Programmable Timer

The MC14541B programmable timer consists of a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power-on reset is enabled and initializes the counter, within the specified $V_{D D}$ range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16 -stage counter divides the oscillator frequency ($\mathrm{f}_{\text {osc }}$) with the $\mathrm{n}^{\text {th }}$ stage frequency being $\mathrm{f}_{\text {osc }} / 2^{\mathrm{n}}$.

Features

- Available Outputs $2^{8}, 2^{10}, 2^{13}$ or 2^{16}
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator ($\pm 2 \%$ accuracy over temperature range and $\pm 20 \%$ supply and $\pm 3 \%$ over processing at $<10 \mathrm{kHz}$)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2 n Frequency Divider or ing Tra ns tion Time

- Reset (auto or master) Disables Osciliator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc with Auto Reset Disabled (Pin $5=V_{\mathrm{DD}}$) $=8.5 \mathrm{Vdc}$ to 18 Vdc with Auto Reset Enabled (Pin $5=\mathrm{V}_{\mathrm{SS}}$)
- Pb-Free Packages are Available

PIN ASSIGNMENT

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
MARKING DIAGRAMS

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range, (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient)	± 10 (per Pin)	mA
$\mathrm{I}_{\text {out }}$	Output Current (DC or Transient)	± 45 (per Pin)	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14541BCP	PDIP-14	25 Units / Rail
MC14541BCPG	PDIP-14 (Pb-Free)	
MC14541BD	SOIC-14	
MC14541BDG	$\begin{aligned} & \mathrm{SO} \text { C-14 } \\ & (\mathrm{Pb} \text { Free) } \end{aligned}$	
MC14541BDR2	SOIC-14	2500 / Tape \& Reel
MC14541BDR2G	SOIC-14 (Pb-Free)	
MC14541BDTR2	TSSOP-14*	
MC14541BDTR2G	TSSOP-14*	
MC14541BF	SOEIAJ-14	50 Units / Rail
MC14541BFG	SOEIAJ-14 (Pb-Free)	
MC14541BFEL	SOEIAJ-14	2000 / Tape \& Reel
MC14541BFELG	SOEIAJ-14 (Pb-Free)	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	Vdc
$\begin{array}{ll} \hline \text { Input Voltage } & \text { " } 0 \text { " Level } \\ \left(\mathrm{V}_{0}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{0}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \\ \left(\mathrm{V}_{0}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$		$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
$\begin{array}{cl} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{IOH}^{\text {I }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} -7.96 \\ -4.19 \\ -16.3 \end{array}$		$\begin{aligned} & -6.42 \\ & -3.38 \\ & -13.2 \end{aligned}$	$\begin{gathered} -12.83 \\ -6.75 \\ -26.33 \end{gathered}$	-	$\begin{aligned} & -4.49 \\ & -2.37 \\ & -9.24 \end{aligned}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	loL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 4.96 \\ & 19.3 \end{aligned}$		$\begin{gathered} \hline 1.56 \\ 4.0 \\ 15.6 \end{gathered}$	$\begin{gathered} \hline 3.12 \\ 8.0 \\ 31.2 \end{gathered}$	-	$\begin{gathered} \hline 1.09 \\ 2.8 \\ 10.9 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-			5.0		-	-	pF
Quiescent Current (Pin 5 is High) Auto Reset Disabled	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$			$\begin{array}{r} 0 \\ 0 \\ 00 \end{array}$		$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Auto Reset Quiescent Current (Pin 5 is low)	$I_{\text {DDR }}$	$\begin{aligned} & \hline 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & \hline 30 \\ & 82 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\mu \mathrm{Adc}$
Supply Current (Notes 3 \& 4) (Dynamic plus Quiescent)	ID	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=(0.4 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{D}}=(0.8 \mu \mathrm{AHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{D}}=(1.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. When using the on chip oscillator the total supply current (in $\mu \mathrm{Adc}$) becomes: $I_{T}=I_{D}+2 C_{t c} V_{D D} f \times 10^{-3}$ where I_{D} is in $\mu A, C_{t c}$ is in $p F$, $V_{D D}$ in Volts DC, and f in kHz . (see Fig. 3) Dissipation during power-on with automatic reset enabled is typically $50 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{Vdc}$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	V_{DD}	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{gathered} \text { Propagation Delay, Clock to } Q\left(2^{8} \text { Output }\right) \\ \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3415 \mathrm{~ns} \\ \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1217 \mathrm{~ns} \\ \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+875 \mathrm{~ns} \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 1.25 \\ 0.9 \end{gathered}$	$\begin{gathered} 10.5 \\ 3.8 \\ 2.9 \end{gathered}$	us
Propagation Delay, Clock to Q (2^{16} Output) $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5915 \mathrm{~ns}$ tphL , tpLH $=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3467 \mathrm{~ns}$ $t_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2475 \mathrm{~ns}$	$t_{\text {PHL }}$ $t_{\text {pLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 18 \\ & 10 \\ & 7.5 \end{aligned}$	us
Clock Pulse Width	${ }^{\text {twh(cl) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{aligned} & 300 \\ & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Clock Pulse Frequency (50\% Duty Cycle)	f_{cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.75 \\ 2.0 \\ 3.0 \end{gathered}$	MHz
MR Pulse Width	${ }^{\text {twh(R) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	-	ns
Master Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 420 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 210 \\ & 100 \\ & 100 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for d sigr ripe we wht inter aed as an indication of the IC's pofer"an eprmance.

(R_{tc} AND C_{tc} OUTPUTS ARE LEFT OPEN)

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

EXPANDED BLOCK DIAGRAM

TRUTH TAR			
Auto Reset,	5	Auto Reset Operating	Auto Reset Disabled
Master Reset, 6	Timer Operational	Master Reset On	
Q/ \bar{Q},	9	Output Initially Low After Reset	Output Initially High After Reset
Mode,	10	Single Cycle Mode	Recycle Mode

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of $R_{t c}$ and $C_{t c}$

OPERATING CHARACTERISTICS

With Auto Reset pin set to a " 0 " the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a " 1 ". Both types of reset will result in synchronously resetting all counter stages independen ${ }^{+\infty}$ of quantem tat . Auto Reset pin h/a $/$ to a/ $1 /$ pror do low ow r
operation.

The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

$$
\mathrm{f}=\frac{1}{2.3 R_{\mathrm{tc}} \mathrm{C}_{\mathrm{tc}}} \quad \text { if }(1 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz})
$$

and $R_{S} \approx 2 R_{\text {tc }}$
where $R_{S} \geq 10 \mathrm{k} \Omega$
The time select inputs (A and B) provide a two-bit address to output any one of four counter stages $\left(2^{8}, 2^{10}, 2^{13}\right.$ and 2^{16}). The 2^{n} counts as shown in the Frequency Selection Table represents the Q output of the $\mathrm{N}^{\text {th }}$ stage of the counter. When A is " 1 ", 2^{16} is selected for both states of B. However,
when B is " 0 ", normal counting is interrupted and the 9th counter stage receives its clock directly from the oscillator (i.e., effectively outputting 2^{8}).

The $\mathrm{Q} / \overline{\mathrm{Q}}$ select output control pin provides for a choice of Qtput level. When the countrr in in reset condition and Q/Q select pi 1 s et " C " th 0 output is a " 0 ", co respo divg $\quad \mathrm{n} / \mathrm{Q}$ sele n " is aet to a " 1 " the Q output is a " 1 ".
When the mode control pin is set to a " 1 ", the selected count is continually transmitted to the output. But, with mode pin " 0 " and after a reset condition the R R_{S} flip-flop (see Expanded Block Diagram) resets, counting commences, and after $2^{\text {n-1 }}$ counts the R_{S} flip-flop sets which causes the output to change state. Hence, after another $2^{\mathrm{n}-1}$ counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

DIGITAL TIMER APPLICATION

When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

PACKAGE DIMENSIONS

SOIC-14
CASE 751A-03
ISSUE H

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G-01
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-14
CASE 965-01
ISSUE A

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 010 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Al operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

