

Features

- 3mm x 3mm LNA/Mixer Solution
- Adjustable LNA and Mixer Current/IIP3
- Meets IMD Tests with Three Gain States/Two Logic Control Pins
- Integrated TX LO Buffer Amplifier
- Full ESD Protection on all Pins

Applications

- CDMA/JCDMA Cellular Systems
- CDMA450 Handsets/Data Cards
- AMPS Cellular Systems
- General Purpose LNA and Downconverter
- Commercial and Consumer Systems
- Portable Battery-Powered Equipment

Functional Block Diagram

Product Description

The RF2861 is a receiver front-end for CDMA cellular applications, including JCDMA and CDMA450. It is designed to amplify and downconvert RF signals, using a three gain state LNA to obtain 17 dB of stepped gain control. Features include digital control of LNA gain and power down mode, along with an integrated TX LO buffer amplifier. Another feature of the chip is adjustable IIP3 of the LNA and mixer using off-chip current setting resistors to allow for minimum DC current consumption. Noise figure, IIP3, and other specs are designed to be compatible with the TIA/EIA 98D standard for CDMA cellular communications. The IC is manufactured on an advanced Silicon Germanium Bi-CMOS process and is in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-pin, QFN.

Ordering Information

RF2861SQ	Sample bag with 25 pieces
RF2861SR	7" Reel with 100 pieces
RF2861TR7	7" Reel with 2500 pieces
RF2861PCK-410	460MHz to 900MHz PCBA with 5-piece sample bag

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5.0	$\mathrm{~V}_{\text {DC }}$
Input LO and RF Levels	+6	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

ACaution! ESD sensitive device.
Exceeding any one or a combination of the Absolute Maximum Rating conditions ma cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2002/95/EC.

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}$
RF Frequency Range		460 to 900		MHz	
IF Frequency Range	0.1		400	MHz	
Power Supply					
Supply Voltage	2.65	2.75	3.15	V	
Logic High	1.8			V	
Logic Low			0.4	V	
Cellular CDMA Band JCDMA Band					Freq $=869 \mathrm{MHz}$ to 894 MHz Freq $=832 \mathrm{MHz}$ to 870 MHz
LNA (High Gain)					LNA 50Ω match
Gain	13.0	14.5	16.0	dB	
Noise Figure		1.1	1.3	dB	
Input IP3	9.0	11.0		dBm	
Current		7.0		mA	
Isolation	18.5			dB	
LNA (Mid Gain)					
Gain	4.0	6.0	7.0	dB	
Noise Figure		3.0	3.3	dB	
Input IP3	7.0	9.0		dBm	
Current		3.5		mA	
Isolation	12.5			dB	
LNA (Low Gain)					
Gain	-4.0	-2.5	-1.0	dB	
Noise Figure		2.5	4.0	dB	
Input IP3	+25.0	+27.0		dBm	
Current		0		mA	
Isolation	1.0			dB	
Mixer - CDMA/JCDMA/FM					IF tune set for nominal mixer gain, high IIP3
Gain	9.0	10.5	12.0	dB	
Noise Figure		7.5	8.0	dB	184MHz IF ($\mathrm{NF}=8.3 \mathrm{~dB}, 85 \mathrm{MHz} \mathrm{IF}$)
Input IP3	+6.0	+8.5		dBm	
LO to RF Isolation	36			dB	LO $=1064 \mathrm{MHz}$

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Mixer - CDMA/JCDMA/FM					IF tune set for high mixer gain, nominal IIP3
Gain		13.0		dB	
Noise Figure		7.5		dB	$184 \mathrm{MHz} \mathrm{IF} \mathrm{(NF} \mathrm{=} \mathrm{8.3dB}$,85 MHz IF)
Input IP3		+6.5		dBm	
LO to RF Isolation	36			dB	$\mathrm{LO}=1064 \mathrm{MHz}$
Cascade - High Gain					
Current		25	30	mA	TX LO Buffer Off
Cellular CDMA Band JCDMA Band, cont'd					
Other					
LO-IF Isolation	30			dB	$\mathrm{LO}=1064 \mathrm{MHz}$
RF-IF Isolation	45			dB	
LNA Out to Mixer In Isolation	45			dB	
LO-LNA In Isolation, Any State	40			dB	$\mathrm{LO}=1064 \mathrm{MHz}$
Control Lines					
Input Capacitance			1	pF	G1, G2, ENABLE, TX BUFF ENABLE
Local Oscillator Input					
Cellular - CDMA or FM					
Input Power	-10	-4	0	dBm	
Input Frequency	685		710	MHz	$\mathrm{IF}=184 \mathrm{MHz}$
	1053		1078	MHz	$\mathrm{IF}=184 \mathrm{MHz}$
	784		809	MHz	$\mathrm{IF}=85 \mathrm{MHz}$
	954		979	MHz	$\mathrm{IF}=85 \mathrm{MHz}$
Cellular - JCDMA					
Input Power	-10	-4	0	dBm	
Input Frequency	722		760	MHz	$\mathrm{IF}=110 \mathrm{MHz}$
	942		980	MHz	$\mathrm{IF}=110 \mathrm{MHz}$
CDMA450					
Input Power	-10	-4	0	dBm	
Input Frequency	505		575	MHz	$\mathrm{IF}=85 \mathrm{MHz}$
CDMA450 Band					Freq $=463 \mathrm{MHz}$ to 467 MHz
LNA (High Gain)					LNA 50Ω match
Gain		15.0		dB	
Noise Figure		1.4		dB	
Input IP3		+8.0		dBm	
Current		8.7		mA	
Isolation	18.5			dB	
LNA (Mid Gain)					
Gain		+2.5		dB	
Noise Figure		2.9		dB	
Input IP3		+14.0		dBm	
Current		4.7		mA	
Isolation	12.5			dB	

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
LNA (Low Gain)					
Gain		-4.0		dB	
Noise Figure		4.0		dB	
Input IP3		+25.0		dBm	
Current		0		mA	
Isolation	1.0			dB	
Mixer					IF tune set for high mixer gain, nominal IIP3
Gain		12.0		dB	
Noise Figure		7.5		dB	
Input IP3		5.0		dBm	
LO to RF Isolation	36			dB	LO $=549 \mathrm{MHz}$
CDMA450 Isolation					
LO-IF Isolation	25			dB	LO $=549 \mathrm{MHz}$
RF-IF Isolation	40			dB	
LNA Out to Mixer In Isolation	40			dB	
LO-LNA In Isolation, Any State	30			dB	LO $=549 \mathrm{MHz}$
TX (Local Oscillator) Buffer Output					
Cellular - CDMA or FM					
Output Power	-7	-5	-3	dBm	Single-ended 50Ω load
Output Frequency	685		710	MHz	$\mathrm{IF}=184 \mathrm{MHz}$
	1053		1078	MHz	$\mathrm{IF}=184 \mathrm{MHz}$
	784		809	MHz	$\mathrm{IF}=85 \mathrm{MHz}$
	954		979	MHz	IF $=85 \mathrm{MHz}$
Current Consumption		2		mA	
Cellular - JCDMA					
Output Power	-7	-5	-3	dBm	Single-ended 50Ω load
Output Frequency	722		760	MHz	$\mathrm{IF}=110 \mathrm{MHz}$
	942		980	MHz	$\mathrm{IF}=110 \mathrm{MHz}$
Current Consumption		2		mA	
CDMA450					
Output Power	-7	-5	-3	dBm	Single-ended 50Ω load
Output Frequency	505		575	MHz	IF $=85 \mathrm{MHz}$
Current Consumption		2		mA	

RF2861

Gain Control Logic Table

Gain State	ENABLE	G1	G2
High Gain	1	0	0
Mid Gain	1	1	0
Low Gain	1	1	1
Low Gain (alternate)	1	0	1

NOTE: All IDC current numbers include bias circuitry current of 1.5 mA to 2.0 mA (dependent on mode). TX Buffer On: Add 2mA to total current.

Cell Band Cascaded Performance High Mixer Gain Nominal IIP3

$$
\text { (Typical Values for } \mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V} \text {) }
$$

Parameter	CELL CDMA		
	LNA (High Gain)	LNA (Mid Gain)	LNA (Low Gain)
Cascaded:			
Gain (dB)	25.0	16.5	8.0
Noise Figure (dB)	2.1	6.3	12.5
Input IP3 (dBm)	-5.6	+2.0	+11.4
Total Current (mA)	25.0	21.5	18.0

NOTES:

1. Assumes 2.5 dB image filter insertion loss. The TX Buffer is off.NOTE:
2. All total current numbers include bias circuitry current of 1.5 mA to 2.0 mA (dependent on mode).

Cell Band Cascaded Performance Nominal Mixer Gain High IIP3

(Typical Values for $\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}$)

Parameter	CELL CDMA		
	LNA (High Gain)	LNA (Mid Gain)	LNA (Low Gain)
Cascaded:			
Gain (dB)	22.5	14.0	5.5
Noise Figure (dB)	2.1	6.3	12.5
Input IP3 (dBm)	-3.7	+3.5	+13.3
Total Current (mA)	25.0	21.5	18.0

NOTE: Assumes 2.5dB image filter insertion loss. The TX Buffer is off.

CDMA450 Band Cascaded Performance
(Typical Values for $\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}$)

Parameter	CDMA450		
	LNA (High Gain)	LNA (Mid Gain)	LNA (Low Gain)
Cascaded:			
Gain (dB)	24.5	12.0	5.5
Noise Figure (dB)	2.2	8.5	14.0
Input IP3 (dBm)	-7.6	+4.5	+11.3
Total Current (mA)	29.5	25	21

NOTE: Assumes 2.5dB image filter insertion loss. The TX Buffer is off.

Pin Names and Descriptions

Pin	Function	Type	Description	Interface Schematic
1	G2	DI	Gain control logic input. See logic control table.	
2	LNA IN	AI	Cellular LNA input.	
3	LNA EMITTER	AO	Cellular LNA emitter. A small inductor connects this pin to ground. Cellular LNA gain can be adjusted by the inductance.	See pin 2.
4	LNA OUT	AO	Cellular LNA output. Simple external L-C components required for matching and VCC supply.	See pin 2.
5	ISET2	AO	An external resistor connected to this pin sets the current of the mixer. Increasing resistance decreases current.	
6	ISET1	AO	An external resistor connected to this pin sets the current of the LNA. Increasing resistance decreases current.	
7	G1	DI	Gain control logic input. See logic control table.	
8	MIX IN	AI	Cellular mixer RF single-end input.	
9	IF OUT+	AO	CDMA IF output. Open collector.	
10	IF OUT-	AO	CDMA IF output. Open collector.	See pin 9.
11	GND	P	Ground.	
12	LO IN	AI	LO single-end input. Matched to 50Ω.	
13	VCC	P	LO amplifier VCC external bypass capacitor may be required.	
14	LO OUT	AO	LO output. Internal DC block. Drives 50Ω.	
15	TX BUFF ENABLE	DI	Logic input. High enables TX LO output buffer amplifiers.	TXBUFFENABLEO-

RF2861
rfmd.com

Pin	Function	Type	Description	Interface Schematic
16	ENABLE	DI	Logic input. Low level powers down the IC.	
Pkg Base	GND	P	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias.	
Legend:		$\begin{aligned} & \text { DI = Digital Input from Baseband ChipAI = Analog Input } \\ & \mathrm{P}=\mathrm{V}_{\mathrm{CC}} \text { or GNDAO }=\text { Analog Output } \end{aligned}$		

Package Drawing

Application Schematic

Differential IF Matching

	C1	R1	L1	L2	C2	C3	L3	IF SAW FILTER
85MHz IF (LO Freq $=965 \mathrm{MHz}$)	22pF	$2.7 \mathrm{k} \Omega$	72nH	72nH	5.1pF	5.1pF	220 nH	SAWTEK 855845
184MHz IF (LO Freq $=1064 \mathrm{MHz}$)	5.0pF	$2.7 \mathrm{k} \Omega$	55nH	55 nH	10pF	10pF	43nH	EPCOS B4955

Application Schematic
Single-End Matching

	C1	C2	C3	R1	L1	L2	C4	C5	L3	IF SAW FILTER
85MHz IF (LO Freq = 965MHz)	43pF	43pF	DNI	$2.7 \mathrm{k} \Omega$	72nH	72nH	5.1pF	DNI	220 nH	SAWTEK 855845
184MHz IF (LO Freq $=1064 \mathrm{MHz}$)	13pF	13pF	DNI	$2.7 \mathrm{k} \Omega$	55 nH	55nH	10pF	DNI	43nH	EPCOS B4955

Application Schematic

Single-End Matching
CDMA450 Band

RF2861
rfmd.com
Evaluation Board Schematic

	C3	C5	C35	R2	L11	L6	C22	C17
85MHz IF (LO Freq $=965 \mathrm{MHz})$	47 pF	47 pF	DNI	$5.1 \mathrm{k} \Omega$	150 nH	180 nH	33 nF	8 pF
184MHz IF (LO Freq $=1064 \mathrm{MHz})$	13 pF	13 pF	DNI	$2.7 \mathrm{k} \Omega$	82 nH	150 nH	33 nF	11 pF

Evaluation Board Schematic

CDMA450 Band

	C3	C5	C35	R2	L11	L6	C22	C17
85MHz IF (LO Freq = 549MHz)	91pF	91pF	DNI	$6.8 \mathrm{k} \Omega$	68nH	270 nH	33nF	27pF

IF Output Interface Network

Single-End IF Matching

L1, C1, C2, and R form a current combiner which performs a differential to single-ended conversion at the IF frequency and sets the output impedance. In most cases, the resonance frequency is independent of R and can be set according to the following equation:

$$
f_{I F}=\frac{1}{2 \pi \sqrt{\frac{L 1}{2}\left(C_{1}+2 C_{2}+C_{E Q}\right)}}
$$

Where C_{EQ} is the equivalent stray capacitance and capacitance looking into pins 9 and 10 . An average value to use for C_{EQ} is 2.5 pF .
R can then be used to set the output impedance according to the following equation:

$$
R=\left(\frac{1}{4 \cdot R_{O U T}}-\frac{1}{R_{P}}\right)^{-1}
$$

where $R_{\text {OUT }}$ is the desired output impedance and R_{P} is the parasitic equivalent parallel resistance of $L 1$.
C_{2} should first be set to 0 and C 1 should be chosen as high as possible (not greater than 39 pF), while maintaining an R_{P} of L 1 that allows for the desired $\mathrm{R}_{\text {OUT }}$. If the self-resonant frequencies of the selected C 1 produce unsatisfactory linearity performance, their values may be reduced and compensated for by including C2 capacitor with a value chosen to maintain the desired F_{IF} frequency.

L2 and C3 serve dual purposes. L2 serves as an output bias choke, and C3 serves as a series DC block.
In addition, L2 and C3 may be chosen to form an impedance matching network if the input impedance of the IF filter is not equal to $\mathrm{R}_{\text {OUT }}$. Otherwise, L2 is chosen to be large (suggested 120 nH) and C3 is chosen to be large (suggested 22nF) if a DC path to ground is present in the IF filter, or omitted if the filter is DC-blocked.

Differential IF Matching

L1 and C1 are chosen to resonate at the desired IF frequency. C1 can be omitted and the value of L1 increased and utilized solely as a choke to provide V_{CC} to the open-collector outputs, but it is strongly recommended that at least some small-valued $\mathrm{C} 1(\mathrm{a} f \mathrm{w} \mathrm{pF}$) be retained for better mixer linearity performance. R is normally selected to match the input impedance of the IF filter. However, mixer performance can be modified by selecting an R value that is different from the IF filter input impedance, and inserting a conjugate matching network between the Resistive Output Network and the IF filter.

C2 serve dual purposes. C2 serves as a series DC block when a DC path to ground is present in the IF filter. In addition, C2 may be chosen to improve the combine performance of the mixer and IF filter. L2 should choose to resonate with the internal capacitance of the SAW filter. Usually, SAW filter has some capacitance. Otherwise, L2 could be eliminated.

A practical approach to obtain the differential matching is to tune the mixer to the correct load point for gain, IIP3, and NF using the single-end current combiner method. Second, use the component values found in the single-end approach as starting point for the differential matching. The two-shunt capacitors in the single-end could be converted in a parallel capacitor and the parallel inductor in the single-end need to be converted in two-choke inductor. Third, set the DC block capacitors (C2) in the differential-end matching to a high value (100pF) and retune the resonate circuit (C1 and L1) and the resistor (R) for optimal performance. After optimal performance is achieved and if performance is not satisfactory, decrease the series capacitors until optimal performance is achieved.

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is $3 \mu \mathrm{inch}$ to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.

PCB Metal Land Pattern

