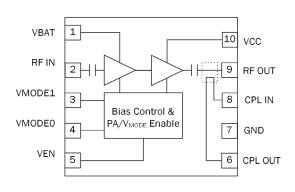


RF7200

3V W-CDMA BAND 1 LINEAR PA MODULE

Package Style: Module, 10-Pin, 3mmx3mmx1.0mm



Features

- HSDPA Compliant
- Low Voltage Positive Bias Supply (3.0V to 4.35V)
- +28.0dBm Linear Output Power (+26.5dBm HSDPA)
- High Efficiency Operation 39% at P_{OUT}=+28.0dBm 19% at P_{OUT}=+19.0dBm (Without DC/DC Converter)
- Low Quiescent Current in Low Power Mode: 17 mA
- Internal Voltage Regulator Eliminates the Need for External Reference Voltage (V_{REF})
- 3-Mode Power States with Digital Control Interface
- Supports DC/DC Converter Operation
- Integrated Power Coupler
- Integrated Blocking and Collector Decoupling Capacitors

Applications

- WCDMA/HSDPA Wireless Handsets and Data Cards
- Dual-Mode UMTS Wireless Handsets

Functional Block Diagram

Product Description

The RF7200 is a high-power, high-efficiency, linear power amplifier designed for use as the final RF amplifier in 3V, 50Ω W-CDMA mobile cellular equipment and spread-spectrum systems. This PA is developed for UMTS Band 1 which operates in the 1920MHz to 1980MHz frequency band. The RF7200 has two digital control pins to select one of three power modes to optimize performance and current drain at lower power levels. The part also has an integrated directional coupler which eliminates the need for an external discrete coupler at the output. The RF7200 is fully HSDPA-compliant and is assembled in a 10-pin, 3mmx3mm module.

Ordering Information

RF7200	3V W-CDMA Band 1 Linear PA Module
RF7200PCBA-410	Fully Assembled Evaluation Board

🗌 GaAs HBT	SiGe BiCMOS	🗌 GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	🗌 Si BiCMOS	🗌 Si CMOS	RF MEMS
🗹 InGaP HBT	SiGe HBT	🗌 Si BJT	

RF7200

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage in Standby Mode	6.0	V
Supply Voltage in Idle Mode	6.0	V
Supply Voltage in Operating Mode, 50 Ω Load	6.0	V
Supply Voltage, V _{BAT}	6.0	V
Control Voltage, VMODEO, VMODE1	3.5	V
Control Voltage, V _{EN}	3.5	V
RF - Input Power	+6	dBm
RF - Output Power	+30	dBm
Output Load VSWR (Ruggedness)	10:1	
Operating Ambient Temperature	-30 to +110	°C
Storage Temperature	-55 to +150	°C

▲ Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Specification			11		
Min. Typ. I		Max.	Unit	Condition	
1920		1980	MHz		
+3.0	+3.4	+4.35	V		
+3.0 ¹	+3.4	+4.35	V		
0		0.5	V	PA disabled.	
1.4	1.8	3.0	V	PA enabled.	
0		0.5	V	Logic "low".	
1.5	1.8	3.0	V	Logic "high".	
28.0 ^{2,3}			dBm	High Power Mode (HPM)	
19.0 ^{2,3}			dBm	Medium Power Mode (MPM)	
8.0 ^{2,3}			dBm	Low Power Mode (LPM)	
-30	+25	+85	°C		
	Min. 1920 +3.0 +3.0 ¹ 0 1.4 0 1.5 28.0 ^{2.3} 19.0 ^{2.3} 8.0 ^{2.3}	Min. Typ. 1920 $+3.0$ $+3.0$ $+3.4$ $+3.0^1$ $+3.4$ 0 -1.4 1.4 1.8 0 -1.5 1.5 1.8 $-28.0^{2.3}$ $-19.0^{2.3}$ $8.0^{2.3}$ $-10.0^{2.3}$	Min.Typ.Max.19201980 $+3.0$ $+3.4$ $+3.01$ $+3.4$ $+3.01$ $+3.4$ $+4.35$ 00.51.41.83.0000.51.51.828.0 ^{2,3} 19.0 ^{2,3}	Min. Typ. Max. Unit 1920 1980 MHz +3.0 +3.4 +4.35 V +3.01 +3.4 +4.35 V 0 0.5 V 1.4 1.8 3.0 V 0 0.5 V 1.5 1.8 3.0 V 28.0 ^{2.3} dBm 19.0 ^{2.3} dBm	

Notes:

¹Minimum V_{CC} for max P_{OUT} is indicated. V_{CC} down to 0.5V may be used for backed-off power when using DC/DC converter to conserve battery current.

²For operation at V_{CC}=+3.2V, derate P_{OUT} by 0.6dB. For operation at V_{CC}=3.0V, derate P_{OUT} by 1.3dB.

 $^{3}\mathrm{P}_{\mathrm{OUT}}$ is specified for 3GPP (WCDMA Rel99) modulation. For HSDPA operation, derate $\mathrm{P}_{\mathrm{OUT}}$ by 1.5dB:

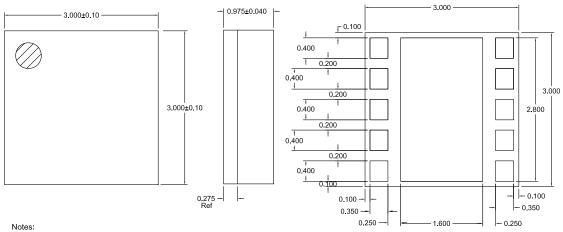
HSDPA Configuration: βc=12, βd=15, βhs=24

rfmd.com

RFMD

Deveneter	Specification			Unit	Condition
Parameter	Min. Typ. Max.				
Electrical Specifications					T=+25 °C, V _{CC} =V _{BAT} =+3.4V, V _{EN} =+1.8V, 50 Ω system WCDMA Rel99 modulation, unless otherwise specified.
Gain	25.0	26.5	30	dB	HPM, P _{OUT} =28.0dBm
	15	17.5	21	dB	MPM, P _{OUT} =19.0dBm
	11	14.5	18	dB	LPM, P _{OUT} =8.0dBm
Gain Linearity		±0.5		dB	HPM, 19.0dBm \leq P _{OUT} \leq 28.0dBm
ACLR - 5MHz Offset		-40	-36.5	dBc	HPM, P _{OUT} =28.0dBm
		-41	-36.5	dBc	MPM, P _{OUT} =19.0dBm
		-42	-36.5	dBc	LPM, P _{OUT} =8.0dBm
ACLR - 10 MHz Offset		-52	-48	dBc	HPM, P _{OUT} =28.0dBm
		-56	-48	dBc	MPM, P _{OUT} =19.0dBm
		-60	-48	dBc	LPM, P _{OUT} =8.0dBm
PAE	36	39	45	%	HPM, P _{OUT} =28.0dBm
	16	19	25	%	MPM, P _{OUT} =19.0dBm
	3.5	4.7	7.0	%	LPM, P _{OUT} =8.0dBm
Current Drain	412	476	516	mA	HPM, P _{OUT} =28dBm
	93	123	146	mA	MPM, P _{OUT} =19dBm
	26	39	53	mA	LPM, P _{OUT} =8.0dBm
Quiescent Current	52	85	125	mA	HPM, DC only
	11	20	28	mA	MPM, DC only
	10	17	24	mA	LPM, DC only
Enable Current		0.3	1.0	mA	Source or sink current. V_{EN} =1.8V.
Mode Current (I _{MODE0} , I _{MODE1})		0.3	1.0	mA	Source or sink current. V_{MODE0} , V_{MODE1} =1.8V.
Leakage Current		5	15	μΑ	DC only. $V_{CC}=V_{BAT}=4.2V$, $V_{EN}=V_{MODE0}=V_{MODE1}=0.5V$.
Noise Power in Receive Band		-140	-137	dBm/Hz	All power modes, measured at duplex offset frequency (FTX+190MHz). Rx: 2110MHz to 2170MHz, $P_{OUT}{\leq}28.0dBm$
Input Impedance		1.7:1		VSWR	No ext. matching, $P_{OUT}{\leq}28dBm$, all modes.
Harmonic, 2FO		-28	-15	dBm	$P_{OUT} \le 28.0 dBm$, all power modes.
Harmonic, 3FO		-35	-20	dBm	P _{OUT} ≤28.0dBm, all power modes.
Spurious Output Level			-70	dBc	All spurious, $P_{OUT} \le 28 dBm$, all conditions, load VSWR $\le 6:1$, all phase angles.
Insertion Phase Shift	-25		+25	0	Phase shift at 19dBm when switching from HPM to MPM and MPM to LPM at 8dBm.
DC Enable Time			10	μS	DC only. Time from $\rm V_{EN}$ = high to stable idle current (90% of steady state value).
RF Rise/Fall Time			6	μS	$P_{OUT} \le 28.0 dBm$, all modes. 90% of target, DC settled prior to RF.
Coupling Factor		-19.2		dB	P _{OUT} ≤28.0dBm, all modes.
Coupling Accuracy - Temp/Voltage		±0.5		dB	$\label{eq:powerserverse} \begin{array}{l} P_{OUT}{\leq}28.0dBm,allmodes.{\scriptstyle {-}30^\circC{\leq}T{\leq}85^\circC},\\ 3.0V{\leq}V_{CC}\&V_{BAT}{\leq}4.2V,referencedto25^\circC,\\ 3.4Vconditions. \end{array}$
Coupling Accuracy - VSWR		±0.7		dB	$\begin{array}{l} P_{OUT}{\leq}28 \text{dBm, all modes, load VSWR}{=}2{:}1,\\ \pm 0.7 \text{ dB accuracy corresponds to }12 \text{ dB directivity. Coupler termination resistance}{=}33 \Omega. \end{array}$

RF7200


RF7200

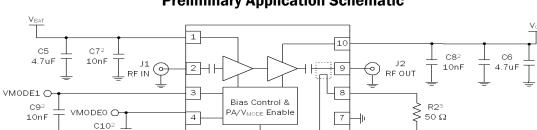
rfmd.com

Pin	Func	tion	Description						
1	VB	AT	Supply voltage for bias circuitry and the first stage amplifier.						
2	RF	IN		RF input internally matched to 50Ω and DC blocked. Input matching has a shunt inductor to ground which would short DC voltage placed on this pin.					
3	VMO	DE1	Digital control inp	ut for power mod	e selection (see Operating Modes truth table).				
4	VMO	DE0	Digital control inp	ut for power mod	e selection (see Operating Modes truth table).				
5	VE	N	Digital control inp	ut for PA enable a	and disable (see Operating Modes truth table).				
6	CPL_	OUT	Coupler output.						
7	GN	ID	This pin must be g	grounded.					
8	CPL	_IN	Coupler input used for cascading couplers in series. Terminate this pin with a 50Ω resistor if not connected to another coupler.						
9	RF (JUT	RF output internally matched to 50Ω and DC blocked.						
10	VC	C	Supply voltage for the second stage amplifier which can be connected to battery supply or output of DC-DC co verter.						
Pkg Base	GN	ID	Ground connection. The package backside should be soldered to a topside ground pad connecting to tl ground plane with multiple ground vias. The pad should have a low thermal resistance and low electrica ance to the ground plane.						
V _{EN}	V _{MODE0} V _{MODE1}		V _{BAT}	V _{cc}	Conditions/Comments				
Low	Low	Low	3.0V to 4.35V	3.0V to 4.35V	Power down mode				
Low	Х	Х	3.0V to 4.35V 3.0V to 4.35V Standby Mode		Standby Mode				
High	Low	Low	3.0V to 4.35V 3.0V to 4.35V High power mode		High power mode				
High	High	Low	3.0V to 4.35V 3.0V to 4.35V Medium power mode		Medium power mode				
High	High	High	3.0V to 4.35V 3.0V to 4.35V Low power mode		Low power mode				
High	High	High	3.0V to 4.35V \geq 0.5V Optional lower V _{CC} in low power mode						

Package Drawing

1. Shaded area represents Pin 1 location

10nF


VEN O-

C11²

10nF Т **RF7200**

C4

22uF

Preliminary Application Schematic

NOTES:

5

1 VCC and VBAT are connected together if DC-DC converter is not used.

6

JЗ

CPL OUT

2 Place these capacitors as close to PA as possible.

3 50 Ω resistor will be removed if pin 8 is connected to another coupler.

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land Pattern

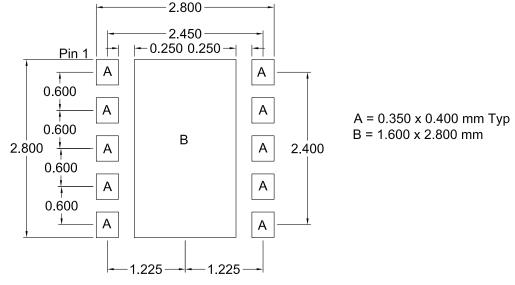


Figure 1. PCB Metal Land Pattern (Top View)

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

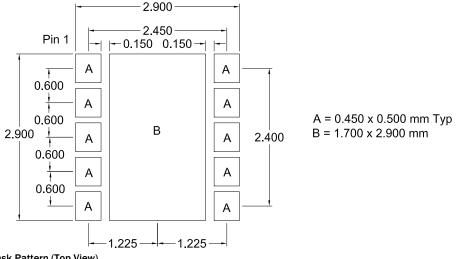


Figure 2. PCB Solder Mask Pattern (Top View)

Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203 mm to 0.330 mm finished hole size on a 0.5 mm to 1.2 mm grid pattern with 0.025 mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.