3.5 MHz, Wide Supply, Rail-to-Rail Output Operational Amplifier

The NCS2004 operational amplifier provides rail-to-rail output operation. The output can swing within 70 mV to the positive rail and 30 mV to the negative rail. This rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3.5 MHz bandwidth. The NCS2004 can operate on supply voltage as low as 2.5 V over the temperature range of $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. The high bandwidth provides a slew rate of $2.4 \mathrm{~V} / \mu \mathrm{s}$ while only consuming a typical $390 \mu \mathrm{~A}$ of quiescent current. Likewise the NCS2004 can run on a supply voltage as high as 16 V making it ideal for a broad range of battery operated applications. Since this is a CMOS device it has high input impedance and low bias currents making it ideal for interfacing to a wide variety of signal sensors. In addition it comes in either a small SC-88A or UDFN package allowing for use in high density PCB's.

Features

- Rail-To-Rail Output
- Wide Bandwidth: 3.5 MHz
- High Slew Rate: $2.4 \mathrm{~V} / \mu \mathrm{s}$
- Wide Power Supply Range: 2.5 V to 16 V
- Low Supply Current: $390 \mu \mathrm{~A}$
- Low Input Bias Current: 45 pA
- Wide Temperature Range: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Small Packages: 5-Pin SC-88A and UDFN6 1.6x1.6
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Notebook Computers
- Portable Instruments

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping †
NCS2004SQ3T2G	SC-88A (Pb-Free)	$3000 /$ Tape \& Reel
NCS2004MUTAG	UDFN6 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{DD}	Supply Voltage	16.5	V
$\mathrm{~V}_{\mathrm{ID}}$	Input Differential Voltage	\pm Supply Voltage	V
V_{I}	Input Common Mode Voltage Range	-0.2 V to $\left(\mathrm{V}_{\mathrm{DD}}+\right.$ $0.2 \mathrm{~V})$	V
I_{I}	Maximum Input Current	± 10	mA
I_{O}	Output Current Range	± 100	mA
	Continuous Total Power Dissipation (Note 1)	200	mW
$\mathrm{~T}_{\mathrm{J}}$	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Operating Temperature Range (free-air)	-40 to 105	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
	Mounting Temperature (Infrared or Convection -20 sec)	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	Machine Model Human Body Model	300 2000	$\mathrm{~V}^{2}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V - will adversely affect reliability.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V} D \mathrm{D}=2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			0.5	5.0	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				7.0	
Offset Voltage Drift	$\mathrm{ICV}_{\text {Os }}$	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	55	94		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		52			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	65	130		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		62			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	69	140		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		66			
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$, No Load		70	135		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		65			
Large Signal Voltage Gain	$A_{V D}$	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	90	130		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	92	123		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	95	127		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		86			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	95	130		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		90			
Input Bias Current	I_{B}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	150	pA
			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$			1000	

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Output Current	Io	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	Positive rail		4.0		mA
			Negative rail		5.0		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	Positive rail		7.0		
			Negative rail		8.0		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	Positive rail		13		
			Negative rail		12		
Power Supply Quiescent Current	I_{DD}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		380	560	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		385	620	
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		390	660	
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		400	800	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				1000	

AC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, 5 \mathrm{~V}, \& \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter Unity Gain Bandwidth	$\begin{gathered} \hline \text { Symbol } \\ \hline \text { UGBW } \end{gathered}$	Conditions		Min	$\frac{\text { Typ }}{3.2}$	Max	$\begin{aligned} & \hline \text { Unit } \\ & \hline \mathrm{MHz} \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$				
			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { to } \\ 10 \mathrm{~V} \end{gathered}$		3.5		
Slew Rate at Unity Gain	SR	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	1.35	2.0		V/uS
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.45	2.3		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.2			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	1.8	2.6		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.3			
Phase Margin	θ_{m}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			45		-
Gain Margin		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			14		dB
Settling Time to 0.1\%	ts	$\begin{aligned} & \mathrm{V} \text {-step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		2.9		$\mu \mathrm{S}$
		$\begin{aligned} & \mathrm{V} \text {-step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=68 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ \pm 5 \mathrm{~V} \end{gathered}$		2.0		
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.004		\%
			$A V=10$		0.04		
			AV $=100$		0.3		
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}= \\ & 2 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.004		
			AV $=10$		0.04		
			AV $=100$		0.03		
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			30		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=10 \mathrm{kHz}$			20		
Input-Referred Current Noise	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$			0.6		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

Figure 1. CMRR vs. Frequency

Figure 3. 2.5 V V ${ }_{\text {OL }}$ vs. Iout

Figure 5. 3.3 $\mathrm{V} \mathrm{V}_{\mathrm{OL}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 2. Input Bias and Offset Current vs.
Temperature

Figure 4. 2.5 $\mathrm{V} \mathrm{V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 6. 3.3 $\mathrm{V}^{\mathrm{V}} \mathrm{OH}$ vs. $\mathrm{I}_{\text {out }}$

NCS2004

Figure 7. V_{OL} vs. $\mathrm{I}_{\text {out }}$

Figure 9. $10 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 11. Peak-to-Peak Output vs. Supply vs. Frequency

Figure 8. V_{OH} vs. $\mathrm{I}_{\mathrm{out}}$

Figure 10. $10 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 12. Supply Current vs. Supply Voltage

Figure 13. PSRR vs. Frequency

Figure 14. Open Loop Gain and Phase vs.
Frequency

Figure 15. Gain Bandwidth Product vs. Temperature

Figure 16. Slew Rate vs. Supply Voltage

Figure 17. Slew Rate vs. Temperature

500 ns/div
Figure 19. 2.5 V Inverting Large Signal Pulse Response

$500 \mathrm{~ns} /$ div
Figure 21. 2.5 V Inverting Small Signal Pulse Response

Figure 18. Voltage Noise vs. Frequency

500 ns/div
Figure 20. 2.5 V Non-Inverting Large Signal Pulse Response

$500 \mathrm{~ns} / \mathrm{div}$
Figure 22. 2.5 V Non-Inverting Small Signal Pulse Response

Figure 23. 3 V Inverting Large Signal Pulse Response

$500 \mathrm{~ns} / \mathrm{div}$
Figure 25. 3 V Inverting Small Signal Pulse Response

$500 \mathrm{~ns} /$ div
Figure 27. 6 V Inverting Large Signal Pulse Response

$500 \mathrm{~ns} /$ div
Figure 24. 3 V Non-Inverting Large Signal Pulse Response

$500 \mathrm{~ns} / \mathrm{div}$
Figure 26. 3 V Non-Inverting Small Signal Pulse Response

500 ns/div
Figure 28. 6 V Non-Inverting Large Signal Pulse Response

500 ns/div
Figure 29. 6 V Inverting Small Signal Pulse Response

500 ns/div
Figure 30. 6 V Non-Inverting Small Signal Pulse Response

APPLICATIONS

Figure 31. Voltage Reference

Figure 33. Comparator with Hysteresis

Figure 32. Wien Bridge Oscillator

Given: $f_{0}=$ center frequency

$$
A\left(f_{0}\right)=\text { gain at center frequency }
$$

Choose value $\mathrm{f}_{\mathrm{o}}, \mathrm{C}_{\mathrm{Q}}$
Then: $\quad \mathrm{R} 3=\frac{\mathrm{Q}_{\mathrm{Q}}}{\pi \mathrm{f}_{\mathrm{O}} \mathrm{C}}$

$$
R 1=\frac{R 3}{2 A\left(f_{O}\right)}
$$

$$
R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier, $\left(\left(Q_{\mathrm{O}} f_{\mathrm{O}}\right) / \mathrm{BW}\right)<0.1$ where f_{o} and BW are expressed in Hz . If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 34. Multiple Feedback Bandpass Filter

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353)
 CASE 419A-02
 ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE MOLD FL
BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	---	0.004	---	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20

PACKAGE DIMENSIONS

UDFN6 1.6x1.6, 0.5P CASE 517AP

ISSUE O

NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.20	
D	0.30	
BSC		
E	1.60	
BSC		
D2	1.50	BSC
E2	0.45	1.30
K	0.20	---
L	0.20	0.40
L1	0.00	0.15

SOLDERMASK DEFINED

 MOUNTING FOOTPRINT*
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT.

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

