Single Supply 3.0 V to 44 V Operational Amplifiers Quality bipolar fabrication with innovative design concepts are employed for the MC33071/72/74, MC34071/72/74, NCV33072/74A series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/ μ s slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential (V $_{\rm EE}$). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response. The MC33071/72/74, MC34071/72/74, NCV33072/74,A series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic DIP, SOIC, QFN and TSSOP surface mount packages. ### **Features** • Wide Bandwidth: 4.5 MHz • High Slew Rate: 13 V/μs • Fast Settling Time: 1.1 µs to 0.1% • Wide Single Supply Operation: 3.0 V to 44 V • Wide Input Common Mode Voltage Range: Includes Ground (V_{EE)} • Low Input Offset Voltage: 3.0 mV Maximum (A Suffix) Large Output Voltage Swing: -14.7 V to +14 V (with ±15 V Supplies) • Large Capacitance Drive Capability: 0 pF to 10,000 pF • Low Total Harmonic Distortion: 0.02% • Excellent Phase Margin: 60° • Excellent Gain Margin: 12 dB • Output Short Circuit Protection • ESD Diodes/Clamps Provide Input Protection for Dual and Quad NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ### ON Semiconductor® http://onsemi.com PDIP-8 P SUFFIX CASE 626 SOIC-8 D SUFFIX CASE 751 WQFN10 MT SUFFIX CASE 510AJ PDIP-14 P SUFFIX CASE 646 SOIC-14 D SUFFIX CASE 751A TSSOP-14 DTB SUFFIX CASE 948G ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet. ### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 20 of this data sheet. ### **PIN CONNECTIONS** Figure 1. Representative Schematic Diagram (Each Amplifier) ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|---|-------------|------| | Supply Voltage (from V _{EE} to V _{CC}) | V _S | +44 | V | | Input Differential Voltage Range | V _{IDR} | (Note 1) | V | | Input Voltage Range | V _{IR} | (Note 1) | V | | Output Short Circuit Duration (Note 2) | t _{SC} | Indefinite | Sec | | Operating Junction Temperature | TJ | +150 | °C | | Storage Temperature Range | T _{stg} | -60 to +150 | °C | | ESD Capability, Dual and Quad (Note 3) Human Body Model Machine Model | ESD _{HBM}
ESD _{MM} | 2000
200 | V | - 1. Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE} . - 2. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded (see Figure 2). - This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC-Q100-002 (JEDEC standard: JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (JEDEC standard: JESD22-A115) $\textbf{ELECTRICAL CHARACTERISTICS} \ \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_{L} = connected \ \, to \ \, ground, \ \, unless \ \, otherwise \ \, noted. \ \, See \ \, Note \ \, 4 \ for \ \, for \ \, and \ \, for \$ $T_A = T_{low}$ to T_{high}) | - | | | A Suffix | | N | lon-Suffi | х | | | |---|--------------------------|---------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-------------|--| | Characteristics | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | | | $ \begin{array}{c} \text{Input Offset Voltage } (R_S = 100 \ \Omega, \ V_{CM} = 0 \ V, \ V_O = 0 \ V) \\ V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ T_A = +25 ^{\circ} C \\ V_{CC} = +5.0 \ V, \ V_{EE} = 0 \ V, \ T_A = +25 ^{\circ} C \\ V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ T_A = T_{low} \ to \ T_{high} \\ \end{array} $ | V _{IO} | -
-
- | 0.5
0.5
– | 3.0
3.0
5.0 | -
-
- | 1.0
1.5
- | 5.0
5.0
7.0 | mV | | | Average Temperature Coefficient of Input Offset Voltage $R_S = 10~\Omega,~V_{CM} = 0~V,~V_O = 0~V, \\ T_A = T_{low}~to~T_{high}$ | $\Delta V_{IO}/\Delta T$ | - | 10 | - | - | 10 | - | μV/°C | | | Input Bias Current (V_{CM} = 0 V, V_{O} = 0 V) $T_{A} = +25^{\circ}C$ $T_{A} = T_{low} \text{ to } T_{high}$ | I _{IB} | -
- | 100
- | 500
700 | -
- | 100
- | 500
700 | nA | | | Input Offset Current ($V_{CM} = 0 \text{ V}, V_{O} = 0\text{V}$) $T_{A} = +25^{\circ}\text{C}$ $T_{A} = T_{low} \text{ to } T_{high}$ | l _{IO} | -
- | 6.0
– | 50
300 | -
- | 6.0
– | 75
300 | nA | | | Input Common Mode Voltage Range $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high} | V _{ICR} | | to (V _{CC} - | | | to (V _{CC} - | | > | | | Large Signal Voltage Gain (V_O = ± 10 V, R_L = 2.0 k Ω) T_A = +25°C T_A = T_{low} to T_{high} | A _{VOL} | 50
25 | 100
- | -
- | 25
20 | 100
- | | V/mV | | | Output Voltage Swing ($V_{ID} = \pm 1.0 \text{ V}$)
$V_{CC} = +5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$, $R_L = 2.0 \text{ k}\Omega$, $T_A = +25^{\circ}\text{C}$
$V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $T_A = +25^{\circ}\text{C}$
$V_{CC} = +15 \text{ V}$, $V_{EE} = -15 $V_{$ | V _{OH} | 3.7
13.6
13.4 | 4.0
14
- | -
-
- | 3.7
13.6
13.4 | 4.0
14
- | -
-
- | V | | | $\begin{array}{c} V_{CC} = +5.0 \; \text{V}, \; V_{EE} = 0 \; \text{V}, \; R_L = 2.0 \; \text{k}\Omega, \; T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \; \text{V}, \; V_{EE} = -15 \; \text{V}, \; R_L = 10 \; \text{k}\Omega, \; T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \; \text{V}, \; V_{EE} = -15 \; \text{V}, \; R_L = 2.0 \; \text{k}\Omega, \\ T_A = T_{low} \; \text{to} \; T_{high} \end{array}$ | V _{OL} | -
-
- | 0.1
-14.7
- | 0.3
-14.3
-13.5 | -
-
- | 0.1
-14.7
- | 0.3
-14.3
-13.5 | V | | | Output Short Circuit Current (V_{ID} = 1.0 V, V_{O} = 0 V, T_{A} = 25°C) Source Sink | I _{SC} | 10
20 | 30
30 | -
- | 10
20 | 30
30 | -
- | mA | | | Common Mode Rejection $R_S \leq 10 \text{ k}\Omega, V_{CM} = V_{ICR}, T_A = 25^{\circ}\text{C}$ | CMR | 80 | 97 | - | 70 | 97 | - | dB | | | Power Supply Rejection (R _S = 100 Ω)
V _{CC} /V _{EE} = +16.5 V/–16.5 V to +13.5 V/–13.5 V,
T _A = 25°C | PSR | 80 | 97 | _ | 70 | 97 | - | dB | | | Power Supply Current (Per Amplifier, No Load) $V_{CC} = +5.0 \text{ V}, V_{EE} = 0 \text{ V}, V_{O} = +2.5 \text{ V}, T_{A} = +25^{\circ}\text{C}$ $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, V_{O} = 0 \text{ V}, T_{A} = +25^{\circ}\text{C}$ $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, V_{O} = 0 \text{ V},$ $T_{A} = T_{low} \text{ to } T_{high}$ | I _D | -
-
- | 1.6
1.9
– | 2.0
2.5
2.8 | -
-
- | 1.6
1.9
– | 2.0
2.5
2.8 | mA | | $^{4. \ \ \,} T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \ T_{high} \quad = \quad +85^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \ T_{high} \quad = \quad +85^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \ T_{high} \quad = \quad +85^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^{\circ}C \ \text{for MC33071,2,4,/A, NCV33074/A} \\ \, T_{low} \quad = \quad -40^$ Case 510AJ T_{low}/T_{high} guaranteed by product characterization. ^{= 0°}C for MC34071,2,4,/A ^{= +70°}C for MC34071,2,4,/A = +125°C for MC34072,4/V, NCV33072,4A = -40°C for MC34072,4/V, NCV33072,4A $\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_L = connected \ to \ ground. \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$ | | | | A Suffix | | N | lon-Suff | ix | | |---|-----------------|----------|------------|--------|----------|------------|--------|--------| | Characteristics | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | | Slew Rate (V _{in} = -10 V to +10 V, R _L = 2.0 k Ω , C _L = 500 pF) A _V = +1.0 A _V = -1.0 | SR | 8.0
– | 10
13 | -
- | 8.0
– | 10
13 | -
- | V/μs | | Setting Time (10 V Step, $A_V = -1.0$)
To 0.1% (+1/2 LSB of 9-Bits)
To 0.01% (+1/2 LSB of 12-Bits) | t _s | -
- | 1.1
2.2 | -
- | -
- | 1.1
2.2 | -
- | μs | | Gain Bandwidth Product (f = 100 kHz) | GBW | 3.5 | 4.5 | - | 3.5 | 4.5 | - | MHz | | Power Bandwidth $A_V = +1.0$, $R_L = 2.0$ k Ω , $V_O = 20$ V_{pp} , THD = 5.0% | BW | _ | 160 | _ | _ | 160 | _ | kHz | | Phase margin $R_L = 2.0 \text{ k}\Omega$ $R_L = 2.0 \text{ k}\Omega, C_L = 300 \text{ pF}$ | f _m | -
- | 60
40 | -
- | -
- | 60
40 | -
- | Deg | | Gain Margin $R_L = 2.0 \text{ k}\Omega$ $R_L = 2.0 \text{ k}\Omega, C_L = 300 \text{ pF}$ | A _m | -
- | 12
4.0 | -
- | -
- | 12
4.0 | -
- | dB | | Equivalent Input Noise Voltage $R_S = 100 \ \Omega, \ f = 1.0 \ kHz$ | e _n | _ | 32 | _ | _ | 32 | _ | nV/√Hz | | Equivalent Input Noise Current f = 1.0 kHz | i _n | _ | 0.22 | _ | _ | 0.22 | _ | pA/√Hz | | Differential Input Resistance
V _{CM} = 0 V | R _{in} | _ | 150 | _ | - | 150 | - | МΩ | | Differential Input Capacitance V _{CM} = 0 V | C _{in} | _ | 2.5 | _ | - | 2.5 | - | pF | | Total Harmonic Distortion $A_V = +10, \ R_L = 2.0 \ k\Omega, \ 2.0 \ V_{pp} \leq V_O \leq 20 \ V_{pp}, \ f = 10 \ kHz$ | THD | - | 0.02 | - | - | 0.02 | - | % | | Channel Separation (f = 10 kHz) | - | - | 120 | - | - | 120 | - | dB | | Open Loop Output Impedance (f = 1.0 MHz) | Z _O | - | 30 | - | - | 30 | - | W | # Single Supply 3.0 V to 44 V V_{CC}+|V_{EE}|≤44 V V_{CC} V Figure 2. Power Supply Configurations Offset nulling range is approximately ± 80 mV with a 10 k potentiometer (MC33071, MC34071 only). Figure 3. Offset Null Circuit Figure 4. Maximum Power Dissipation versus Temperature for Package Types Figure 5. Input Offset Voltage versus Temperature for Representative Units Figure 6. Input Common Mode Voltage Range versus Temperature Figure 7. Normalized Input Bias Current versus Temperature Figure 8. Normalized Input Bias Current versus Input Common Mode Voltage Figure 9. Split Supply Output Voltage Swing versus Supply Voltage Figure 10. Split Supply Output Saturation versus Load Current Figure 11. Single Supply Output Saturation versus Load Resistance to Ground Figure 12. Single Supply Output Saturation versus Load Resistance to V_{CC} Figure 13. Output Short Circuit Current versus Temperature Figure 14. Output Impedance versus Frequency Figure 15. Output Voltage Swing versus Frequency Figure 16. Total Harmonic Distortion versus Frequency Figure 17. Total Harmonic Distortion versus Output Voltage Swing Figure 18. Open Loop Voltage Gain versus Temperature Figure 19. Open Loop Voltage Gain and Phase versus Frequency Figure 20. Open Loop Voltage Gain and Phase versus Frequency Figure 21. Normalized Gain Bandwidth Product versus Temperature Figure 22. Percent Overshoot versus Load Capacitance Figure 23. Phase Margin versus Load Capacitance Figure 24. Gain Margin versus Load Capacitance Figure 25. Phase Margin versus Temperature Figure 26. Gain Margin versus Temperature Figure 27. Phase Margin and Gain Margin versus Differential Source Resistance Figure 28. Normalized Slew Rate versus Temperature Figure 29. Output Settling Time Figure 30. Small Signal Transient Response Figure 31. Large Signal Transient Response Figure 32. Common Mode Rejection versus Frequency Figure 33. Power Supply Rejection versus Frequency Figure 34. Supply Current versus Supply Voltage Figure 35. Power Supply Rejection versus Temperature Figure 36. Channel Separation versus Frequency Figure 37. Input Noise versus Frequency # APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES Although the bandwidth, slew rate, and settling time of the MC34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage. Since the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential. The input stage also allows differential input voltages up to ± 44 V, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between V_{EE} and V_{CC} supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the V_{CC} voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source up to approximately 5.0 mA of current from V_{EE} through either inputs clamping diode without damage or latching, although phase reversal may again occur. If one or both inputs exceed the upper common mode voltage limit, the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions. Since the input capacitance associated with the small geometry input device is substantially lower (2.5 pF) than the typical JFET input gate capacitance (5.0 pF), better frequency response for a given input source resistance can be achieved using the MC34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling D-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 2.0 k Ω of feedback resistance, the MC34071 series can settle to within 1/2 LSB of 8–bits in 1.0 μ s, and within 1/2 LSB of 12–bits in 2.2 μ s for a 10 V step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is ± 13 V/ μ s. In the classic noninverting unity gain configuration, the output positive slew rate is ± 10 V/ μ s, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform. Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications. The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 k Ω load resistance can swing within 1.0 V of the positive rail (V_{CC}), and within 0.3 V of the negative rail (V_{EE}), providing a 28.7 V_{pp} swing from ±15 V supplies. This large output swing becomes most noticeable at lower supply voltages. The positive swing is limited by the saturation voltage of the current source transistor Q₇, and V_{BE} of the NPN pull up transistor Q₁₇, and the voltage drop associated with the short circuit resistance, R₇. The negative swing is limited by the saturation voltage of the pull-down transistor Q_{16} , the voltage drop I_LR₆, and the voltage drop associated with resistance R₇, where I_L is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{EE}. For large valued sink currents (>5.0 mA), diode D3 clamps the voltage across R₆, thus limiting the negative swing to the saturation voltage of Q_{16} , plus the forward diode drop of D3 (\approx V_{EE} +1.0 V). Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications. If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability. Because the PNP output emitter-follower transistor has been eliminated, the MC34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of ($V_{\rm EE}$ +1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications. In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (30 Ω typ @ 1.0 MHz) allows capacitive drive capability from 0 pF to 10,000 pF without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications. Although the single supply specifications is defined at 5.0 V, these amplifiers are functional to 3.0 V @ 25°C although slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur. If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction. Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die. As with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input—output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature. The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ±15 V supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating. ### (Typical Single Supply Applications V_{CC} = 5.0 V) Figure 38. AC Coupled Noninverting Amplifier Figure 39. AC Coupled Inverting Amplifier Figure 40. DC Coupled Inverting Amplifier Maximum Output Swing Figure 41. Unity Gain Buffer TTL Driver Figure 42. Active High-Q Notch Filter Given f_0 = Center Frequency A_0 = Gain at Center Frequency Choose Value f_0 , Q, A_0 , C Then: R3 = $$\frac{Q}{\pi f_0 C}$$ R1 = $\frac{R3}{2H_0}$ R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$ For less than 10% error from operational amplifier $\frac{Q_0 f_0}{GBW} < 0.1$ where f_0 and GBW are expressed in Hz. GBW = 4.5 MHz Typ. Figure 43. Active Bandpass Filter Figure 44. Low Voltage Fast D/A Converter Figure 45. High Speed Low Voltage Comparator Figure 46. LED Driver Figure 47. Transistor Driver Figure 48. AC/DC Ground Current Monitor Figure 49. Photovoltaic Cell Amplifier Figure 50. Low Input Voltage Comparator with Hysteresis Figure 52. High Input Impedance Differential Amplifier Figure 54. Low Voltage Peak Detector Figure 51. High Compliance Voltage to Sink Current Converter Figure 53. Bridge Current Amplifier Figure 55. High Frequency Pulse Width Modulation ### GENERAL ADDITIONAL APPLICATIONS INFORMATION $V_S = \pm 15.0 \text{ V}$ Figure 56. Second Order Low-Pass Active Filter Figure 57. Second Order High-Pass Active Filter Figure 58. Fast Settling Inverter Figure 59. Basic Inverting Amplifier Figure 60. Basic Noninverting Amplifier Figure 61. Unity Gain Buffer ($A_V = +1.0$) Figure 62. High Impedance Differential Amplifier Figure 63. Dual Voltage Doubler ### **ORDERING INFORMATION** | Op Amp
Function | Device | Operating
Temperature Range | Package | Shipping [†] | |--------------------|--------------|---|---------------------|-----------------------| | | MC34071PG | | PDIP-8
(Pb-Free) | 50 Units / Rail | | | MC34071APG | | PDIP-8
(Pb-Free) | 50 Units / Rail | | | MC34071DG | T 00 to 7000 | SOIC-8
(Pb-Free) | 98 Units / Rail | | | MC34071DR2G | $T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C}$ | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | | | MC34071ADG | | SOIC-8
(Pb-Free) | 98 Units / Rail | | 0: 1 | MC34071ADR2G | | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | | Single | MC33071PG | | PDIP-8
(Pb-Free) | 50 Units / Rail | | | MC33071APG | | PDIP-8
(Pb-Free) | 50 Units / Rail | | | MC33071DG | T 400 N 0500 | SOIC-8
(Pb-Free) | 98 Units / Rail | | | MC33071DR2G | $T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$ | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | | | MC33071ADG | | SOIC-8
(Pb-Free) | 98 Units / Rail | | | MC33071ADR2G | | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | ### **ORDERING INFORMATION (continued)** | Op Amp
Function | Device | Operating
Temperature Range | Package | Shipping [†] | |--------------------|---------------|---|---------------------|--------------------------| | T dilotion | MC34072PG | remperature riunge | PDIP-8 | | | | WEGGET G | (Pb-Free) | | | | | MC34072APG | | PDIP-8 | 50 Units / Rail | | | | | (Pb-Free) | | | | MC34072DG | | SOIC-8 | | | | | | (Pb-Free) | 98 Units / Rail | | | MC34072ADG | T _A = 0° to +70°C | SOIC-8 | 96 Offits / Hall | | | | 1A = 0 10 170 0 | (Pb-Free) | | | | MC34072DR2G | | SOIC-8 | | | | 110010000 | | (Pb-Free) | 2500 Units / Tape & Reel | | | MC34072ADR2G | | SOIC-8 | . ' | | | MC34072AMTTBG | | (Pb-Free)
WQFN10 | | | | WC34072AWTTBG | | (Pb-Free) | 3000 Units / Tape & Reel | | | MC33072PG | | PDIP-8 | | | | W6666721 G | | (Pb-Free) | | | | MC33072APG | | PDIP-8 | 50 Units / Rail | | Dual | | | (Pb-Free) | | | | MC33072DG | | SOIC-8 | | | | | T 400 L 0500 | (Pb-Free) | oo Halla / Dail | | | MC33072ADG | $T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$ | SOIC-8 | 98 Units / Rail | | | | | (Pb-Free) | | | | MC33072DR2G | | SOIC-8 | | | | | | (Pb-Free) | 2500 / Tape & Reel | | | MC33072ADR2G | | SOIC-8 | 2500 / Tape & Neel | | | | | (Pb-Free) | | | | MC34072VDG | | SOIC-8 | 98 Units / Rail | | | | | (Pb-Free) | oo omo / nan | | | MC34072VDR2G | | SOIC-8 | 2500 / Tape & Reel | | | | T _A = -40° to +125°C | (Pb-Free) | | | | MC34072VPG | .4 .5 .5 .120 6 | PDIP-8 | 50 Units / Rail | | | Newspaper | | (Pb-Free) | · · | | | NCV33072DR2G* | | SOIC-8 | 2500 / Tape & Reel | | | | | (Pb-Free) | ĺ | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix for automotive and other applications requiring unique site and control change requirements; AEC-Q100 qualified and PPAP capable. ### **ORDERING INFORMATION (continued)** | Op Amp
Function | Device | Operating
Temperature Range | Package | Shipping [†] | |--------------------|------------------|--|-----------------------|--------------------------| | | MC34074PG | PDIP-14
(Pb-Free) | 2511 11 / 12 11 | | | | MC34074APG | | PDIP-14
(Pb-Free) | 25 Units / Rail | | | MC34074DG | | SOIC-14
(Pb-Free) | | | | MC34074ADG | T _A = 0° to +70°C | SOIC-14
(Pb-Free) | 55 Units / Rail | | | MC34074ADR2G | | SOIC-14
(Pb-Free) | | | | MC34074DR2G | | SOIC-14
(Pb-Free) | 2500 Units / Tape & Reel | | | MC33074PG | | PDIP-14
(Pb-Free) | | | | MC33074APG | | PDIP-14
(Pb-Free) | 25 Units / Rail | | | MC33074DG | | SOIC-14
(Pb-Free) | | | | MC33074ADG | | SOIC-14
(Pb-Free) | 55 Units / Rail | | | MC33074DR2G | | SOIC-14
(Pb-Free) | | | Quad | MC33074ADR2G | | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | | | MC33074DTBG | $T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$ | TSSOP-14
(Pb-Free) | 96 Units / Rail | | | MC33074DTBR2G | | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | | | MC33074ADTBG | | TSSOP-14
(Pb-Free) | 96 Units / Rail | | | MC33074ADTBR2G | | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | | | NCV33074DR2G* | | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | | | NCV33074ADR2G* | | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | | | MC34074VDG | | SOIC-14
(Pb-Free) | 55 Units / Rail | | | MC34074VDR2G | T | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | | | MC34074VPG | $T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$ | PDIP-14
(Pb-Free) | 25 Units / Rail | | | NCV33074ADTBR2G* | | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV prefix for automotive and other applications requiring unique site and control change requirements; AEC-Q100 qualified and PPAP capable. ### **MARKING DIAGRAMS** ### PACKAGE DIMENSIONS ### **8 LEAD PDIP** CASE 626-05 **ISSUE N** **END VIEW** WITH LEADS CONSTRAINED NOTE 5 ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. - DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK- - AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. - DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR - TO DATUM C. 6. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE - DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE) CORNERS). | | INCHES | | MILLIM | ETERS | |-----|--------|-------|----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 | TYP | 1.52 TYP | | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.355 | 0.400 | 9.02 | 10.16 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 | BSC | 2.54 | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | M | | 10° | | 10° | PDIP-14 CASE 646-06 ISSUE R - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH - OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0 10 INCH - DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR - DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE - DIMENSION ED IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. - PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE | | INCHES | | MILLIM | ETERS | |-----|-----------|-------|----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 | TYP | 1.52 TYP | | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.735 | 0.775 | 18.67 | 19.69 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 BSC | | 2.54 | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | М | | 100 | | 100 | ### PACKAGE DIMENSIONS ### TSSOP-14 CASE 948G **ISSUE B** ### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL - CONDITION. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE | - DIII | ETERMINED AT DATUM PLANE -W | | | | |--------|-----------------------------|--------|-------|---------------| | PETE | | IETERS | | ANE -W
HES | | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | - | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | Ĺ | 6.40 | BSC | 0.252 | BSC | | М | 0° | 8 ° | 0 ° | 8 ° | ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### PACKAGE DIMENSIONS ### SOIC-8 NB CASE 751-07 **ISSUE AK** ### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT - MAXIMUM MATERIAL CONDITION. 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIN | MILLIMETERS | | HES | | |-----|--------|-------------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.053 | 0.069 | | | D | 0.33 | 0.51 | 0.013 | 0.020 | | | G | 1.27 | 7 BSC | 0.050 BSC | | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | | J | 0.19 | 0.25 | 0.007 | 0.010 | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | M | 0 ° | 8 ° | 0 ° | 8 ° | | | N | 0.25 | 0.50 | 0.010 | 0.020 | | | S | 5.80 | 6.20 | 0.228 | 0.244 | | ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### PACKAGE DIMENSIONS SOIC-14 CASE 751A-03 **ISSUE K** e ### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 | BSC | 0.050 BSC | | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | М | 0° | 7° | 0° | 7° | ### **SOLDERING FOOTPRINT*** C SEATING PLANE **DIMENSIONS: MILLIMETERS** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### PACKAGE DIMENSIONS ### WQFN10 CASE 510AJ **ISSUE A** **BOTTOM VIEW** 10X b 0.05 С NOTE 3 С 0.10 Α - 1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL. - COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN | MAX | | | | Α | 0.70 | 0.80 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.20 REF | | | | | b | 0.20 | 0.30 | | | | D | 2.60 | BSC | | | | E | 2.60 | BSC | | | | е | 0.50 | BSC | | | | L | 0.45 | 0.55 | | | | L1 | 0.00 | 0.15 | | | | L2 | 0.55 | 0.65 | | | ### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and under registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Phone: 81-3-5817-1050