

Features

- 7.2 GHz to 8.3 GHz Operation
- -106dBc/Hz Phase Noise at 100kHz offset
- 12dBm Pout
- No external resonator or elements needed
- 4mm x 4mm QFN package
- $3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operation

Applications

- Instrumentation
- Military
- Aerospace
- Point to Point Radio
- Test Equipment
- VSAT
- CATV

Product Description

RFMD's RFVC1824 is a 3V InGaP MMIC VCO with an integrated buffer amplifier operating over a frequency range of 7.2 GHz to 8.3 GHz . Its monolithic tuning structure provides excellent temperature, shock, and vibration performance while its integrated buffer amplifier provides an output power of 12 dBm from a 3 V supply. Phase noise is $-106 \mathrm{dBc} / \mathrm{Hz}$ at 100 kHz offset. The RFVC1824 is avalable in a low cost leadless ceramic $4 \mathrm{~mm} x$ 4 mm surface mount QFN outline.

Ordering Information

RFVC1824S2	2 piece sample bag
RFVC1824PCK-410	PCBA with 2 piece sample bag
RFVC1824SB	5 piece bag
RFVC1824SQ	25 piece bag
RFVC1824SR	100 pieces on 7 " reel
RFVC1824TR7	750 pieces on 7 "reel

Optimum Technology Matching ${ }^{\circledR}$ Applied

\square GaAs HBT	\square SiGe BiCMOS	\square GaAs pHEMT	\square GaN HEMT
\square GaAs MESFET	\square Si BiCMOS	\square Si CMOS	\square BiFET HBT
\square InGaP HBT	\square SiGe HBT	\square Si BJT	\square LDMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
Bias Voltage (V $\left.\mathrm{V}_{\mathrm{DD}}\right)$	+3.25	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {TUNE }}$	15	$\mathrm{~V}_{\mathrm{DC}}$
Operating Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	120	${ }^{\circ} \mathrm{C}$
Continuous Power Dissipation $\left(\mathrm{T}=+85^{\circ} \mathrm{C}\right)$	250	mW
Thermal Resistance (Pad to Die Bottom)	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
ESD JESD22-A114 Human Body Model (HBM)	$\mathrm{Class} 0,150 \mathrm{~V}$	

4 Caution! ESD sensitive device

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied

The information in this publication is believed to be accurate and reliable. However, no Thenonsibility is assumed by RF Micro Devices be ("RFMD") for its use. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any
infringement of patents, or other rights of third parties, resulting from its use. No infringement of patents, or other rights of third parties, resulting from its use. No RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2\% antimony in solder.

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Electrical Specifications					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}_{\mathrm{DC}}$
Operating Frequency	7.2		8.3	GHz	
$\mathrm{V}_{\text {TUNE }}$	1.5		14	V	
$\mathrm{V}_{\text {TUNE }}$ Leakage Current		0.275	50	uA	At $\mathrm{V}_{\text {TUNE }}=10 \mathrm{~V}$
Output Power		12		dBm	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
Phase Noise at 10kHz Offset		-80		$\mathrm{dBc} / \mathrm{Hz}$	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
Phase Noise at 100kHz Offset		-106		$\mathrm{dBc} / \mathrm{Hz}$	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
Harmonics					
2nd		-12		dBc	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
3rd		-32		dBc	
Output Spurious			-70	dBc	
Output Return Loss		10		dB	
Supply Current		65	75	mA	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
Pulling		3		MHz	VSWR 2.5:1 all phases
Pushing		-50		MHz/V	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$
Frequency Drift		-0.5		MHz/C	At $\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$

RFVC1824

rfmd.com

Typical Electrical Performance

Phase Noise 10 KHz and 100 KHz Offset versus Tuning Voltage

Package Drawing

Notes:

1. Dimensions in mm.
2. Dimensions are for reference only.
3. Package body material: Alumina.
4. Lead and paddle plating: Au, 30u" minimum.

Recommended PCB Layout

RFVC1824
rfmd.com

Pin	Function	Description	Interface Schematic
$\mathbf{1 5}$	GND	Connect directly to PCB ground for best performance.	
$\mathbf{1 6}$	RFOUT	RF out. This pad is AC coupled and matched for optimum Pout A 50Ω ter- mination is recommended for this pin.	
$\mathbf{2 0}$	VCC		
$\mathbf{2 2}$	VTUNE	Connect 3V to power both the oscillator core and the buffer amplifier. oscillation.	
Pkg Base	GND	Ground connection. Solder package bottom directly to ground plane for best performance.	

Application Circuit Block Diagram

Evaluation Board Layout

