
DC to 20GHz, CASCADABLE pHEMT MMIC AMPLIFIER

Package: QFN, 16-Pin, 3mm x 3mm

Product Description

The SUF-1033 is a monolithically matched broadband high IP3 gain block covering DC to 20GHz. This pHEMT based amplifier uses a patented selfbias network that operates from a single 5V supply. It offers efficient cascadable performance in a compact 3mm x 3mm Ceramic QFN package. It is well suited for RF LO and IF driver applications.

Features

- Broadband Flat Gain = 10dB
- P1dB = 14dBm at 2GHz
- 5V Single Supply Operation
- Low Gain Variation versus Temperature
- 50Ω I/O Low-Noise, Efficient Gain Block

Applications

- Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications
- High IP3 RF Driver Applications

Parameter	Specification			Unit	Condition		
Falameter	Min.	Тур.	Max.	Unit	condition		
Frequency of Operation	DC		20	GHz			
Small Signal Power Gain		10.2		dB	Freq = 3GHz		
		9.5		dB	Freq = 9GHz		
		7.4		dB	Freq = 18GHz		
Output Power at 1dB Compression		13.8		dBm	Freq = 3GHz		
		13.7		dBm	Freq = 9GHz		
		13.2		dBm	Freq = 18GHz		
Output Third Order Intercept Point		26.1		dBm	Freq = 3GHz		
		24.3		dBm	Freq = 9GHz		
		22.9		dBm	Freq = 18GHz		
Input Return Loss		15.8		dB	Freq = 3GHz		
		13.8		dB	Freq = 9GHz		
		7.6		dB	Freq = 18GHz		
Output Return Loss		13.6		dB	Freq = 3GHz		
		13.7		dB	Freq = 9GHz		
		27.1		dB	Freq = 18GHz		
Isolation		18.0		dB	Freq = 3GHz		
		19.2		dB	Freq = 9GHz		
		20.0		dB	Freq = 18GHz		
Device Operating Voltage		3.4		V	With 33 Ω resistor between V $_D$ and V $_{DD}$		

Test Conditions: Z₀ = 50Ω, V_S = 5V, I_D = 46mA, R_{BIAS} = 33Ω, T = 25 °C, OIP₃ Tone Spacing = 1MHz with P_{OUT} per tone = 0dBm. Circuit Board Data with Bias Tees.

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^W TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC, BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners, ©2012, RF Micro Devices, Inc.

1) 336-678-5570 or customerservice

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical

support, contact RFM

rfmd.com

Absolute Maximum Ratings

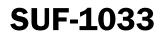
Parameter	Rating	Unit				
Total Current (I _D)	90	mA				
Device Voltage (V _D)	4.2	V				
Power Dissipation	0.378	W				
RF Input Power	+20	dBm				
Storage Temperature Range	-65 to +150	°C				
Operating Temperature Range (T_L)	-45 to +85	°C				
Operating Junction Temperature (T_J)	+150	°C				
Human Body Model	Class 1A					

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L)/R_{TH}$, j-l and T_L = Backside of die

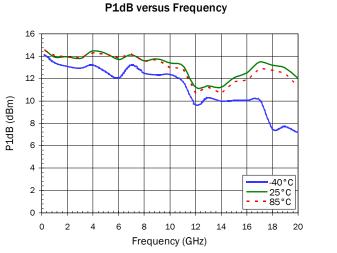
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

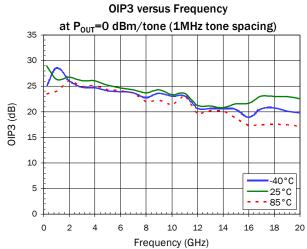

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

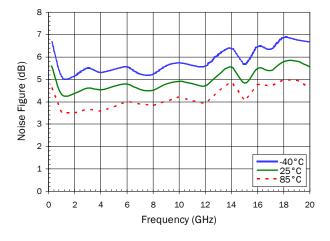
Parameter	Specification			Unit	Condition	
	Min.	Тур.	Max.	Onit	Condition	
Device Operating Current		47		mA		
Noise Figure		4.6		dB	Freq = 3GHz	
		4.8		dB	Freq = 9GHz	
		5.8		dB	Freq = 18GHz	
Thermal Resistance		146		°C/W	Junction to backside	


Typical Performance (Circuit Board Data with Bias Tees) V_S = 5V, R_{BIAS} = 33 Ω , T = 25 °C, Z = 50 Ω

			· •				
Parameter	Units	500MHz	3GHz	9GHz	12GHz	15GHz	18GHz
Small Signal Gain	dB	10.5	10.2	9.5	8.0	8.6	7.4
Output 3rd Order Intercept Point (see note 1)	dBm	27.4	26.1	24.3	21.2	21.6	22.9
Output Power at 1dB Compression	dBm	14.3	13.8	13.7	11.2	12.1	13.2
Input Return Loss	dB	26.1	15.8	13.8	7.4	25.3	7.6
Output Return Loss	dB	18.8	13.6	13.7	6.1	9.5	27.1
Reverse Isolation	dB	17.6	17.9	19.0	20.2	19.1	19.5
Noise Figure	dB	5.4	4.6	4.8	4.7	4.8	5.8
	-						

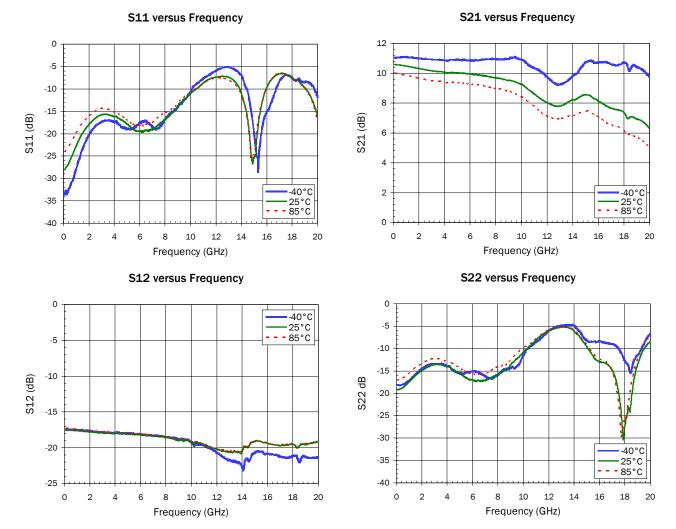
Note 1: 0dBm/tone, 1MHz tone spacing

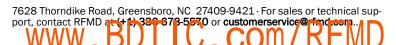




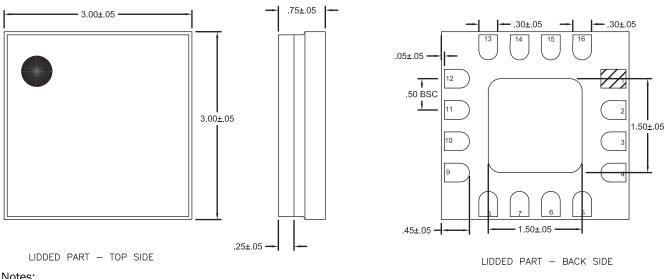
RFMD 🗐

rfmd.com





Typical Performance (Circuit Board Data with Bias Tees) V_{DD} = 5V, I_D = 46mA, R_{BIAS} = 33 Ω

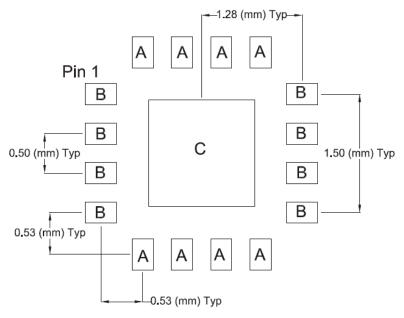


rfmd.com

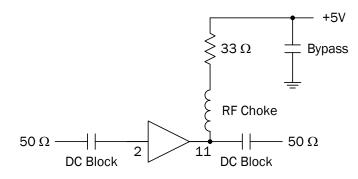
Pin	Function	Description	
2	RFIN	This pad is DC coupled and matched to 50 $\!\Omega$. An external DC block is required.	
11	RFOUT/BIAS	This pad is DC coupled and matched to 50 $\!\Omega$. Bias is applied through this pad.	
Pkg	GND	Package bottom must be connected to RF/DC ground.	
Bottom			

Package Drawing

Notes:


1. All dimensions in millimeters.

2. Backside is ground.



PCB Stencil Drawing

A = 0.27 x 0.40 (mm) Typ. B = 0.40 x 0.27 (mm) Typ. C = 1.35 (mm) Sq.

Typical Circuit Application

Ordering Information

Part Number	Description				
SUF-1033SB	5-piece sample bag				
SUF-1033SQ	25-piece bag				
SUF-1033SR	100 pieces on 7" reel				
SUF-1033TR7	2500 pieces on 7"reel				
SUF-1033PCK-410	Evaluation board with 5-piece sample bag				