2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer ## Description The NB3L553 is a low skew 1-to 4 clock fanout buffer, designed for clock distribution in mind. The NB3L553 specifically guarantees low output-to-output skew. Optimal design, layout and processing minimize skew within a device and from device to device. The output enable (OE) pin three-states the outputs when low. ## **Features** - Input/Output Clock Frequency up to 200 MHz - Low Skew Outputs (35 ps), Typical - Output goes to Three-State Mode via OE - Operating Range: $V_{DD} = 2.375 \text{ V}$ to 5.25 V - Ideal for Networking Clocks - Packaged in 8-pin SOIC - Industrial Temperature Range - These are Pb-Free Devices ## ON Semiconductor® http://onsemi.com ## MARKING DIAGRAMS* SOIC-8 D SUFFIX CASE 751 3L553 = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package Figure 1. Block Diagram XX = Specific Device Code \overline{M} = Date Code (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. #### **PINOUT** # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|---------------------|-----------------------| | NB3L553DG | SOIC-8
(Pb-Free) | 98 Units/Rail | | NB3L553DR2G | SOIC-8
(Pb-Free) | 2500/Tape & Reel | | NB3L553MNR4G* | DFN-8
(Pb-Free) | 1000/Tape & Reel | ^{*}Contact Sales Representative [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. | OE | Function | |----|----------| | 0 | Disable | | 1 | Enable | Table 1. OE, Output Enable Function ## **Table 2. PIN DESCRIPTION** | Pin# | Name | Туре | Description | |------|----------|-------------------------|--| | 1 | V_{DD} | Power | Positive supply voltage (2.375 V to 5.25 V) | | 2 | Q0 | (LV)CMOS/(LV)TTL Output | Clock Output 0 | | 3 | Q1 | (LV)CMOS/(LV)TTL Output | Clock Output 1 | | 4 | GND | Power | Negative supply voltage; Connect to ground, 0 V | | 5 | ICLK | (LV)CMOS/(LV)TTL Input | Clock Input. 5.0 V tolerant | | 6 | Q2 | (LV)CMOS/(LV)TTL Output | Clock Output 2 | | 7 | Q3 | (LV)CMOS/(LV)TTL Output | Clock Output 3 | | 8 | OE | (LV)CMOS/(LV)TTL Input | Output Enable for the clock outputs. Outputs are enabled when HIGH: connect to V_{DD} for normal operation; OE pin has internal pull-up resistor. Three-states outputs when LOW. | | - | EP | Thermal Exposed Pad | (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. | www.BDTIC.com/ON **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Units | |-------------------|--|--------------------|--------------|---------------------------------------|--------------| | V_{DD} | Positive Power Supply | GND = 0 V | - | 6.0 | V | | VI | Input Voltage | - | - | GND $-0.5 \le V_{I} \le V_{DD} + 0.5$ | V | | T _A | Operating Temperature Range, Industrial | - | - | ≥ -40 to ≤ +85 | °C | | T _{stg} | Storage Temperature Range | - | - | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-8 | 190
130 | °C/W
°C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | (Note 1) | SOIC-8 | 41 to 44 | °C/W | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | DFN8
DFN8 | 129
84 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | (Note 1) | DFN8 | 35 to 40 | °C/W | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) **Table 4. ATTRIBUTES** | Charac | Value | | |------------------------------------|---|-------------------------------| | ESD Protection | Human Body Model
Machine Model
Charged Device Model | > 2 kV
> 150 V
> TBD kV | | Moisture Sensitivity, Indefinite T | ime Out of Drypack (Note 2) | Level 1 | | Flammability Rating | Oxygen Index: 28 to 34 | UL-94 code V-0 @ 0.125 in | | ~~~~ | and I IA/JE! D78 IC Latchup Tost | 531 Devices | Table 5. DC CHARACTERISTICS (V_{DD} = 2.375 V to 2.625 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------------------------|---|-----|------|--------------------------|------| | I _{DD} | Power Supply Current @ 135 MHz, No Load | - | 25 | 30 | mA | | V _{OH} | Output HIGH Voltage – I _{OH} = –16 mA | 1.7 | - | - | V | | V _{OL} | Output LOW Voltage – I _{OL} = 16 mA | | - | 0.4 | V | | V _{IH,} I _{CLK} | I _{CLK} Input HIGH Voltage, I _{CLK} | | - | 3.8 | V | | V _{IL,} I _{CLK} | Input LOW Voltage, I _{CLK} | | - | (V _{DD} ÷2)-0.5 | V | | V _{IH,} OE | Input HIGH Voltage, OE | | - | V_{DD} | V | | V _{IL,} OE | Input LOW Voltage, OE | _ | - | 0.7 | V | | ZO | Nominal Output Impedance | | 20 | - | Ω | | CIN | Input Capacitance, I _{CLK} , OE | - | 5.0 | - | pF | | IOS | Short Circuit Current | - | ± 28 | - | mA | # DC CHARACTERISTICS (V_{DD} = 3.15 V to 3.45 V, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C) (Note 3) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------------------------|---|--------------------------|------|--------------------------|----------| | I _{DD} | Power Supply Current @ 135 MHz, No Load | _ | 35 | 40 | mA | | V _{OH} | Output HIGH Voltage – I _{OH} = -25 mA | 2.4 | ı | - | ٧ | | V_{OL} | Output LOW Voltage – I _{OL} = 25 mA | - | I | 0.4 | V | | V _{OH} | Output HIGH Voltage – I _{OH} = –12 mA (CMOS level) | V _{DD} – 0.4 | - | - | V | | V _{IH,} I _{CLK} | Input HIGH Voltage, I _{CLK} | (V _{DD} ÷2)+0.7 | ı | 3.8 | V | | V _{IL,} I _{CLK} | Input LOW Voltage, I _{CLK} | - | - | (V _{DD} ÷2)-0.7 | V | | V _{IH,} OE | Input HIGH Voltage, OE | 2.0 | I | V_{DD} | V | | V _{IL,} OE | Input LOW Voltage, OE | 0 | - | 2.8 | V | | ZO | Nornii I al Outbut Impedar 😎 | | 2 | 1 | Ω | | CIN | input Cupacitance, JE | | 9.0 | | pF | | IOS | Short Circuit Current | - | ± 50 | - | mA | # **DC CHARACTERISTICS** (V_{DD} = 4.75 V to 5.25 V, GND = 0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$) (Note 3) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------------------------|---|--------------------------|------|--------------------------|------| | I _{DD} | Power Supply Current @ 135 MHz, - No Load | - | 45 | 85 | mA | | V _{OH} | Output HIGH Voltage – I _{OH} = –35 mA | 2.4 | - | - | V | | V _{OL} | Output LOW Voltage – I _{OL} = 35 mA | - | - | 0.4 | V | | V _{OH} | Output HIGH Voltage – I _{OH} = –12 mA (CMOS level) | | - | - | V | | V _{IH,} I _{CLK} | Input HIGH Voltage, I _{CLK} | (V _{DD} ÷2) + 1 | - | 5.5 | V | | V _{IL,} I _{CLK} | Input LOW Voltage, I _{CLK} | - | - | (V _{DD} ÷2) – 1 | V | | V _{IH,} OE | Input HIGH Voltage, OE | 2.0 | - | V_{DD} | V | | V _{IL,} OE | Input LOW Voltage, OE | - | - | 0.8 | V | | ZO | Nominal Output Impedance | - | 20 | - | Ω | | CIN | Input Capacitance, OE | - | 5.0 | - | pF | | IOS | Short Circuit Current | - | ± 80 | - | mA | Table 6. AC CHARACTERISTICS; V_{DD} = 2.5 V ±5% (V_{DD} = 2.375 V to 2.625 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3) | Symbol | pol Characteristic | | Тур | Max | Unit | |--------------------------------|--|-----|-----|-----|------| | f _{in} | Input Frequency | - | - | 200 | MHz | | t _r /t _f | Output rise and fall times; 0.8 V to 2.0 V | - | 1.0 | 1.5 | ns | | t _{pd} | Propagation Delay, CLK to Qn (Note 4) | 2.2 | 3.0 | 5.0 | ns | | t _{skew} | Output-to-output skew; (Note 5) | - | 35 | 50 | ps | | t _{skew} | Device-to-device skew, (Note 5) | - | - | 500 | ps | # AC CHARACTERISTICS; V_{DD} = 3.3 V ±5% (V_{DD} = 3.15 V to 3.45 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3) | Symbol | Characteristic | Min | Тур | Max | Unit | |--------------------------------|---|-----|-----|-----|------| | f _{in} | Input Frequency | - | - | 200 | MHz | | t _r /t _f | Output rise and fall times; 0.8 V to 2.0 V | - | 0.6 | 1.0 | ns | | t _{pd} | Propagation Delay, CLK to Qn (Note 4) | 2.0 | 2.4 | 4.0 | ns | | t _{skew} | t _{skew} Output-to-output skew; (Note 5) | | 35 | 50 | ps | | t _{skew} | Device-to-device skew, (Note 5) | _ | - | 500 | ps | # AC CHARACTERISTICS; V_{DD} = 5.0 V ±5% (V_{DD} = 4.75 V to 5.25 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3) | Symbol | Characteristic | | Тур | Max | Unit | |--------------------------------|--|-----|-----|-----|------| | f _{in} | Input Frequency | | - | 200 | MHz | | t _r /t _f | Output rise and fall times; 0.8 V to 2.0 V | - | 0.3 | 0.7 | ns | | t _{pd} | Propagation Delay, CLK to Qn (Note 4) | 1.7 | 2.5 | 4.0 | ns | | t _{skew} | Output-to-output skew; (Note 5) | | 35 | 50 | ps | | t _{skew} | Device-to-device skew, (Note 5) | _ | - | 500 | ps | Outputs loaded with external R_L = 33-5 corie register and C_I = 15 pr to GND for proper operation. Duty cycle cut is duty in. A 0.01 μF decoupling copacitor should be connected betiveen V_{DI} and C ND. Measured vit air-to-ral in air clock Measured vit is air-to-ral in air to gestat V_{DD} ± 2 between any two outputs with rapid loading. ## PACKAGE DIMENSIONS ## SOIC-8 NB CASE 751-07 #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982 - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 | BSC | 0.05 | 0 BSC | | Η | 0.10 | 0.25 | 0.004 | 0.010 | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ## **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS ## DFN8 CASE 506AA-01 ISSUE D - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN - 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | |-----|-------------|------| | DIM | MIN | MAX | | Α | 0.80 | 1.00 | | A1 | 0.00 | 0.05 | | АЗ | 0.20 REF | | | b | 0.20 | 0.30 | | D | 2.00 BSC | | | D2 | 1.10 | 1.30 | | E | 2.00 BSC | | | E2 | 0.70 | 0.90 | | е | 0.50 BSC | | | K | 0.20 | | | L | 0.25 | 0.35 | **BOTTOM VIEW** ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative