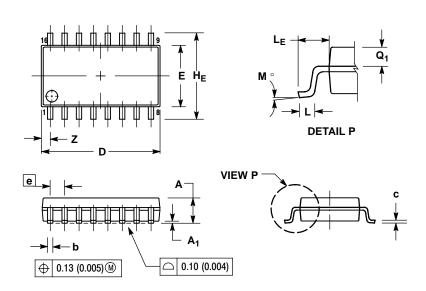
TSSOP-16 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948F-01 **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EY/CED 0.15 (0.00) PER SIDE

 - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR


 - REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	
М	0°	8°	0°	8 °

PACKAGE DIMENSIONS

SOEIAJ-16 F SUFFIX PLASTIC EIAJ SOIC PACKAGE CASE 966-01 ISSUE O

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 4. TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT
- 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q_1	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.