100 V, 3.0 A, Low V_{CE(sat)} NPN Transistor

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

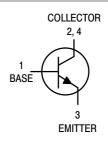
Features

- These Devices are Pb-Free and are RoHS Compliant
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol Max		Unit
Collector-Base Voltage	V_{CBO}	140	Vdc
Collector-Emitter Voltage	V_{CEO}	100	Vdc
Emitter-Base Voltage	V_{EB}	6.0	Vdc
Collector Current - Continuous - Peak	Ic	3.0 6.0	Adc
Base Current	Ι _Β	0.5	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	33 0.26	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	2.1 0.017	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ON Semiconductor®

http://onsemi.com

100 VOLTS, 3.0 AMPS 12.5 WATTS NPN LOW $V_{CE(sat)}$ TRANSISTOR

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

Y = Year WW = Work Week 1C31E = Device Code G = Pb-Free

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS1C301ET4G	DPAK (Pb-Free)	2500/ Tape & Reel
NSV1C301ET4G	DPAK (Pb-Free)	2500/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	3.8	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	59.5	°C/W

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	
Collector – Emitter Breakdown Voltage ($I_C = 10 \text{ mA}, I_B = 0$)	V _{(BR)CEO}	100			V
Collector – Base Breakdown Voltage ($I_C = 0.1 \text{ mA}, I_E = 0$)	V _{(BR)CBO}	140			V
Emitter – Base Breakdown Voltage (I _E = 0.1 mA, I _C = 0)	V _{(BR)EBO}	6.0			V
Collector Cutoff Current (V _{CB} = 140 V, I _E = 0)	I _{CBO}			0.1	μΑ
Emitter Cutoff Current (V _{EB} = 6.0 V)	I _{EBO}			0.1	μΑ
ON CHARACTERISTICS					
DC Current Gain (Note 3) $ \begin{aligned} &(I_C = 0.1 \text{ A, } V_{CE} = 2.0 \text{ V}) \\ &(I_C = 0.5 \text{ A, } V_{CE} = 2.0 \text{ V}) \\ &(I_C = 1.0 \text{ A, } V_{CE} = 2.0 \text{ V}) \\ &(I_C = 3.0 \text{ A, } V_{CE} = 2.0 \text{ V}) \end{aligned} $	h _{FE}	200 200 120 80		360	
Collector – Emitter Saturation Voltage (Note 3) $ \begin{aligned} &(I_C = 0.1 \text{ A, } I_B = 10 \text{ mA}) \\ &(I_C = 1.0 \text{ A, } I_B = 0.100 \text{ A}) \\ &(I_C = 2.0 \text{ A, } I_B = 0.200 \text{ A}) \\ &(I_C = 3.0 \text{ A, } I_B = 0.300 \text{ A}) \end{aligned} $	V _{CE(sat)}		0.015 0.045 0.080 0.115	0.050 0.090 0.150 0.250	V
Base – Emitter Saturation Voltage (Note 3) (I _C = 1.0 A, I _B = 0.1 A)	V _{BE(sat)}			1.0	V
Base – Emitter Turn–on Voltage (Note 3) (I _C = 1.0 A, V _{CE} = 2.0 V)	V _{BE(on)}			0.90	V
Cutoff Frequency ($I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$)	f _T		120		MHz
Input Capacitance (V _{EB} = 5.0 V, f = 1.0 MHz)	Cibo		360		pF
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	Cobo		30		pF

^{3.} Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

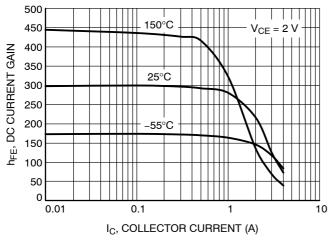


Figure 1. DC Current Gain

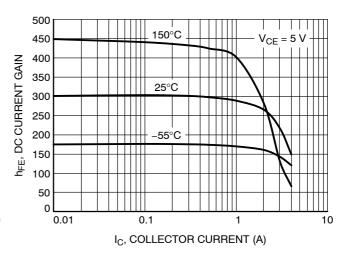


Figure 2. DC Current Gain

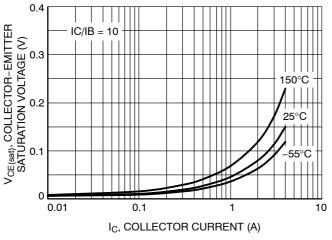


Figure 3. Collector–Emitter Saturation Voltage

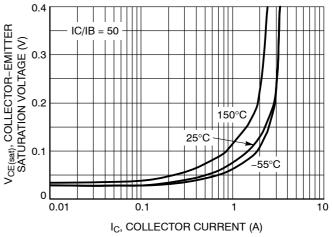


Figure 4. Collector–Emitter Saturation Voltage

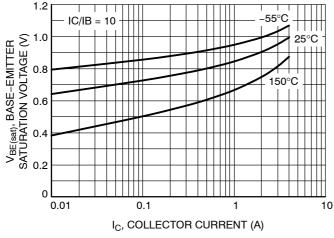


Figure 5. Base-Emitter Saturation Voltage

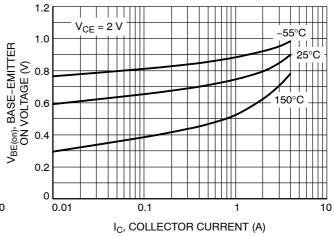


Figure 6. Base-Emitter "On" Voltage

TYPICAL CHARACTERISTICS

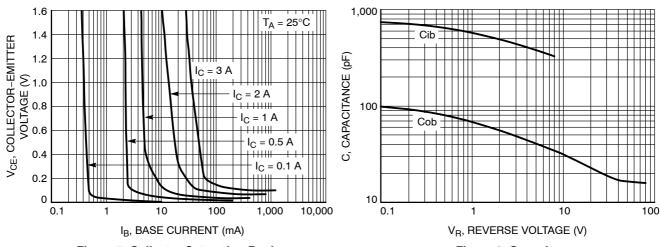


Figure 7. Collector Saturation Region

Figure 8. Capacitance



Figure 9. Current-Gain-Bandwidth Product

Figure 10. Safe Operating Area

TYPICAL CHARACTERISTICS

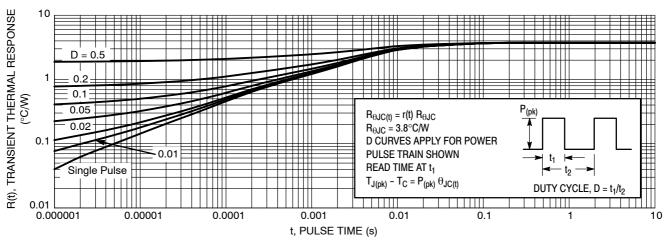
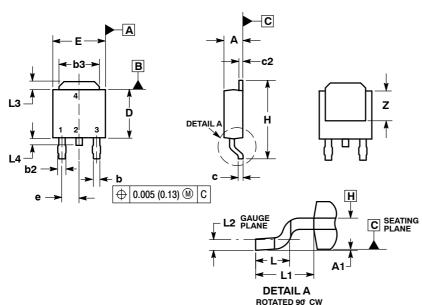



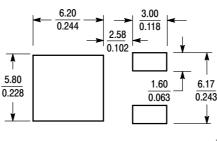
Figure 11. Typical Transient Thermal Response, Junction-to-Case

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE D

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	0.090 BSC		BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020	BSC	0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 1:

- PIN 1. BASE 2. COLLECTOR
 - EMITTER 4. COLLECTOR

SOLDERING FOOTPRINT*

(mm inches SCALE 3:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Ce Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative