Product Preview

1.8V / 2.5V Differential Data/Clock D Flip-Flop w/ Reset and CML Outputs

Multi-Level Inputs w/ Internal Termination

Description

The NB7V52M is a 10GHz differential Data and Clock D flip-flop with a Differential asynchronous Reset. The differential D/Db, CLK/CLKb and R/Rb inputs incorporate internal $50-\Omega$ termination resistors and will accept LVPECL, CML, LVDS logic levels (see Figure 11).

When Clock transitions from Low to High, Data will be transferred to the differential CML outputs. The differential Clock inputs allow the NB7V52M to also be used as a negative edge triggered device. The 16mA differential CML outputs provide matching internal 50- Ω terminations and 400 mV output swings when externally terminated with a 50- Ω resistor to VCC (see Figure 13).

The NB7V52M is offered in a low profile 3mm x 3mm 16-pin QFN package. The NB7V52M is a member of the GigaComm[™] family of high performance clock products. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock-Frequency > 10GHz Typical-
- Random Clock Jitter < 0.8ps RMS
- ps Typical Propagation Delay
- 30ps Typical Rise and Fall Times
- Differential CML Outputs, 400mV peak-to-peak, typical
- Operating Range: $V_{CC} = 1.71V$ to 2.625V with $V_{EE} = 0V$
- Internal 50- Ω Input Termination Resistors
- QFN-16 Package, 3mm x 3mm, Pb-free
- -40°C to +85°C Ambient Operating Temperature

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. This document, and the information contained herein, is CONFIDENTIAL AND PROPRIETARY and the property of Semiconductor Components Industries, LLC., dba ON Semiconductor. It shall not be used, published, disclosed or disseminated outside of the Company, in whole or in part, without the written permission of ON Semiconductor. Reverse engineering of any or all of the information contained herein is strictly prohibited.

© 2003, SCILLC. All Rights Reserved.

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

Figure 1. Functional Block Diagram

Table 1. Pin Description

Pin	Name	I/O	Description
1	VTD	-	Internal 50- Ω Termination Pin for D
2	D	LVPECL, CML, LVDS Input	Noninverted Differential Data Input. Note 1
3	Db	LVPECL, CML, LVDS Input	Inverted Differential Data Input. Note 1
4	VTDb	-	Internal 50-Ω Termination Pin for Db
5	VTCLK	-	Internal 50-Ω Termination Pin for CLK
6	CLK	LVPECL, CML, LVDS Input	Noninverted Differential Clock Input. Note 1
7	CLKb	LVPECL, CML, LVDS Input	Inverted Differential Clock Input. Note 1
8	VTCLKb	-	Internal 50-Ω Termination Pin for CLKb
9	VEE	-	Negative Supply Voltage. Note 2.
10	Qb	CML Output	Inverted Differential Output
11	Q	CML Output	Noninverted Differential Output
12	VCC	-	Positive Supply Voltage. Note 2.
13	VTR	-	Internal 50- Ω Termination Pin for R
14	R	LVPECL, CML, LVDS Input	Noninverted Differential Reset Input. Note 1
15	Rb	LVPECL, CML, LVDS Input	Inverted Differential Reset Input. Note 1
16	VTRb	-	Internal 50-Ω Termination Pin for Rb
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to VEE on the PC board.

1. In the differential configuration, when the input termination pins (VTD, VTDb, VTR, VTRb, VTCLK, VTCLKb) are connected to a common termination voltage or left open, and if no signal is applied on D/Db,CLK/CLKb,R/Rb inputs, then the device will be susceptible to self-oscillation. Q/Qb outputs each have internal 50-ohm source termination resistor.

2. VCC and VEE pins must be externally connected to a power supply for proper operation.

Table 1. Truth Table R D CLK Q Н х х L Ζ L L L L н Ζ н

Z = LOW to HIGH Transition

x = Don't care

Table 2. ATTRIBUTES

Characteristi	Value			
ESD Protection Human Body Machine		> 2 kV > 200 V		
Moisture Sensitivity (Note 3)	16-QFN	Level 1		
Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in		
Transistor Count	173			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

3. For additional information, see Application Note AND8003/D.

Table 3.	MAXIMUM RATINGS				
Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{cc}	Positive Power Supply	V _{EE} = 0 V		3.0	V
V _{IO}	Positive Input/Output Voltage	V _{EE} = 0 V	$-0.5 \le V_{lo} \le V_{CC} + 0.5$	-0.5 to V $_{\rm CC}$ +0.5	V
VINPP	Differential Input Voltage CLK - CLKb			1.89	V
I _{out}	Output Current	Continuous Surge		34 40	mA mA
I _{IN}	Input Current Through R_T (50- Ω Resistor)			+/-40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 4)	0 LFPM 500 LFPM	QFN-16 QFN-16	42 35	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction-to-Case) (Note 4)		QFN-16	4	°C/W
T _{sol}	Wave Solder			265	°C

. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. 4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Symbol	Characteristic					Unit
			Min	Тур	Max	
Power S	upply Current					
I _{CC}	Power Supply Current (Inputs and Outputs Open)	VCC = 2.5V VCC = 1.8V		90 70	110 90	mA
CML Out	puts					
V _{OH}	Output HIGH Voltage (Note 6)	VCC = 2.5V VCC = 1.8V	V _{cc} – 40 2460 1760	V _{cc} – 20 2480 1780	V _{cc} 2500 1800	mV
V _{OL}	Output LOW Voltage (Note 6)	VCC = 2.5V VCC = 2.5V	V _{cc} –600 1900	V _{cc} - 500 2000	V _{CC} - 400 2100	mV
		VCC = 1.8V VCC = 1.8V	V _{cc} –550 1250	V _{cc} – 450 1350	V _{cc} – 350 1450	mV
Different	ial Inputs Driven Single-ended (Figures 5 & 7)				1	1
V _{th}	Input Threshold Reference Voltage Range (Note 7)		1000		VCC - 100	mV
VIH	Single-ended Input HIGH Voltage		Vth +100		VCC	mV
VIL	Single-ended input LOW Voltage				Vtn - 100	mv mV
Different	al D/Db. CLK/CLKb. R/Rb Inputs Driven Differential	lv (Figures 6 & 8)	(Note 8)		1200	IIIV
VIHD	Differential Input HIGH Voltage	, (g	1100		V _{cc}	mV
VILD	Differential Input LOW Voltage		V _{FF}		V _{cc} - 100	mV
VID	Differential Input Voltage (Vien Vien)		100		1200	mV
V _{CMR}	Input Common Mode Range (Differential Configuration, Note 9) (Figure 9)		1050		V _{cc} - 50	mV
IIH	Input HIGH Current (VTx/VTxb Open)		-150		150	uA
I _{IL}	Input LOW Current (VTx/VTxb Open)	-150		150	uA	
Terminat	ion Resistors			_		•
R _{TIN}	Internal Input Termination Resistor		40	50	60	Ω
R _{TOUT}	Internal Output Termination Resistor		40	50	60	Ω
R _⊤ Coef	Internal Output Termination Resistor Temperature Coefficient			TBD		mΩ/°C

Note: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operation of the device exceeding these conditions is values are applied individually under normal operating conditions and not valid simultaneously. 5. Input and output parameters vary 1:1 with V_{CC} . 6. CML outputs loaded with 50- Ω to V_{CC} for proper operation. 7. Vth, V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously.

8. Vth is applied to the complementary input when operating in single-ended mode.

9. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously.

10 V_{CMR} min varies 1:1 with V_{EE}, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal.

Table 5.	AC CHARACTERISTICS V _{CC} = 1.71 V	to 2.625 V; V_{EE} = 0 V	∕; TA = -40°	C to 85°C (N	lote 10)	
Symbol	Characteristic					Unit
			Min	Тур	Max	
f _{MAX}	Maximum Input Clock Frequency		10			GHz
VOUTPP	Output Voltage Amplitude (@ V _{INPPmin})	$f_{in} \leq 7GHz$	300	400		mV
	(Note 11) (Figures 8 & 10)	$f_{\text{in}} \leq 10 GHz$	200	300		mV
t _{PLH} ,	Propagation Delay to Differential Outputs,	CLK/CLKb toQ,Qb		100		25
t _{PHL}	1GHz, measured at differential cross-point	R/Rb to Q/Qb		150		μs
ts	Set-Up Time (D to CLK)		TBD			ps
t _H	Hold Time (D to CLK)		TBD			ps
t _{RR}	Reset Recovery		TBD			ps
t _{PW}	Minimum Pulse Width	R/Rb	TBD			ps
t _{PLH} TC	Propagation Delay Temperature Coefficient			50		∆fs/°C
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle	= 50%) f _{in} ≤ 7.0GHz	45	50	55	%
t _{JITTER}	RJ – Output Random Jitter (Note 12)	f _{in} = 10GHz		0.5	0.8	ps RMS
VINPP	Input Voltage Swing (Differential Configuration)(F	igure 10) (Note 13)	100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz (20% - 80%),	Q, Qb		30	50	ps

10. Measured using a V_{INPP}pk-pk min source, 50% duty cycle clock source. All output loading with external 50-Ω to V_{CC}. Input edge rates 40 ps (20% - 80%).

11. Output voltage swing is a single-ended measurement operating in differential mode. 12. Additive RMS jitter with 50% duty cycle clock signal.

13. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 10. AC Reference Measurement

CLK

CLK

Figure 8. VID - Differential Inputs Driven Differentially

Figure 11. Input Interface Options

http://onsemi.com 7

Figure 13. Typical Termination for Output Driver and Device Evaluation (see Application Note AND8173AND8173)

Device	Package	Shipping	
NB7V52MMNG	QFN-16 (Pb-free)	123 Units / Rail	
NB7V52MMNR2G	QFN-16 (Pb-free)	3000 / Tape & Reel	

PACKAGE DIMENSIONS

16 PIN QFN CASE 485G-01 ISSUE B

NOTES: 1. DIMENSIONING AND TOLERANCING PER

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 5 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 L. CONDITION CAN NOT VIOLATE 0.2 MM

- 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
A3	0.20	REF	
ь	0.18 0.30		
D	3.00 BSC		
D2	1.65	1.85	
E	3.00	BSC	
E2	1.65	1.85	
0	0.50 BSC		
к	0.20		
L	0.30	0.50	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.