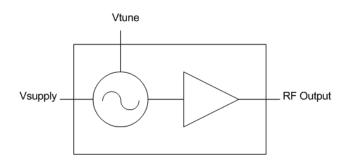


## **RFVC1801C**

### CONNECTORIZED MODULE WIDEBAND MMIC VCO WITH BUFFER AMPLIFIER, 5 GHz TO 10 GHz

Package: Module, 3 Connectors, 22.86mmx22.86mmx13.97mm




#### **Features**

- 5GHz to 10GHz VCO
- 5V Operation, 52 mA
- +3.0dBm Typical Output Power
- -72dBc/Hz @ 10kHz
- -96dBc/Hz @ 100kHz

### **Applications**

- Military Radar, Communications, ECM/IED
- Satcomm Communication Modems
- Test Instrumentation
- Industrial/Medical Equipment



Functional Block Diagram

### **Product Description**

RFMD's RFVC1801C wideband Voltage Controlled Oscillator is an InGaP HBT MMIC with integrated VCO core and RF output buffer. The part operates from a single +5V supply for circuit bias and 0V to +18V  $V_{TUNE}$  for frequency control. The RFVC1801C offers low phase noise and low power consumption.

#### **Ordering Information**

RFVC1801C Connectorized VCO

### **Optimum Technology Matching® Applied**

|          | GaAs HBT    | ☐ SiGe BiCMOS | ☐ GaAs pHEMT | ☐ GaN HEM   |
|----------|-------------|---------------|--------------|-------------|
|          | GaAs MESFET | ☐ Si BiCMOS   | ☐ Si CMOS    | ☐ BiFET HBT |
| <b>V</b> | InGaP HBT   | ☐ SiGe HBT    | ☐ Si BJT     | ☐ LDMOS     |

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UttimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006. RF Micro Devices, Inc.

## **RFVC1801C**



### **Absolute Maximum Ratings**

| Parameter                           | Rating      | Unit |
|-------------------------------------|-------------|------|
| Supply Voltage (V <sub>CC</sub> )   | 5.5         | V    |
| V <sub>TUNE</sub>                   | 0 to +20    | V    |
| Storage Temperature                 | -55 to +125 | °C   |
| Operating Temperature               | -40 to +85  | °C   |
| ESD Rating – Human Body Model (HBM) | Class0      |      |

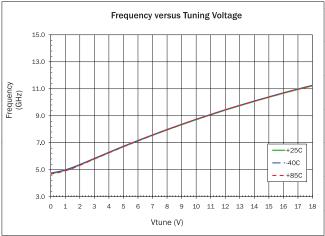


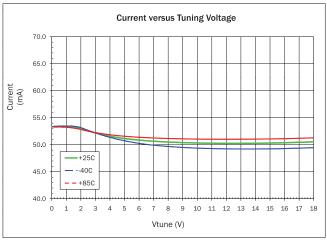
#### Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

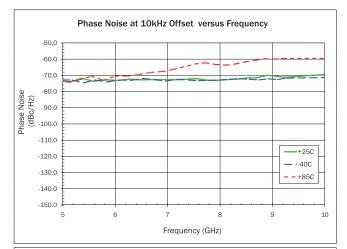

| Parameter                                | Specification |      | Unit | Condition |                              |
|------------------------------------------|---------------|------|------|-----------|------------------------------|
| raidilletei                              | Min.          | Тур. | Max. | Unit      | Condition                    |
| Frequency                                |               |      |      |           |                              |
| Frequency Range                          | 5.0           |      | 10.0 | GHz       |                              |
| Supply Voltage (V <sub>S</sub> )         | 4.75          | 5.00 | 5.25 | V         | Recommended operating range. |
| Supply Current                           | 40            | 52   | 70   | mA        |                              |
| Tuning Voltage (V <sub>TUNE</sub> )      | 0             |      | 18   | V         |                              |
| Tuning Sensitivity                       |               | 390  |      | MHz/V     |                              |
| Output Power                             |               | 3    |      | dBm       |                              |
| Output Phase Noise at 10kHz              |               | -72  |      | dBc/Hz    |                              |
| Output Phase Noise at 100kHz             |               | -96  |      | dBc/Hz    |                              |
| 2nd Harmonic                             |               | -20  |      | dBc       |                              |
| Frequency Pushing                        |               | 18   |      | MHz/V     |                              |
| Frequency Pulling (2:1 VSWR)             |               | 5    |      | MHz pp    |                              |
| RF Output Return Loss                    |               | -10  |      | dB        |                              |
| Frequency Drift Rate                     |               | -0.7 |      | MHz/°C    |                              |
| V <sub>TUNE</sub> port input capacitance |               | 7    |      | pF        |                              |

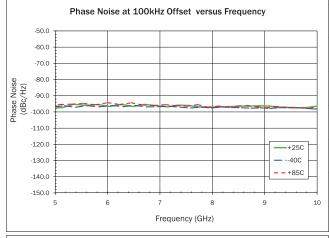

Test Conditions:  $V_S=5V$ , Freq=5GHz to 10GHz, T=25 °C unless noted otherwise

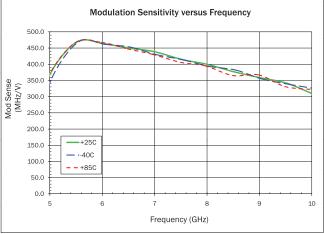


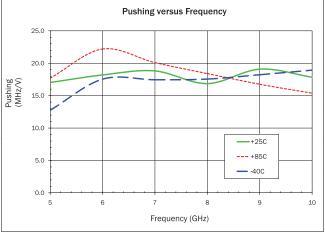
## **RFVC1801C Thermal Performance versus Tuning Voltage**





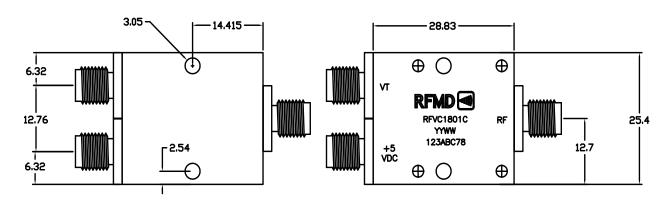





# **RFVC1801C**




### **RFVC1801C Thermal Performance versus Frequency**












### Pin Out and Package Drawing (mm)





Date Code - YYWW (Year and Week)
Trace Code - 123ABC78