2.5 V/3.3 V Multilevel Input to CML Clock/Data Receiver/Driver/Translator Buffer

Description

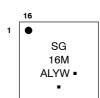
The NBSG16M is a differential current mode logic (CML) receiver/driver/translator buffer. The device is functionally equivalent to the EP16, LVEP16, or SG16 devices with CML output structure and lower EMI capabilities.

Inputs incorporate internal 50 Ω termination resistors and accept LVNECL (Negative ECL), LVPECL (Positive ECL), LVTTL, LVCMOS, CML, or LVDS. The CML output structure contains internal 50 Ω source termination resistor to V_{CC} . The device generates 400 mV output amplitude with 50 Ω receiver resistor to V_{CC} .

The V_{BB} pin is internally generated voltage supply available to this device only. For all single–ended input conditions, the unused complementary differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} output should be left open.

Features

- Maximum Input Clock Frequency > 10 GHz Typical
- Maximum Input Data Rate > 10 Gb/s Typical
- 120 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Positive CML Output with Operating Range:
 V_{CC} = 2.375 V to 3.465 V with V_{EE} = 0 V
- Negative CML Output with RSNECL or NECL Inputs with Operating Range: V_{CC} = 0 V with V_{EE} = −2.375 V to −3.465 V
- CML Output Level; 400 mV Peak-to-Peak Output with 50 Ω Receiver Resistor to V_{CC}
- 50 Ω Internal Input and Output Termination Resistors
- Compatible with Existing 2.5 V/3.3 V LVEP, EP, LVEL and SG Devices
- V_{BB} Reference Voltage Output
- Pb-Free Packages are Available


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

QFN-16 MN SUFFIX CASE 485G

A = Assembly Location

L = Wafer Lot Y = Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

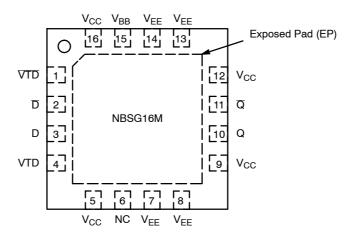


Figure 1. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	$\overline{V_{TD}}$	-	Internal 50 Ω Termination Pin. See Table 2. (Note 3)
2	D	LVDS, CML, ECL, LVTTL, LVCMOS Input	Inverted Differential Input (Note 3)
3	D	LVDS, CML, ECL, LVTTL, LVCMOS Input	Noninverted Differential Input. (Note 3)
4	V_{TD}	-	Internal 50 Ω Termination Pin. See Table 2. (Note 3)
5	V _{CC}	-	Positive Supply Voltage. All $V_{\rm CC}$ pins must be externally connected to Power Supply to guarantee proper operation.
6	NC	-	No Connect (Note 1)
7	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
8	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
9	V _{CC}	-	Positive Supply Voltage. All $V_{\rm CC}$ pins must be externally connected to Power Supply to guarantee proper operation.
10	Q	CML Output	Noninverted CML Differential Output with Internal 50 Ω Source Termination Resistor. (Note 2)
11	Q	CML Output	Inverted CML Differential Output with Internal 50 Ω Source Termination Resistor. (Note 2)
12	V _{CC}	-	Positive Supply Voltage. All $V_{\rm CC}$ pins must be externally connected to Power Supply to guarantee proper operation.
13	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
14	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.
15	V_{BB}	-	Internally Generated ECL Reference Output Voltage
16	V _{CC}	-	Positive Supply Voltage. All $V_{\rm CC}$ pins must be externally connected to Power Supply to guarantee proper operation.
-	EP	_	The Exposed Pad (EP) and the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heatsinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to V _{EE} on the PC board.

- The NC pins are electrically connected to the die and MUST be left open.
 CML outputs require 50 Ω receiver termination resistor to V_{CC} for proper operation.
 In the differential configuration when the input termination pin (V_{TD}, V_{TD}) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.

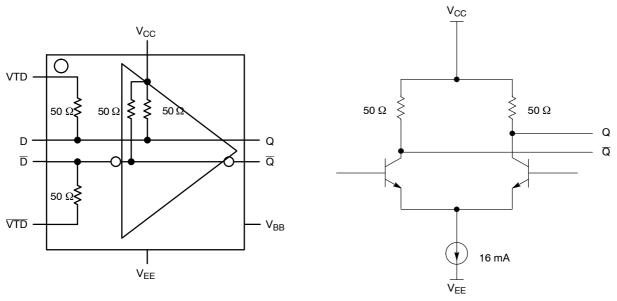


Figure 2. Logic Diagram

Figure 3. CML Output Structure

Table 2. Interfacing Options

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD and VTD to V _{CC}
LVDS	Connect VTD and VTD together
AC-COUPLED	Bias VTD and VTD Inputs within (V _{IHCMR}) Common Mode Range
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL, LVCMOS	An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and V _{CC} /2 for LVCMOS inputs.

Table 3. ATTRIBUTES

Charact	Value						
ESD Protection	> 1 kV > 100 V > 4 kV						
Moisture Sensitivity, Indefinite	Pb Pkg	Pb-Free Pkg					
	QFN-16	Level 1	Level 1				
Flammability Rating	UL 94 V-0	@ 0.125 in					
Transistor Count	145						
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

4. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V	
V _{EE}	Negative Power Supply	V _{CC} = 0 V		-3.6	V	
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	3.6 -3.6	V	
V _{INPP}	Differential Input Voltage D − D	$\begin{array}{c} V_{CC} - V_{EE} \geq 2.8 \ V \\ V_{CC} - V_{EE} < 2.8 \ V \end{array}$	$\begin{split} &V_{CC}-V_{EE} \geq 2.8 V \\ &V_{CC}-V_{EE} < 2.8 V \end{split}$			
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA mA	
I _{out}	Output Current	Continuous Surge		25 50	mA mA	
I _{BB}	V _{BB} Sink/Source			1.0	mA	
T _A	Operating Temperature Range			-40 to +85	°C	
T _{stg}	Storage Temperature Range			-65 to +150	°C	
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 5)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W	
θ _{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 5)	QFN-16	4.0	°C/W	
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

5. JEDEC standard multilayer board – 1S2P (1 signal, 2 power)

Table 5. DC CHARACTERISTICS, POSITIVE CML OUTPUT V_{CC} = 2.5 V; V_{EE} = 0 V (Note 6)

								ı	85°C		
			−40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
V _{OH}	Output HIGH Voltage (Note 7)	V _{CC} - 40	V _{CC} -	V _{CC}	V _{CC} - 40	V _{CC} -	V _{CC}	V _{CC} - 40	V _{CC} -	V _{CC}	mV
V _{OL}	Output LOW Voltage (Note 6)		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 8)	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1275	V _{CC} - 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single-Ended) (Note 8)	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	٧
V_{BB}	ECL Reference Voltage Output	1075	1170	1265	1075	1170	1265	1075	1170	1265	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 8) (Differential Configuration)	1.2		2.5	1.2		2.5	1.2		2.5	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ V _{IH})		60	100		60	100		60	100	μΑ
I _{IL}	Input LOW Current (@ V _{IL})		25	50		25	50		25	50	μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -0.965 V.
 All loading with 50 Ω to V_{CC}.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input size. tial input signal.
*Typicals used for testing purposes.

Table 6. DC CHARACTERISTICS, POSITIVE CML OUTPUT $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0 \text{ V}$ (Note 9)

	-40°C				25°C					
Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
Output HIGH Voltage (Note 10)	V _{CC} - 40	V _{CC} - 10	V _{CC}	V _{CC} - 40	V _{CC} - 10	V _{CC}	V _{CC} – 40	V _{CC} - 10	V _{CC}	mV
Output LOW Voltage (Note 9)		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330	mV
Input HIGH Voltage (Single-Ended) (Note 11)	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V
Input LOW Voltage (Single-Ended) (Note 11)	V _{EE}	V _{CC} - 1.4*	V _{IH} – 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} – 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} – 0.150	V
ECL Reference Voltage Output	1875	1970	2065	1875	1970	2065	1875	1970	2065	mV
Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration)	1.2		3.3	1.2		3.3	1.2		3.3	V
Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
Input HIGH Current (@ V _{IH})		60	100		60	100		60	100	μΑ
Input LOW Current (@ V _{IL})		25	50		25	50		25	50	μΑ
	Positive Power Supply Current Output HIGH Voltage (Note 10) Output LOW Voltage (Note 9) Input HIGH Voltage (Single–Ended) (Note 11) Input LOW Voltage (Single–Ended) (Note 11) ECL Reference Voltage Output Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) Internal Input Termination Resistor Internal Output Termination Resistor Input HIGH Current (@ VIH)	Positive Power Supply Current Output HIGH Voltage (Note 10) Input HIGH Voltage (Note 9) Input HIGH Voltage (Note 9) Input LOW Voltage (Note 11) Input LOW Voltage (Single–Ended) (Note 11) ECL Reference Voltage Output Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) Internal Input Termination Resistor Resistor Input HIGH Current (@ V _{IH})	Characteristic Min Typ Positive Power Supply Current 37 43 Output HIGH Voltage (Note 10) V _{CC} - 40 V _{CC} - 400 Input LOW Voltage (Note 9) V _{EE} + 1.275 V _{CC} - 400 Input HIGH Voltage (Single-Ended) (Note 11) V _{EE} + 1.275 V _{CC} - 1.0* Input LOW Voltage (Single-Ended) (Note 11) V _{EE} V _{CC} - 1.4* V _{CC} - 1.4* ECL Reference Voltage Output 1875 1970 Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) 1.2 50 Internal Input Termination Resistor 45 50 Internal Output Termination Resistor 45 50 Input HIGH Current (@ V _{IH}) 60	Characteristic Min Typ Max Positive Power Supply Current 37 43 51 Output HIGH Voltage (Note 10) V _{CC} - 40 V _{CC} - 10 V _{CC} - 30 Output LOW Voltage (Note 9) V _{CC} - 400 V _{CC} - 330 Input HIGH Voltage (Single-Ended) (Note 11) V _{EE} + 1.275 V _{CC} - 1.0* Input LOW Voltage (Single-Ended) (Note 11) V _{EE} V _{CC} - 1.4* V _{IH} - 0.150 ECL Reference Voltage Output 1875 1970 2065 Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) 1.2 3.3 Internal Input Termination Resistor 45 50 55 Internal Output Termination Resistor 45 50 55 Input HIGH Current (@ V _{IH}) 60 100	Characteristic Min Typ Max Min Positive Power Supply Current 37 43 51 37 Output HIGH Voltage (Note 10) V _{CC} - 40 V _{CC} - 40 V _{CC} - 40 V _{CC} - 40 Output LOW Voltage (Note 9) V _{EE} + 1.275 V _{CC} - 400 V _{CC} - 330 V _{EE} + 1.275 Input HIGH Voltage (Single-Ended) (Note 11) V _{EE} + 1.275 V _{CC} - 1.0* V _{EE} + 1.275 Input LOW Voltage (Single-Ended) (Note 11) V _{EE} V _{CC} - 1.4* V _{IH} - 0.150 V _{EE} (Single-Ended) (Note 11) ECL Reference Voltage Output 1875 1970 2065 1875 Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) 1.2 3.3 1.2 Internal Input Termination Resistor 45 50 55 45 Internal Output Termination Resistor 45 50 55 45 Input HIGH Current (@ V _{IH}) 60 100 100	Characteristic Min Typ Max Min Typ Positive Power Supply Current 37 43 51 37 43 Output HIGH Voltage (Note 10) VCC - 40 VCC - 40 VCC - 40 VCC - 40 VCC - 400 Input LOW Voltage (Note 9) VEE + 1.275 VCC - 400 VCC - 400 VCC - 400 VCC - 400 Input HIGH Voltage (Single-Ended) (Note 11) VEE VCC - 1.0* VIH - 0.150 VEE VCC - 1.4* VIH - 0.150 VEE VCC - 1.4* ECL Reference Voltage Output 1875 1970 2065 1875 1970 Input HIGH Voltage Common Mode Range (Note 11) (Differential Configuration) 1.2 3.3 1.2 3.3 1.2 Internal Input Termination Resistor 45 50 55 45 50 Internal Output Termination Resistor 45 50 55 45 50 Input HIGH Current (@ VIH) 60 100 60 60	Characteristic Min Typ Max Min Typ Max Positive Power Supply Current 37 43 51 37 43 51 Output HIGH Voltage (Note 10) V _{CC} - 40 V _{CC} - 400 V _{CC} - 400	Characteristic Min Typ Max Min Typ Max Min Positive Power Supply Current 37 43 51 37 43 51 37 Output HIGH Voltage (Note 10) V _{CC} - 40 V _{CC} - 10 V _{CC} - 40 V _{CC} - 10 V _{CC}	Nin Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Positive Power Supply Current 37 43 51 37 43 51 37 43 43 43 43 43 43 43	Name

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{9.} Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925 V to -0.165 V.
10. All loading with 50 Ω to V_{CC}.
11. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{*}Typicals used for testing purposes.

Table 7. DC CHARACTERISTICS, NEGATIVE CML OUTPUT $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.465 \text{ to } -2.375 \text{ V}$ (Note 12)

			-40°C			25°C					
		-400		1		23 0			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Positive Power Supply Current	37	43	51	37	43	51	37	43	51	mA
V _{OH}	Output HIGH Voltage (Note 13)	V _{CC} - 40	V _{CC} - 10	V _{CC}	V _{CC} - 40	V _{CC} - 10	V _{CC}	V _{CC} - 40	V _{CC} - 10	V _{CC}	mV
V _{OL}	Output LOW Voltage (Note 12)		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330		V _{CC} - 400	V _{CC} - 330	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 13)	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V _{EE} + 1.275	V _{CC} - 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single-Ended) (Note 13)	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	V _{EE}	V _{CC} - 1.4*	V _{IH} - 0.150	V
V_{BB}	ECL Reference Voltage Output	-1425	-1330	-1235	-1425	-1330	-1235	-1425	-1330	-1235	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 14) (Differential Configuration)	V _{EE}	V _{EE} +1.2		V _{EE} +1.2		V _{CC}	V _{CC} V _{EE} +1.2		V _{CC}	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ V _{IH})		60	100		60	100		60	100	μΑ
I _{IL}	Input LOW Current (@ V _{IL})		25	50		25	50		25	50	μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{12.} Input and output parameters vary 1:1 with V_{CC}.

 ^{13.} All loading with 50 Ω to V_{CC}.
 14. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{*}Typicals used for testing purposes.

Table 8. AC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.465 V to -2.375 V or V_{CC} = 2.375 V to 3.465 V; V_{EE} = 0 V

				-40°C		25°C						
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	$ \begin{array}{ll} \text{Output Voltage Amplitude} & \qquad \qquad f_{in} < 7 \\ \text{(See Figure 4) (Note 15)} & \qquad f_{in} < 10 \\ \end{array} $	GHz GHz	300 200	400 250		300 200	400 250		300 100	400 150		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential		90	110	150	100	120	150	100	125	155	ps
t _{SKEW}	Duty Cycle Skew (Note 16)			3	15		3	15		3	15	ps
t _{JITTER}	RMS Random Clock Jitter (Note 18) $f_{in} < 10$ Peak-to-Peak Data Dependent Jitter (Note 19) $f_{in} < 10$			0.2	1 15		0.2	1 15		0.2 8	1.0 15	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 17)		75		2500	75		2500	75		2500	mV
t _r t _f	Output Rise/Fall Times @ 1 GHz (20% – 80%)	Q, Q	21	35	53	21	35	53	21	35	53	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 15. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} . Input edge rates 40 ps (20% 80%).
- 16. See Figure 8 t_{skew} = |t_{PLH} t_{PHL}| for a nominal 50% differential clock input waveform.

 17. V_{INPP(max)} cannot exceed V_{CC} V_{EE}. (Applicable only when V_{CC} V_{EE} < 2500 mV). Input voltage swing is a single-ended measurement operating in differential mode.
- 18. Additive RMS jitter with 50% duty cycle clock signal at 10GHz.
- 19. Additive Peak-to-Peak data dependent jitter with NRZ PRBS231-1 data rate at 10 Gb/s.

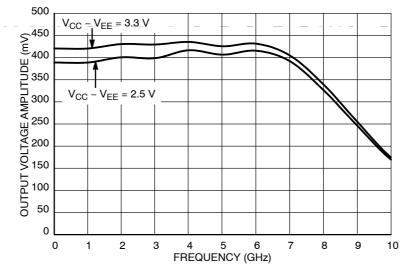


Figure 4. Output Voltage Amplitude (V_{OUTPP}) versus Input Clock Frequency (fin) at Ambient Temperature (Typical)

Application Information

All inputs can accept PECL, CML, and LVDS signal levels. The input voltage can range from V_{CC} to 1.2 V.

Examples interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω).

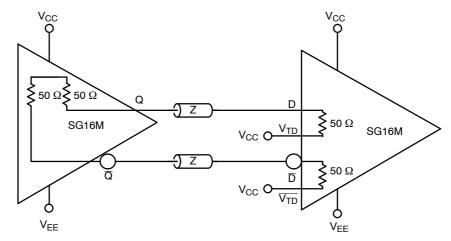


Figure 5. CML to CML Interface

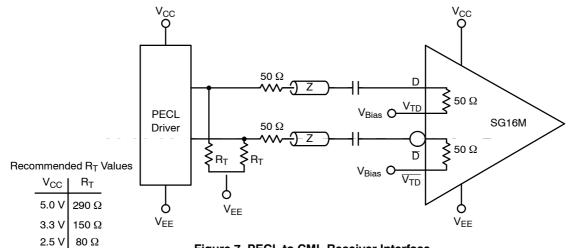


Figure 7. PECL to CML Receiver Interface

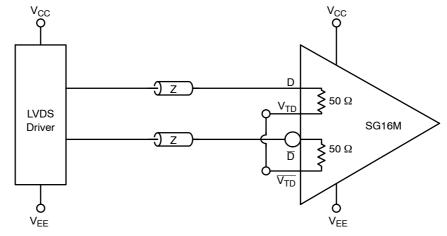


Figure 6. LVDS to CML Receiver Interface

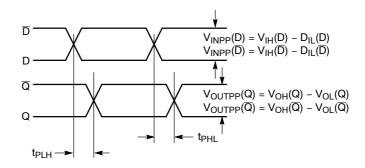


Figure 8. AC Reference Measurement

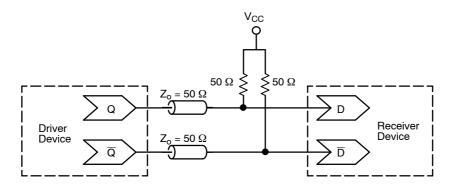
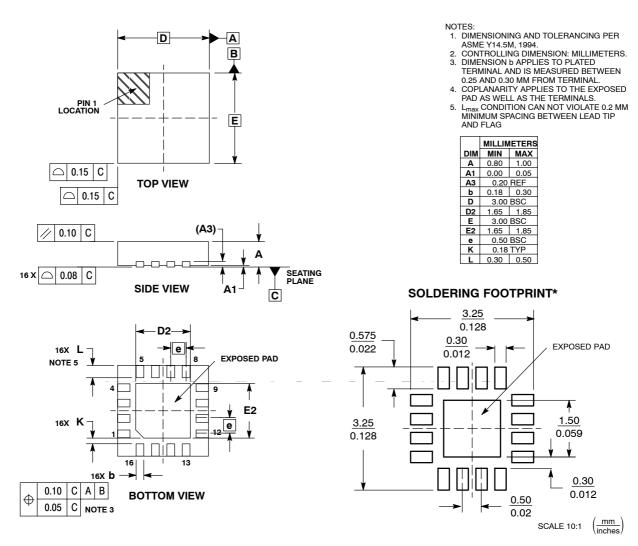


Figure 9. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices)


ORDERING INFORMATION

Device	Package	Shipping [†]				
NBSG16MMN	QFN-16	123 Units / Rail				
NBSG16MMNG	QFN-16 (Pb-Free)	123 Units / Rail				
NBSG16MMNR2	QFN-16	3000 / Tape & Reel				
NBSG16MMNR2G	QFN-16 (Pb-Free)	3000 / Tape & Reel				

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

16 PIN QFN CASE 485G-01 **ISSUE C**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative