3.3 V, 1.5 Gb/s Dual AnyLevel[™] to LVDS Receiver/Driver/Buffer/ Translator

Description

NB4N855S is a clock or data Receiver/Driver/Buffer/Translator capable of translating AnyLevel input signal (LVPECL, CML, HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the distance, noise immunity of the system design, and transmission line media, this device will receive, drive or translate data or clock signals up to 1.5 Gb/s or 1.0 GHz, respectively. This device is pin-for-pin plug in compatible to the SY55855V in a 3.3 V applications.

The NB4N855S has a wide input common mode range of GND + 50 mV to V_{CC} - 50 mV. This feature is ideal for translating differential or single-ended data or clock signals to 350 mV typical LVDS output levels.

The device is offered in a small 10 lead MSOP package. NB4N855S is targeted for data, wireless and telecom applications as well as high speed logic interface where jitter and package size are main requirements.

Application notes, models, and support documentation are available at www.onsemi.com.

equency up

- Features
- Guarantee 1
- Guaranteed Input Data Rate up to 1.5 Gb/s
- 490 ps Maximum Propagation Delay
- 1.0 ps Maximum RMS Jitter
- 180 ps Maximum Rise/Fall Times
- Single Power Supply; $V_{CC} = 3.3 \text{ V} \pm 10\%$
- Temperature Compensated TIA/EIA-644 Compliant LVDS Outputs
- GND + 50 mV to V_{CC} 50 mV V_{CMR} Range
- Pb-Free Package is Available

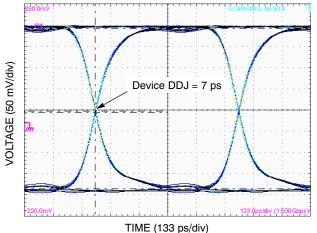
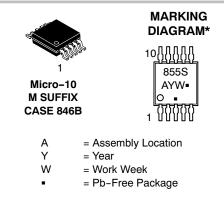
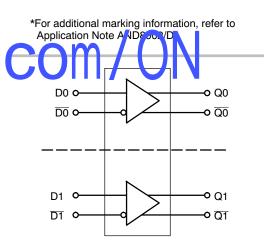



Figure 1. Typical Output Waveform at 1.5 Gb/s with K28.5 (V_{INPP} = 100 mV, Input Signal DDJ = 24 ps)



ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

Functional Block Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

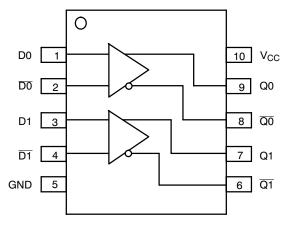


Figure 2. Pin Configuration and Block Diagram (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	D0	LVPECL, CML, LVCMOS, LVTTL, LVDS	Noninverted Differential Clock/Data D0 Input.
2	DO	LVPECL, CML, LVCMOS, LVTTL, LVDS	Inverted Differential Clock/Data D0 Input.
3	D1	LVPEL, CML, LVDS LVCMOS, LVTTL	Noninverted Differential Clock/Data D1 Input.
4	DT	LVPECL, CML, LVDS LVCMCSL/TTL	Inverted Differential Clock/Data D1 Input.
5	CIN D	W , DU (Grc und. 0 V.
6	<u>Q1</u>	LVDS Output	Inverted Q1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
7	Q1	LVDS Output	Noninverted Q1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
8	QO	LVDS Output	Inverted $\overline{\text{Q0}}$ output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
9	Q0	LVDS Output	Noninverted Q0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
10	V _{CC}	_	Positive Supply Voltage.

Table 2. ATTRIBUTES

Charac	Value			
Moisture Sensitivity (Note 1)		Pb Pkg	Pb-Free Pkg	
	Micro-10	Level 1	Level 1	
Flammability Rating	UL 94 V-0 @ 0.125 in			
ESD Protection Human Body Model Machine Model Charged Device Model		> 2 kV > 200 V > 1 kV		
Transistor Count	2	81		
Meets or exceeds JEDEC Spe	c EIA/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V	
VI	Positive Input	GND = 0 V	V _I = V _{CC}	3.8	V	
I _{OSC}	Output Short Circuit Current Line-to-Line (Q to \overline{Q}) Line-to-End (Q or \overline{Q} to GND)	Q to \overline{Q} Q or \overline{Q} to GND	Continuous Continuous	12 24	mA	
T _A	Operating Temperature Range	Micro-10		-40 to +85	°C	
T _{stg}	Storage Temperature Range			-65 to +150	°C	
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 2)	0 lfpm 500 lfpm	Micro-10 Micro-10	177 132	°C/W °C/W	
θ_{JC}	Thermal Resistance (Junction to-Ca ;e)	1SCP (Note 4)	Micro-10	40	°C/W	
T _{sol}	Wave Society V DD Pb Pt - Free	<3 Sec @ 248°C <3 `~ @ 2°0°C		26) 265	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2. JEDEC standard multilayer board – 1S2P (1 signal, 2 power).

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Note 3)		40	53	mA
DIFFERE	NTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 10 and 12)		•		
V _{th}	Input Threshold Reference Voltage Range (Note 4)	GND +100		V _{CC} - 100	mV
V _{IH}	Single-ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage	GND		V _{th} – 100	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11 and 13)				
V _{IHD}	Differential Input HIGH Voltage	100		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND		V _{CC} - 100	mV
V _{CMR}	Input Common Mode Range (Differential Configuration)	GND + 50		V _{CC} - 50	mV
V _{ID}	Differential Input Voltage (V _{IHD} - V _{ILD})			V _{CC}	mV
LVDS OU	TPUTS (Note 5)				
V _{OD}	Differential Output Voltage	250		450	mV
ΔV_{OD}	Change in Magnitude of V_{OD} for Complementary Output States (Note 6)	0	1.0	25	mV
V _{OS}	Offset Voltage (Figure 9)	1125		1375	mV
ΔV_{OS}	Change in Magnitude of V_{OS} for Complementary Output States (Note 6)	0	1.0	25	mV
V _{OH}	Output HIGH Voltage (Note 7)		1425	1600	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under norman operating conditions and not valid simultaneously. 3. Dx/Dx at the DC level with V_{CMR} and putput bins load ad with $R_L = 100 \Omega$ across due related 4. V_{th} is appliant of the complementary input when operating in single-ended mode. 5. LVDS outputs require 100Ω receipent termination esistic power of the ential pair. See Figure 8

900

1075

mV

6. Parameter guaranteed by design verification not tested in production.

 V_{OH} max = V_{OS} max + $\frac{1}{2}$ V_{OD} max. 7.

Output LOW Voltage (Note 8)

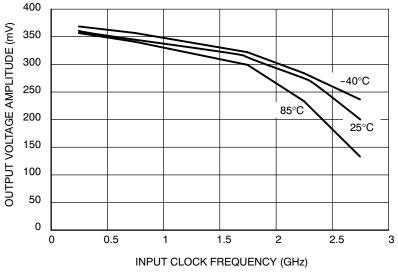
V_{OL}

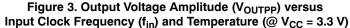
8. $V_{OL}max = V_{OS}min - \frac{1}{2}V_{OD}max$.

		–40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPMIN}) $f_{in} \le 1.0 \text{ GHz}$ (Figure 3) $f_{in} = 1.5 \text{ GHz}$	230 200	350 300		230 200	350 300		230 200	350 300		mV
f _{DATA}	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
t _{PLH} , t _{PHL}	Differential Input to Differential Output Propagation Delay	330	410	490	330	410	490	330	410	490	ps
t _{SKEW}	Duty Cycle Skew (Note 10) Within -Device Skew (Note 11) Device to Device Skew (Note 12)		8 10 20	45 35 100		8 10 20	45 35 100		8 10 20	45 35 100	ps
UITTER	$\begin{array}{ll} \text{RMS Random Clock Jitter (Note 13)} & f_{in} = 1.0 \text{ GHz} \\ f_{in} = 1.5 \text{ GHz} \\ \text{Deterministic Jitter (Note 14)} & f_{DATA} = 622 \text{ Mb/s} \\ f_{DATA} = 622 \text{ Mb/s} \\ f_{DATA} = 1.5 \text{ Gb/s} \\ f_{DATA} = 2.488 \text{ Gb/s} \\ \text{Crosstalk Induced Jitter (Note 15)} \end{array}$		0.5 0.5 6 7 10 20	1 15 20 25 40		0.5 0.5 6 7 10 20	1 15 20 25 40		0.5 0.5 6 7 10 20	1 15 20 25 40	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 16)	100		V _{CC} - GND	100		V _{CC} - GND	100		V _{CC} - GND	mV
t _r t _f	Output Rise/Fall Times @ 250 MHz Q, Q (20% - 80%)	50	110	180	50	110	180	50	110	180	ps

Table 5. AC CHARACTERISTICS V_{CC} = 3.0 V to 3.6 V, GND = 0 V; (Note 9)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.


9. Measured by forcing V_{INPPMIN} with 50% duty cycle clock source and V_{CC} – 1400 mV offset. All loading with an external R_L = 100 Ω across "D" and "D" of the receiver. Input edge rates 150 ps (20%-80%).


10. See Figure 7 differential measurement of $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform @ 250 MHz. 11. The worst case condition between Q0/20 and Cn Q1 norm either D0/D0 or D1/D1, when both outputs have the same ran ition 12. Skew is measured between Q0/20 and Cn Q1 norm either D0/D0 or D1/D1, when both outputs have the same ran ition 13. RMS jitter vit 50% D1ty Gree clock s gna 14. Deterministic jitter vit in jut VRZ data at D18 $\geq 2^{23}$ -1 and K2 .5.

ran ition.

15. Crosstalk Induced Jitter is the additive Deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2²³ -1 as an asynchronous signals.

16. Input voltage swing is a single-ended measurement operating in differential mode.

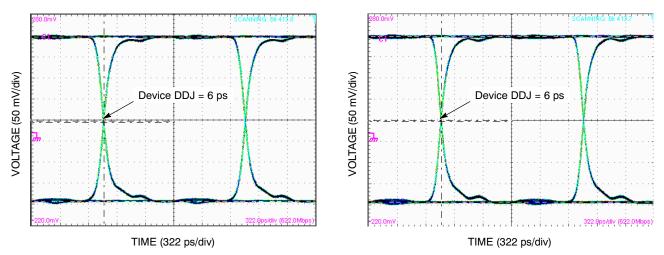
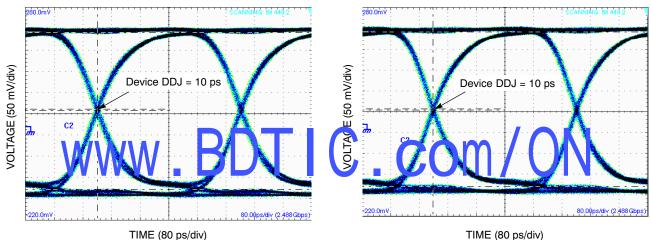



Figure 4. Typical Output Waveform at 1.5 Gb/s with 2²³⁻¹ (V_{INPP} = 100 mV (left) & V_{INPP} = 400 mV (right), Input Signal DDJ = 24 ps)

TIME (80 ps/div)

Figure 5. Typical Output Waveform at 2.488 Gb/s with 2²³⁻¹ (V_{INPP} = 100 mV (left) & V_{INPP} = 400 mV (right), Input Signal DDJ = 30 ps)

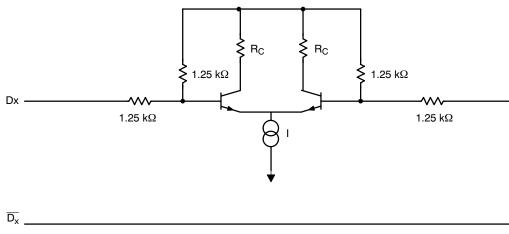
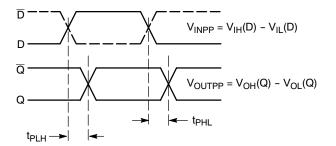



Figure 6. Input Structure

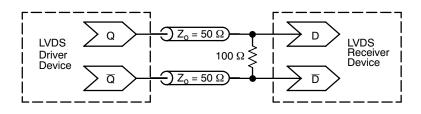
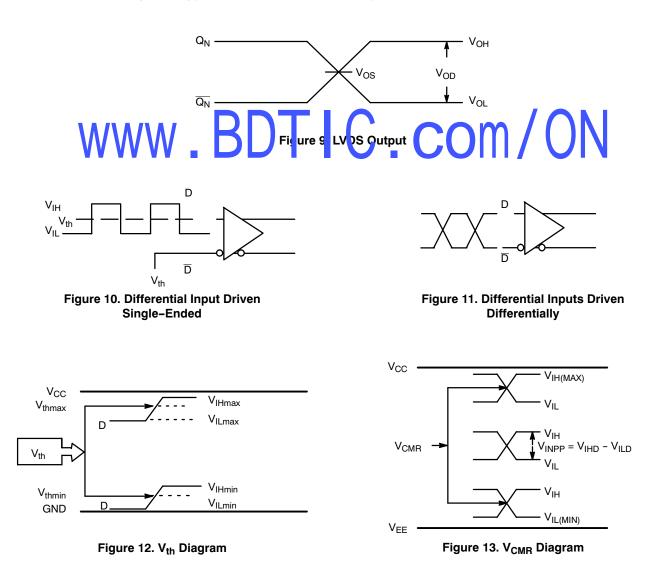
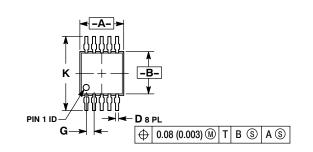
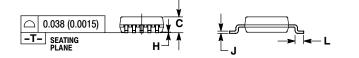



Figure 8. Typical LVDS Termination for Output Driver and Device Evaluation

ORDERING INFORMATION

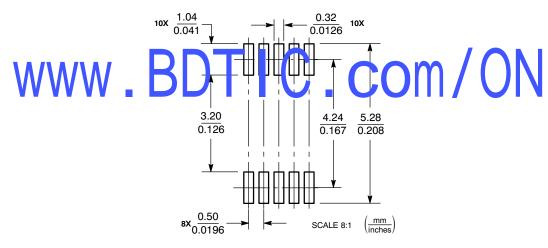

Device	Package	Shipping [†]			
NB4N855SMR4	Micro-10	1000 / Tape & Reel			
NB4N855SMR4G	Micro-10 (Pb-Free)	1000 / Tape & Reel			


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

www.BDTIC.com/ON

PACKAGE DIMENSIONS

Micro-10 CASE 846B-03 ISSUE D



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- A DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- 5. 846B-01 OBSOLETE. NEW STANDARD 846B-02

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.95	1.10	0.037	0.043	
D	0.20	0.30	0.008	0.012	
G	0.50	BSC	0.020) BSC	
Η	0.05	0.15	0.002	0.006	
J	0.10	0.21	0.004	0.008	
K	4.75	5.05	0.187	0.199	
Г	0.40	0.70	0.016	0.028	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

AnyLevel is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative