Features

- Low Frequency - 2.5 GHz
- Very Low Insertion Loss:

Cell Band: 0.3dB (Typ.)
PCS Band: 0.5 dB (Typ.)

- High Isolation Cell Band: 28dB (Typ.) PCS Band: 21dB (Typ.)
- Compatible With Low Voltage Logic: $\mathrm{V}_{\text {HIGH }}=1.8 \mathrm{~V}$
- Excellent Linearity Performance (IIP2): Cell Band: 114 dBm (Typ.) PCS Band: 115 dBm (Typ.)
- Lowest BOM Cost and Small Solution Size

Applications

- Antenna Tuning Applications
- IEEE802.11b/g WLAN Applications
- Multi-Mode GSM/WCDMA Handsets
- CDMA Primary Path Handsets

Functional Block Diagram

Product Description

The RF1140 is a single-pole four-throw (SP4T) switch designed for general purpose switching applications which require very low insertion loss and high power handling capability. The RF1140 is ideally suited for battery operated applications requiring high performance switching with very low DC power consumption. The RF1140 features low insertion loss, low control voltage, high linearity, and very good harmonic characteristics. Additionally, RF1140 integrates decoding logic, which allows just two control lines needed for switch control. This part is based off RFMD's GaAs pHEMT and is packaged in a very compact $3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm} \times 0.55 \mathrm{~mm}, 16-$ pin, leadless QFN package. No DC-blocking capacitors are required on RF paths, when no DC is applied external to the device ports.

Ordering Information

RF1140
RF1140PCBA-410 Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

\square GaAs HBT	\square SiGe BiCMOS	\square GaAs pHEMT	\square GaN HEMT
\square GaAs MESFET	\square Si BiCMOS	\square Si CMOS	\square RF MEMS
\square InGaP HBT	\square SiGe HBT	\square Si BJT	\square LDMOS

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
VDD, V1, V2	6.0	V
Maximum Input Power (0.6GHz to 2.5GHz), RF2, RF3, RF4	+38	dBm
Operating Temperature	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +100	${ }^{\circ} \mathrm{C}$

\triangle
Caution! ESD sensitive device.
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor mance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. (RFMD) for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification		Unit		
	Min.	Typ.		Max.	

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Input Power at 0.1 dB Compression Point					
	37	38		dBm	
Switching Speed					
		1	5	us	10\% to 90\% RF, 90\% to 10\% RF
Triple Beat Ratio					
TBR	85	88		dBc	650 MHz to $900 \mathrm{MHz}^{1,2}$
TBR	95	100		dBc	AWS ${ }^{1,2}$
TBR	83	87		dBc	PCS ${ }^{1,2}$
DC Supply					
V_{DD} (Switch Supply)	2.5	2.6	3.3	V	
V1 and V2 (H)	1.3	1.8	2.9	V	
V1 and V2 (L)	0		0.4	V	
Control Current			1.5	$\mu \mathrm{A}$	
Supply Current			0.8	mA	$\mathrm{P}_{\text {IN }}=26 \mathrm{dBm}$

Notes: Parameters hold at $25^{\circ} \mathrm{C}$ and VDD $=2.6 \mathrm{~V}$

1. Tested under load with VSWR of $2: 1$ at all phases
2. Temp $=+15{ }^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Switch Control Settings

The switch is operable in four states (see truth table below). The switch is designed for two modes: Active and Stand-by. These modes are controlled by the VDD signal. When VDD is high, the switch is active.

Signal Paths	Control Signals					S1
Mode	V1	V2	S1	S2	S3	S4
ANT - RF1	Low	Low	ON	OFF	OFF	
ANT - RF2	High	Low	OFF	ON	OFF	OFF
ANT - RF3	Low	High	OFF	OFF	ON	
ANT - RF4	High	High	OFF	OFF	OFF	OFF

Electrical Test Methods:

The electrical parameters for the switch were measured on the test evaluation board provided by the switch supplier. The test evaluation board includes means for decoupling RF signals from the control signal port (shunt capacitor at control signal ports).

All measurements were done with the calibration plane at switch pins. The effect of the test board losses and phase delay has been removed from the results.

Pin	Function	Description
1	GND	Ground.
2	VDD	DC Voltage Supply.
3	V2	Voltage Control 2.
4	V1	Voltage Control 1.
5	GND	Ground.
6	RF4	RF Output 4.
7	GND	Ground.
8	RF3	RF Output 3.
9	GND	Ground.
10	GND	Ground.
11	ANT	RF Input. Connected to antenna.
12	GND	Ground.
13	RF1	RF Output 1.
14	GND	Ground.
15	RF2	RF Output 2.
16	NC	Can be left floating or grounded.

Pin Configuration

Package Outline

NOTES:

1) PIN 1 SHADED AREA

Evaluation Board Schematic

Application Diagram and Guidelines:
The decoupling capacitors are an optional taken and, if necessary, may be used for noise reduction. Decoupling capacitors on the control pins protect the control circuitry from possible RF leakage. DC-blocking capacitors are not needed on the RF paths, as there is no DC on the RF path, however, care should be taken to ensure that DC is not injected in the switch from external circuitry. An ESD filter is needed to protect the switch from antenna ESD events. The filter is formed by LESD inductor and CESD capacitor. The switch has a supply input to feed the built-in logic decoding.

LESD value will depend on the level of ESD protection and the loss acceptable in a given application.

RF1140

Evaluation Board Layout

Board Thickness 0.0658", Board Material FR-4

Typical Performance Data on Evaluation Board:

Fixture losses have de-embedded $\left(\operatorname{Temp}=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.75 \mathrm{~V}, \mathrm{~V} 1=\mathrm{V} 2=\mathrm{High}=1.8 \mathrm{~V}, \mathrm{~V} 1=\mathrm{V} 2=\mathrm{Low}=0 \mathrm{~V}\right)$

Antenna to Port Isolation

Output Power versus Input Power (Frequency $=1880 \mathrm{MHz}$)

Ant Port Return Loss

