
DC to 20GHz, CASCADABLE pHEMT MMIC AMPLIFIER

Package: Die, 0.88mm x 0.75mm

Product Description

RFMD's SUF-1000 is a monolithically matched high IP₃ broadband pHemt MMIC amplifier. The self-biased direct-coupled topology provides exceptional cascadable performance from DC to 20GHz. Its efficient operation from a single 5V supply and its compact size (0.88mm x 0.75mm) make it ideal for high-density multi-chip module applications. It is well suited for wideband instrumentation and direct-conversion systems.

support, contact RF

Features

- Broadband Flat Gain = 10dB
- P1dB = 14dBm
- Direct-Coupled Topology
- Efficient Single-Supply Operation: 5V, 45mA
- Low Gain Variation versus Temperature
- Compact Die Size (0.75mm x 0.88mm)
- Patented Self-Bias Darlington

Applications

- Ultra-Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications
- Replaces Traditional Dual-Supply Distributed Amplifiers

Parameter Small Signal Power Gain	Specification			11	O and it i an		
	Min.	Тур.	Max.	Unit	Condition		
		10.5		dB	2GHz and 6GHz		
		9.0		dB	16GHz		
Output Power at 1dB Compression		14.0		dBm	2GHz, 6GHz, and 16GHz		
Output Third Order Intercept Point		26.0		dBm	2GHz and 6GHz		
		25.5		dBm	16GHz		
Noise Figure		4.5		dB	2GHz and 6GHz		
		5.0		dB	16GHz		
Input Return Loss		-37.0		dB	2GHz		
		-20.5		dB	6GHz		
		-11.5		dB	16GHz		
Output Return Loss		-21.5		dB	2GHz		
		-17.5		dB	6GHz		
		-11.0		dB	16GHz		
Reverse Isolation		-21.0		dB	2GHz		
		-17.5		dB	6GHz		
		-17.0		dB	16GHz		
Device Operating Voltage		3.4		V			
Device Operating Current		46		mA			
Gain Variation vs. Temperature		-0.01		dB/°C			
Thermal Resistance (junction to backside)		262		°C/W			

Test Conditions: V = 5.0V R_{BIAS} = 35 Ω , I_D = 46mA, OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBmZ_S = Z_L = 50 Ω , 25 °C, GSG Probe Data with Bias Tees

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

(+1) 326-678-5570 or sales-supported

md c

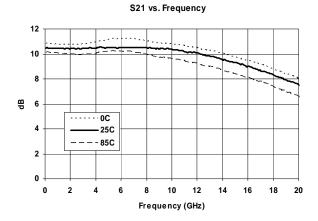
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical

rfmd.com

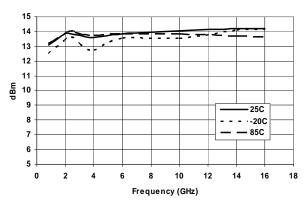
Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	70	mA
Max Device Voltage (V _D)	4	V
Max RF Input Power	20	dBm
Max Dissipated Power	280	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T_L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C
Human Body Model	Class 1A	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

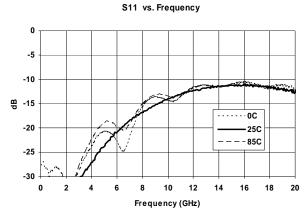

 $I_DV_D < (T_J - T_L)/R_{TH}$, j-l and $T_L =$ Backside of die

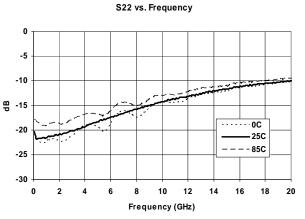
Typical Performance (GSG Probe Data)

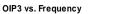

Freq	VD	Current	Gain	P1dB	0IP3	S11	S22	NF
(GHz)	(V)	(mA)	(dB)	(dBm)	(dBm)	(dB)	(dB)	(dB)
0.10	3.4	46.0	10.4			-34.0	-21.0	
0.50	3.4	46.0	10.4			-36.0	-22.0	
0.85	3.4	46.0	10.4	13.0	24.5	-37.0	-22.0	4.4
2.00	3.4	46.0	10.4	14.0	26.0	-34.0	-21.0	4.4
4.00	3.4	46.0	10.5	13.5	26.0	-26.0	-19.0	4.4
6.00	3.4	46.0	10.5	14.0	26.0	-20.0	-17.0	4.6
10.00	3.4	46.0	10.3	14.0	25.0	-14.0	-14.0	4.7
16.00	3.4	46.0	9.0	14.0	25.5	-12.0	-11.0	5.1
20.00	3.4	46.0	7.6			-13.0	-10.0	5.1

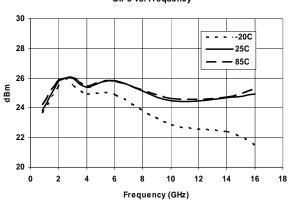
Test Conditions: GSG Probe Data With Bias Tees, $R_{BIAS} = 35\Omega OIP_3$ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBm, 25°C

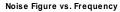
Typical Performance

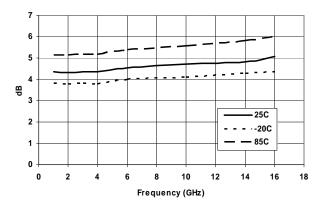


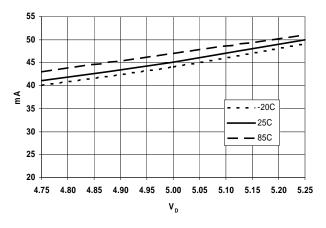

P1dB vs. Frequency

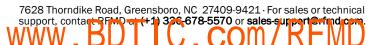





rfmd.com

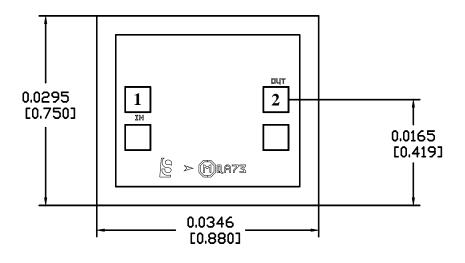






Current Variation Versus Temperature

Current vs. Voltage

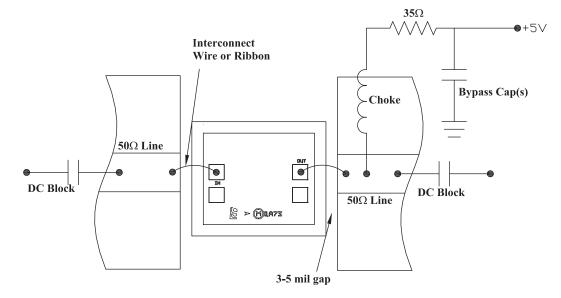


RFMD ໜ

rfmd.com

Pin	Function	Description
1	RFIN	This pad is DC coupled and matched to 50Ω . An external DC block is required.
2	RFOUT/BIAS	This pad is DC coupled and matched to 50Ω . Bias is applied through this pad.
Die	GND	Die bottom must be connected to RF/DC ground using silver-filled epoxy.
Bottom		

Pad Description



Notes:

- 1. All dimensions in inches (millimeters).
- 2. No connection required for unlabeled bond pads.
- 3. Die thickness is 0.004 [0.10]
- 4. Typical bond pad is 0.004 [0.10] square.
- 5. Backside metalization: Gold.
- 6. Backside is ground.
- 7. Bond pad metalization: Gold.

Device Assembly

