256Mb (16M x 16 bit) U*t*RAM

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.

ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUAR-ANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Document Title

16Mx16 bit Synchronous Burst Uni-Transistor Random Access Memory Revision History

Revision No.	History	Draft Date	<u>Remark</u>
0.0	Initial	March 17, 2006	Preliminary

http://www.BDTIC.com/SAMSUNG Preliminary UtRAM

K1B5616BAM

Table of Contents	
GENERAL DESCRIPTION	
FEATURES & FUNCTION BLOCK DIAGRAM	
PRODUCT FAMILY	
TERMINOLOGY DESCRIPTION	
POWER UP SEQUENCE	
MODE STATE MACHINE	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED DC OPERATING CONDITIONS	4
CAPACITANCE	4
DC AND OPERATING CHARACTERISTICS	4
MRS (MODE REGISTER SET)	5
MRS CODE	
MRS TIMING WAVEFORM (SOFTWARE)	6
MRS TIMING WAVEFORM (PS Pin)	7
PAR (Partial Array Refresh) mode [A3~A1]	8
DPD (Deep Power Down) mode [A4]	8
Burst Length [A7~A5] & Wrap [A12]	9
WAIT Configuration [A8] & WAIT Polarity [A13]	9
Latency [A11~A9]	10
Driver Strength [A17~A16]	
OPEARTION MODE [A15-A14]	11
MODE1. ASYNCHRONOUS READ / ASYNCHRONOUS WRITE MODE	11
MODE2. SYNCHRONOUS BURST READ / ASYNCHRONOUS WRITE MODE	12
MODE 1 AC OPERATING CONDITIONS (ASYNCH. READ / ASYNCH. WRITE)	13
TIMING WAVEFORMS (ASYNCH. READ / ASYNCH. WRITE)	14
Asynch. READ	
Asynch. PAGE READ	
Asynch. WRITE (1)	
Asynch. WRITE (2)	
MODE 2 AC OPERATING CONDITIONS (SYNCH. READ / ASYNCH. WRITE)	
TIMING WAVEFORMS (SYNCH. READ / ASYNCH. WRITE)	
Burst READ - Fixed Latency	
Burst READ - Variable Latency	
Burst READ (ADV Interrupt) - Fixed Latency	
Burst READ (ADV Interrupt) - Variable Latency	
Burst READ STOP	
Asynch. WRITE (ADV Latch)	
Asynch. WRITE (ADV Fix Low)	
Burst READ followed by Asynch. WRITE	
Asynch. WRITE followed by Burst READ	
,,	-

16M x 16 bit Synchronous Burst Uni-Transistor CMOS RAM

GENERAL DESCRIPTION

The world is moving into the mobile multi-media era and therefore the mobile handsets need bigger & faster memory capacity to handle the multi-media data. SAMSUNG's UtRAM products are designed to meet all the request from the various customers who want to cope with the fast growing mobile market. UtRAM is the perfect solution for the mobile market with its low cost, high density and high performance feature. K1B5616BAM is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports the traditional SRAM like asynchronous operation (asynchronous page read and asynchronous write), the NOR flash like synchronous operation (synchronous burst read and asynchronous write). These two operation modes are defined through the mode register setting. The device also supports the special features for the standby power saving. Those are the Partial Array Refresh(PAR) mode, Deep Power Down(DPD) mode and internal TCSR (Temperature Compensated Self Refresh). The optimization of output drive strength is possible through the mode register setting to adjust for the different data loadings. Through this drive strength optimization, the device can minimize the noise generated on the data bus during read operation.

FEATURES & FUNCTION BLOCK DIAGRAM

- Organization: 16M x 16 bit
- Power supply voltage: 1.7V~1.95V
- Three state outputs
- Supports MRS (Mode Register Set)
- PS pin set up
- Software set up
- Supports power saving modes
- PAR (Partial Array Refresh)
- DPD (Deep Power Down)
- Internal TCSR (Temperature Compensated Self Refresh)
- Supports driver strength optimization
- K1B5616BAM supports
- Asynchronous read / Asynchronous write
- Synchronous burst read / Asynchronous write
- Synchronous burst operation
- Max. clock frequency : 104MHz
- Fixed and Variable read latency
- 4 / 8 / 16 / 32 and Continuous burst
- Wrap / No-wrap
- Latency : 4(Variable) @ 104MHz 3(Variable) @ 80MHz 2(Variable) @ 66MHz
- Burst stop
- Burst read suspend
- Burst write data masking

PRODUCT FAMILY

	Rc Ad	⊶ ww Idresses	 Row select		Memory Array	← Vcc ← Vcca ← Vss
1/08~	I/Oo~I/O I/O15		Data cont Data cont Data cont]	VO Circuit Column Select	
CLK CS AD BU BU BU BU BU BU BU BU BU BU BU BU BU	\rightarrow	ntrol Logi	WAIT			

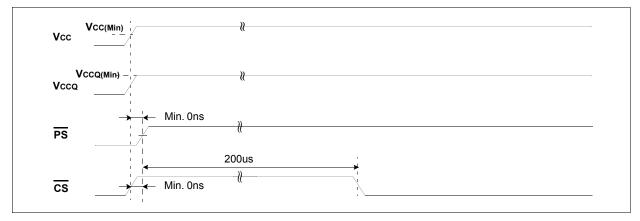
Clk gen

Pre-charge circuit

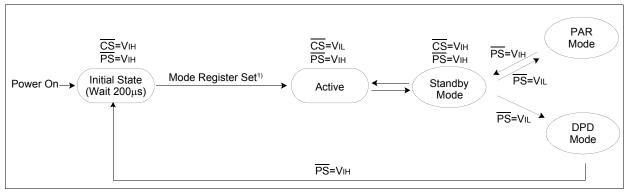
					Current Consumption			
Product Family	Operating Mode ¹⁾	Operating Temp.	Vcc Range	Speed	Standby (Isв1, Max.)	Operating (Icc2P, Max.)		
K1B5616BAM-I	Mode 1 & Mode 2	Industrial(-25~85°C)	1.7~1.95V	104MHz	350μA < 85°C 200μA < 40°C	20mA		

1) Mode1 : Asynchronous read / Asynchronous write

Mode2 : Synchronous burst read / Asynchronous write


TERMINOLOGY DESCRIPTION

Name	Function	Туре	Description
CLK	Clock	Input	Synchronizes the memory to the system operating frequency during syn- chronous operations. Commands are referenced to CLK.
ADV	Address Valid	Input	Indicates that a valid address is present on the address inputs. Addresses can be latched on the rising edge of ADV during asynchro- nous READ and WRITE operations.
PS	Mode Register set	Input	$\overline{\text{PS}}$ low enables Mode Register to be set and enables either PAR or DPD to be set.
cs	Chip Select	Input	\overline{CS} low enables the chip to be active \overline{CS} high disables the chip and puts it into standby mode or deep power down mode.
OE	Output Enable	Input	Enables the output buffers when LOW. when $\overline{\text{OE}}$ is HIGH, the output buffers are disabled.
WE	Write Enable	Input	$\overline{\text{WE}}$ low enables the chip to start writing the data
LB	Lower Byte (I/Oo~7)		$\overline{\text{UB}}$ ($\overline{\text{LB}}$) low enables upper byte (lower byte) to allow data Input/output
UB	Upper Byte (I/O8~15)	Input	from I/O buffers.
A0~A23	Address 0 ~ Address 23	Input	Inputs for addresses during READ and WRITE operations. Addresses are internally latched during READ and WRITE cycles.
I/O0~I/O15	Data Inputs / Outputs	Input/Output	Depending on \overline{UB} or \overline{LB} status, word(16-bit, $\overline{UB} \& \overline{LB}$ low) data, upper byte(8-bit, \overline{UB} low & \overline{LB} high) data or lower byte(8-bit, \overline{LB} low & \overline{UB} high) data is loaded
Vcc	Voltage Source	Power	Device Power supply. Power supply for device core operation.
VCCQ	I/O Voltage Source	Power	I/O Power supply. Power supply for input/output buffers.
Vss	Ground Source	GND	Ground for device core operation
Vssq	I/O Ground Source	GND	Ground for input/output buffers
WAIT	Valid Data Indicator	Output	The $\overline{\text{WAIT}}$ signal is output signal indicating the status of the data on the bus whether or not it is valid. $\overline{\text{WAIT}}$ is asserted when a burst crosses a word-line boundary. $\overline{\text{WAIT}}$ is asserted and should be ignored during asynchronous and page mode operations.



POWER UP SEQUENCE

After Vcc and Vccq reach minimum operating voltage(1.7V), drive \overline{CS} High first and then drive \overline{PS} High. Then the device gets into the Power Up mode. Wait for minimum 200µs to get into the normal operation mode. During the Power Up mode, the standby current can not be guaranteed. To get the stable standby current level, at least one cycle of active operation should be implemented regardless of wait time duration. To get the appropriate device operation, be sure to keep the following power up sequence. MODE1(Asynchronous Read / Asynchronous Write) is set up after power up, but this mode is not always guaranteed.

MODE STATE MACHINE

1) Refer to MRS(Mode Register Set).

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to VCCQ+0.3V	V
Power supply voltage relative to Vss	Vcc, Vccq	-0.2 to 2.5V	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	Та	-25 to 85	°C

1) Stresses greater than "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage(Core)	Vcc	1.7	1.8	1.95	V
Power supply voltage(I/O)	Vccq	1.7	1.8	1.95	V
Ground	Vss, Vssq	0	0	0	V
Input high voltage	Vін	0.8 x VCCQ	-	VCCQ+0.22)	V
Input low voltage	VIL	-0.2 ³⁾	-	0.4	V

1. TA=-25 to 85°C, otherwise specified.

2. Overshoot: Vccq +1.0V in case of pulse width ≤20ns. Overshoot is sampled, not 100% tested.

3. Undershoot: -1.0V in case of pulse width ≤20ns. Undershoot is sampled, not 100% tested.

CAPACITANCE (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	VIO=0V	-	8	pF

DC AND OPERATING CHARACTERISTICS

ltem	Symbol	Test Conditions			Min	Тур	Max	Unit
Input Leakage Current	Iц	VIN=Vss to Vccq		-1	-	1	μA	
Output Leakage Current	Ilo	CS=VIH, PS=VIH, OE=VIH or WE=VIL, VIO=VS	ss to Vcc	Q	-1	-	1	μA
Average Operating	ICC2 ⁶⁾	Cycle time=70ns, IIO=0mA ⁴⁾ , 100% duty, \overline{CS} =VIL, \overline{I}	PS=VIH, VI	N=VIL or VIH	-	-	35	mA
Current(Async)	ICC2P	Cycle time=tRC+3tPC, IIO=0mA ⁴⁾ , 100% duty, CS = VIH	IH, VIN=VIL or	-	-	20	mA	
Average Operating Current(Sync)	Іссз	Burst Length 4, Latency 5, 80MHz, IIO=0mA ⁴⁾ , Add CS=VIL, PS=VIH, VIN=VIL or VIH	ition 1 time,	-	-	35	mA	
Output Low Voltage	Vol	IoL=0.1mA		-	-	0.2	V	
Output High Voltage	Vон	IOH=-0.1mA			1.4	-	-	V
Standby Current(CMOS)	SB1 ¹⁾	$\overline{CS} \ge VCCQ-0.2V, \overline{PS} \ge VCCQ-0.2V, Other inputs=Vss$	<	40°C	-	-	200	μA
Standby Current(CMOS)	1981.4	or VCCQ (Toggle is not allowed) ⁵⁾	<	85°C	-	-	350	μA
			< 40°C	1/2 Block	-	-	180	
Partial Refresh Current	SBP ²⁾	PS≤0.2V, CS≥VCCQ-0.2V, Other inputs=Vss or	< 40 C	1/4 Block	-	-	150	μA
Parlia Reliesh Current	ISBP ² /	VCCQ (Toggle is not allowed) ⁵⁾	< 95°C	1/2 Block	-	-	250	
			< 85°C	1/4 Block	-	-	220	μA
Deep Power Down Current	ISBD	$\overline{PS} \le 0.2V$, $\overline{CS} \ge VCCQ - 0.2V$, Other inputs=Vss or	<	85°C	-	-	10	μA

1. ISB1 is measured 60ms after \overline{CS} high. CLK should be fixed at high or at Low.

2. Full Array Partial Refresh Current(ISBP) is same as Standby Current(ISB1).

3. Internal TCSR (Temperature Compensated Self Refresh) is used to optimize refresh cycle below 40°C.

4. IIO=0mA; This parameter is specified with the outputs disabled to avoid external loading effects.

5. VIN=0V; all inputs should not be toggle. 6. Clock should not be inserted between $\overline{\text{ADV}}$ low and $\overline{\text{WE}}$ low during Write operation.

MRS (MODE REGISTER SET)

The mode registers store the values for the various modes to make UtRAM suitable for a various applications through MRS. There are two ways to perform MRS. One is PS pin MRS and the other is Software MRS. The mode registers have lots of fields and each field consists of several options. Refer to the Table below for detailed Mode Register Setting. A19~A23 addresses are "Don't care" in Mode Register Setting.

MRS CODE

MRS code consists of 12 categories and several options in each category. RARS, PARA, PAR and DPD are related to power saving, BL, WC, Latency, Wrap, WP, MS and IL are related to bus operation and DS is related to device output impedance.

Mode Register Setting according to field of function

J		<u> </u>	J		-							
Address	A18	A17~A16	A15~A14	A13	A12	A11~A9	A8	A7~A5	A4	A3	A2	A1~A0
Function	IL	DS	MS	WP	Wrap	Latency	WC	BL	DPD	PAR	PARA	PARS

I	Initial Latency		Driver	Strength	Mode Select				
A18	IL	A17	A16	DS	A15	A14	MS		
0	Fixed	0	0	Full Drive	0	0	Mode 1(Async. 4 Page Read / Async. Write)		
1	Variable	0	1	1/2 Drive	0	1	Mode 2(Sync. Burst Read / Async. Write)		
		1	0	1/4 Drive					

WA	AIT Polarity		Wrap		Latend	cy Co	unt	Wait	Configuration		Burst Length		
A13	WP ¹⁾	A12	Wrap	A11	A10	A9	Latency	A8	wc	A7	A6	A5	BL
0	Low Enable	0	Wrap	1	0	0	2	0	One clock prior	0	1	0	4 word
1	High Enable	1	No-Wrap	0	0	0	3	1	At data	0	1	1	8 word
				0	0	1	4			1	0	0	16 word
				0	1	0	5			1	0	1	32 word
				0	1	1	6			1	1	1	Continuous ²⁾
				1	0	1	7						
				1	1	0	8						
				1	1	1	9						

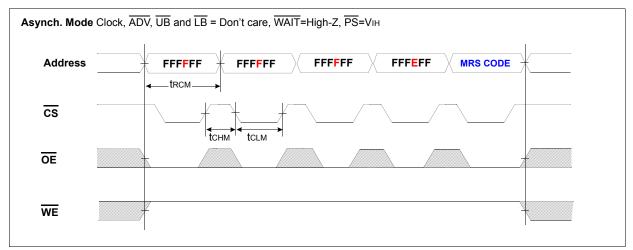
Deep Power Down		Partial Array Refresh			PAR Array	PAR Size			
A4	DPD	PD A3 PAR		A2	PARA	A1	A0	PARS	
0	DPD Enable	0	PAR Enable	0	Bottom Array	0	0	Full Array	
1	DPD Disable	1	PAR Disable	1	Top Array	1	0	1/2 Array	
						1	1	1/4 Arrav	

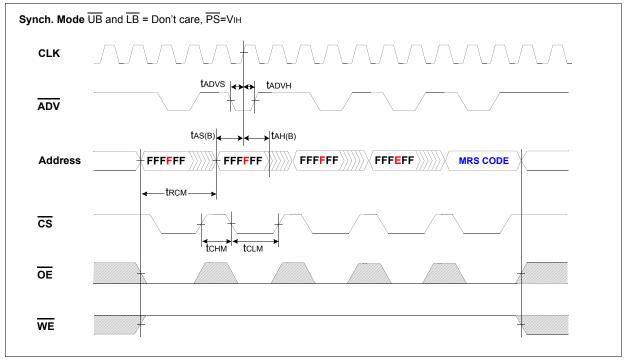
[Note]

- A19~A23 addresses are "Don't care" & reserved for future use.

 The modes are set automatically to default modes which are 4 Page Read and Asynchronous Write / DPD disable / PAR disable after power up or DPD exit.

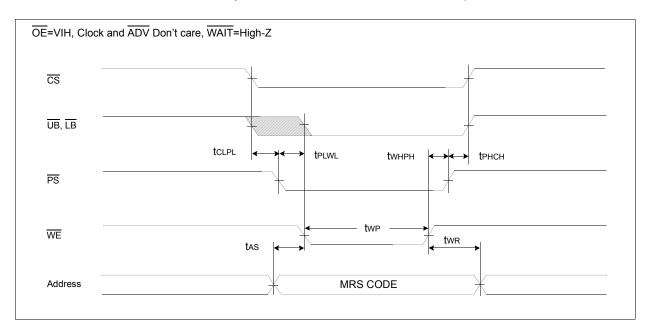
1) WP[0]; The data is available when WAIT signal is High. All the timings in this spec are illustrated based on this mode.


WP[1]; The data is available when WAIT signal is Low.


2) Refresh command will be denied during continuous operation. CS low should not be longer than tBC(max. 1.2us)

MRS TIMING WAVEFORM (SOFTWARE)

Software MRS timing consists of 5 Read cycles. Each cycle is normal Read cycle. $\overline{\text{CS}}$ pin should be toggling between cycles. 1st, 2nd and 3rd cycle should be FFFFF(h), 4th cycle should be FFFEFF(h) and 5th cycle should be MRS code



Note) Above timing and address condition should not be used in the normal operation. The above condition should be used only for the mode register setting purpose.

Parameter List	Symbol	Min	Max	Units	Parameter List	Symbol	Min	Max	Units
ADV setup time to clock	tadvs	3	-	ns	Read cycle time	trcм	70	-	ns
ADV hold time from clock	tadvh	2	-	ns	$\overline{\text{CS}}$ high time	tснм	10	-	ns
Address setup time to clock	tAS(B)	3	-	ns	CS low time	tсьм	60	-	ns
Address hold time from clock	tah(b)	2	-	ns					

MRS TIMING WAVEFORM (PS Pin) MRS can be implemented using by PS pin. Serial assertion of control signals of CS , UB & LB, PS and WE will get the device to be ready for MRS. MRS CODE should be set up before WE low and keep the CODE until one of those control signals desserts. MRS terminates when one of those control signals desserts. Clock & ADV are don't care in Asynchronous mode.

Parameter List		Symbol	Sp	Unite	
	Parameter List		Min	Max	Units
	CS Low to PS Low	t CLPL	0	-	ns
MDO	PS Low to WE Low	t PLWL	0	-	ns
MRS	\overline{WE} High to \overline{PS} High	twнpн	0	-	ns
	PS High to CS High	tрнсн	0	-	ns

PAR (Partial Array Refresh) mode [A3~A1]

User can select half array, a fourth array as active memory array. The active memory array is periodically refreshed(data stored), whereas the disabled array is not going to be refreshed and so the previously stored data will be invalid. When re-enabling additional portions of the array, the new portions are available immediately upon writing to the MRS.

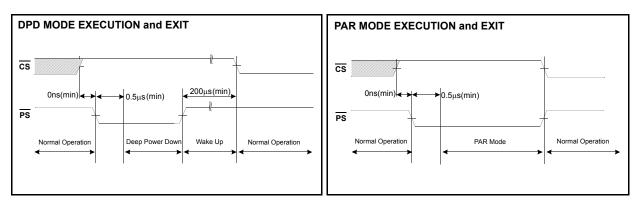
PAR mode execution;

- 1) Mode Register Setting into PAR enable(A3=0)
- DPD enabled setting(A4=0) has higher priority to PAR enabled setting(A3=0). A4=1 is necessary to use PAR mode.
- 2) PAR mode Enter; keep PS signal at VIL for longer than 0.5µs during standby mode (Mode Register: A4=1 & A3=0).
- 3) PAR mode Exit; The device returns to the standby mode when PS signal goes to VIH during PAR mode.
- * Mode register values are not changed after the device has been to PAR mode.

DPD (Deep Power Down) mode [A4]

The deep power down mode disables all the refresh related activities. This mode can be used when the system needs to save power. The data become invalid when DPD mode is executed.

DPD mode execution ;


1) Mode Register Setting into DPD enable(A4=0)

2) DPD mode Enter; keep PS signal at Vi∟ for more than 0.5µs during standby mode (Mode Register: A4=0).

3) DPD mode Exit; The device returns to initial State when PS signal goes to VIH during DPD mode. Wake up sequence is needed for the device to do normal operation.

* Mode register values are initialized to default value after the device has been to DPD mode.

Default modes are 4 Page Read and Asynchronous Write / DPD disable / PAR disable.

STANDBY MODE CHARACTERISTICS

Power Mode	Address (Bottom Array) ²⁾	Address (Top Array) ²⁾	Memory Cell Data	Standby ³⁾ (Isв1, <40°С)	Standby ³⁾ (Isв1, <85°C)	Wait Time(μs)
Standby(Full Array)	000000h ~ FFFFFFh	000000h ~ FFFFFFh	Valid ¹⁾	TBD	TBD	0
Partial Refresh(1/2 Block)	000000h ~ 7FFFFh	800000h ~ FFFFFFh	Valid ¹⁾	TBD	TBD	0
Partial Refresh(1/4 Block)	000000h ~ 3FFFFFh	C00000h ~ FFFFFFh	Valid ¹⁾	TBD	TBD	0
Deep Power Down	000000h ~	Invalid	TBD	TBD	200	

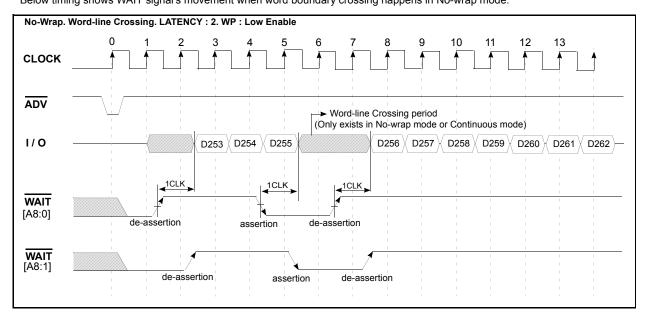
1. Only the data in the selected block are valid

2. PAR Array can be selected through Mode Register Set

3. Standby mode is supposed to be set up after at least one active operation after power up.

ISB1 is measured after 60ms from the time when standby mode is set up.

Burst Length [A7~A5] & Wrap [A12]

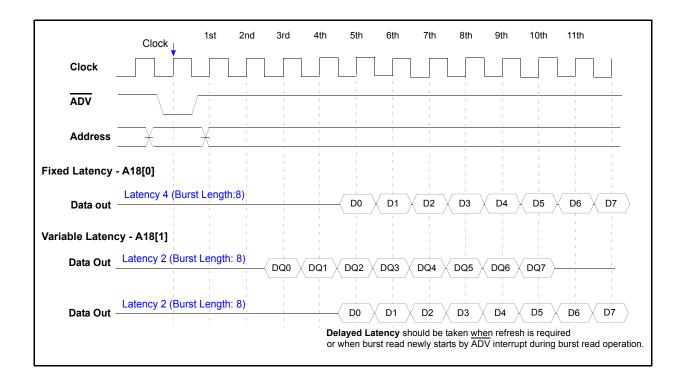

The device supports 4 word, 8 word, 16 word, 32 word and Continuous burst read or write. and Wrap & No-Wrap are supported for Burst sequence.

				Burst Address Sequence(Decimal)	
Mode	Start	4 word	8 word	16 word	32 word
	0	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15	0 - 1 - 2 - 3 - 4 - 5 ~ 26-27-28-29-30-31
	1	1-2-3-0	1-2-3-4-5-6-7-0	1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0	1 - 2 - 3 - 4 - 5 - 6 ~ 27-28-29-30-31 - 0
	2	2-3-0-1	2-3-4-5-6-7-0-1	2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1	2 - 3 - 4 - 5 - 6 - 7 ~ 28-29-30-31 - 0 - 1
	3	3-0-1-2	3-4-5-6-7-0-1-2	3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2	3 - 4 - 5 - 6 - 7 - 8 ~ 29-30-31- 0 - 1 - 2
WRAP	~		~	~	~
WRAF	7		7-0-1-2-3-4-5-6	7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6	7 - 8 - 9 - 10- 11- 12 ~ 2 - 3 - 4 - 5 - 6
	~			~	~
	15			15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14	15-16-17-18-19-20 ~ 10- 11- 12- 13- 14
	~				~
	31				31- 0 - 1 - 2 - 3 - 4 ~ 25-26-27-28-29-30
	0	0-1-2-3	0- 1- 2- 3- 4- 5- 6 -7	0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15	0 - 1 - 2 - 3 - 4 - 5 ~ 26-27-28-29-30-31
	1	1-2-3-4	1- 2- 3- 4- 5- 6- 7- 8	1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16	1 - 2 - 3 - 4 - 5 - 6 ~ 27-28-29-30-31-32
	2	2-3-4-5	2- 3- 4- 5- 6- 7- 8- 9	2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17	2 - 3 - 4 - 5 - 6 - 7 ~ 28-29-30-31-32-33
	3	3-4-5-6	3- 4- 5- 6- 7- 8- 9-10	3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17-18	3 - 4 - 5 - 6 - 7 - 8 ~ 29-30-31-32-33-34
No-	~		~	~	~
WRAP	7		7-8-9-10-11-12-13-14	7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22	7 - 8 - 9 - 10-11-12 ~ 33-34-35-36-37-38
	~			~	~
	15			15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30	15-16-17-18-19-20 ~ 41-42-43-44-45-46
	~				~
	31]			31-32-33-34-35-36 ~ 57-58-59-60-61-62

1. Continuous Burst mode needs to meet tBC(max. 1.2us) parameter.

WAIT Configuration [A8] & WAIT Polarity [A13]

The WAIT signal is output signal indicating the status of the data on the bus whether or not it is valid. WAIT configuration is to decide the timing when WAIT asserts or desserts. WAIT asserts (or desserts) one clock prior to the data when A8 is set to 0. (WAIT asserts (or desserts) at data clock when A8 is set to 1). WAIT polarity is to decide the WAIT signal level at which data is valid or invalid. Data is valid if WAIT signal is high when A13 is set to 0. (Data is valid if WAIT signal is low when A13 is set to 1). All the timing diagrams in this SPEC are illustrated based on following setup; [A13 : 0] and [A8 : 0]. Below timing shows WAIT signal's movement when word boundary crossing happens in No-wrap mode.



Latency [A11~A9]

The Latency stands for the number of clocks before the first data available from the burst command.

ltem	Upto (66MHz	Upto 8	B0MHz	Upto 104MHz		
nem	Fixed	Variable	Fixed	Variable	Fixed	Variable	
Latency Set(A11:A10:A9)	4(0:0:1) 2(1:0:0)		5(0:1:0)	3(0:0:0)	7(1:0:1)	4(0:0:1)	
Read Latency(min)	4	2 / 41)	5	3 / 5 ¹⁾	7	4 / 71)	
1st Read data fetch clock	5th	3rd / 5th ¹⁾	6th	4th / 6th ¹⁾	8th	5th / 8th1)	

1) Delayed Latency should be taken when refresh is required or when burst read newly starts by ADV interrupt during burst read operation.

Driver Strength [A17~A16]

The optimization of output driver strength is possible to adjust for the different data loadings. The device can minimize the noise generated on the data bus during read operation. The device supports full, 1/2 and 1/4 driver strength. The device's default mode is Full driver strength.

Driver Strength	Full	1 / 2	1 / 4
IMPEDANCE(typ.)	40Ω	90Ω	150Ω

1. Impedance values are typical values, not 100% tested.

OPEARTION MODE [A15~A14]

MODE1. ASYNCHRONOUS READ / ASYNCHRONOUS WRITE MODE

Asynchronous read operation

Asynchronous read operation starts when \overline{CS} , \overline{OE} and \overline{UB} or \overline{LB} are asserted. First data come out after random access time(tAA) but second, third and fourth data come out after page access time(tPA) when using the page addresses (A0, A1). \overline{PS} and \overline{WE} should be de-asserted during read operation. Clock, \overline{ADV} are don't care during read operation and \overline{WAIT} is Hi-Z.

Asynchronous write operation

Asynchronous write operation starts when CS, WE and UB or LB are asserted. PS and should be de-asserted during write operation. Clock, OE, ADV are don't care during write operation and WAIT signal is Hi-Z.

ASYNC	CHRONOUS 4-PAGE RE	AD		ASYNC	HRONOUS WRITE	
A23~A2				Address	χ	X
A1~A0				cs		
cs				UB, LB		
UB, LB				WE		
OE				Data in	High-Z	
Data out		-	X	Data out	High-Z _	High-Z

FUNCTIONAL DESCRIPTION

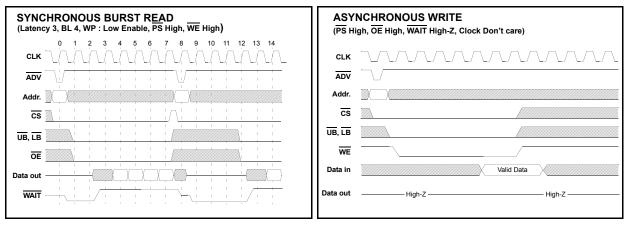
CS	PS	OE	WE	LB	UB	I/O0~7	I/O8~15	Mode	Power
н	н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
Н	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	DPD or PAR
L	н	н	н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	н	X ¹⁾	X ¹⁾	н	н	High-Z	High-Z	Output Disabled	Active
L	н	L	н	L	н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	н	L	L	Dout	Dout	Word Read	Active
L	н	н	L	L	н	Din	High-Z	Lower Byte Write	Active
L	Н	н	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	н	Н	L	L	L	Din	Din	Word Write	Active

1. X means "Don't care". X should be low or high state.

2. In asynchronous mode, Clock and ADV are ignored. Clock and ADV should be low or high state.

3. /WAIT pin is High-Z in Asynchronous mode.

4. This mode(Mode 1) is supported K1B5616BAM product.


MODE2. SYNCHRONOUS BURST READ / ASYNCHRONOUS WRITE MODE

Synchronous Burst Read Operation

Burst Read command is implemented when $\overline{\text{ADV}}$ is detected low at clock rising edge. WE should be de-asserted during Burst read, Burst operation re-starts whenever $\overline{\text{ADV}}$ is detected low at clock rising edge even in the middle of operation. Variable latency allows the UtRAM to be configured for minimum latency at high frequencies, but the controller must monitor WAIT to detect any conflict with refresh cycles.

Asynchronous Write Operation

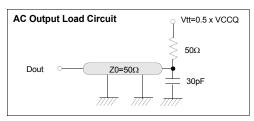
Asynchronous write operation starts when \overline{CS} , \overline{WE} and \overline{UB} or \overline{LB} are asserted. \overline{PS} and should be de-asserted during write operation. Clock, \overline{OE} , \overline{ADV} are don't care during write operation and \overline{WAIT} signal is Hi-Z.

FUNCTIONAL DESCRIPTION

CS	PS	OE	WE	LB	UB	I/O0~7	I/O8~15	CLK	ADV	Mode	Power
н	Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	X ²⁾	Deselected	Standby
н	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	X ²⁾	Deselected	PAR
L	Н	н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	н	Output Disabled	Active
L	Н	X ¹⁾	X ¹⁾	н	н	High-Z	High-Z	X ²⁾	н	Output Disabled	Active
L	Н	X ¹⁾	Н	X ¹⁾	X ¹⁾	High-Z	High-Z			Read Command	Active
L	Н	L	Н	L	Н	Dout	High-Z		Н	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout		н	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout		Н	Word Read	Active
L	Н	Н	L	L	Н	Din	High-Z	X ²⁾	or _	Lower Byte Write	Active
L	Н	Н	L	Н	L	High-Z	Din	X ²⁾		Upper Byte Write	Active
L	Н	Н	L	L	L	Din	Din	X ²⁾		Word Write	Active

1. X means "Don't care". X should be low or high state.

2. /WAIT is device output signal so does not have any affect to the mode definition. Please refer to each timing diagram for /WAIT pin function.


3. This mode(Mode 2) is supported only at K1B5616BAM product.

MODE 1 AC OPERATING CONDITIONS (ASYNCH. READ / ASYNCH. WRITE)

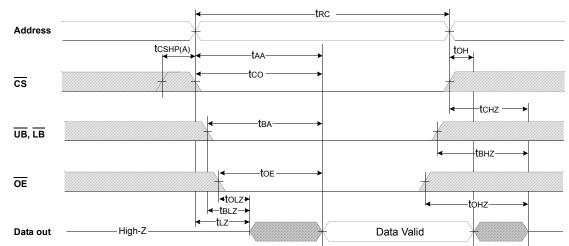
TEST CONDITIONS

(Test Load and Test Input/Output Reference) Input pulse level: 0.2 to Vccq-0.2V Input rising and falling time: 3ns Input and output reference voltage: 0.5 x Vccq Output load: CL=30pF Vcc:1.7V~1.95V TA: -25°C~85°C

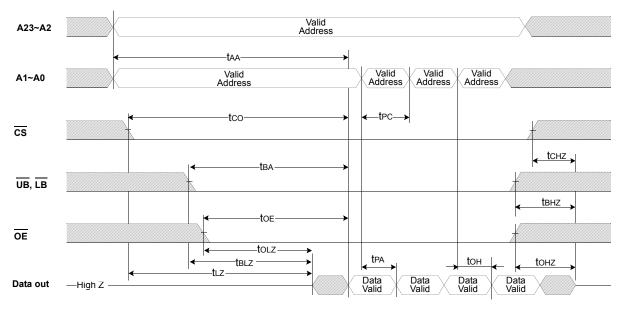
AC CHARACTERISTICS

			Sp	eed	
	Parameter List	Symbol	Min	Max	Units
Common	CS High Pulse Width	tcshp(A)	10	-	ns
	Read Cycle Time	trc	70	-	ns
	Page Read Cycle Time	tPC	20	-	ns
	Address Access Time	taa	-	70	ns
	Page Access Time	tpa	-	20	ns
	Chip Select to Output	tco	-	70	ns
	Output Enable to Valid Output	tOE	-	20	ns
Asynch.	UB, LB Access Time	tBA	-	20	ns
Asynch. Read	Chip Select to Low-Z Output	tLZ	10	-	ns
	UB, LB Enable to Low-Z Output	tBLZ	5	-	ns
	Output Enable to Low-Z Output	toLz	5	-	ns
	Chip Disable to High-Z Output	tснz	0	10	ns
	UB, LB Disable to High-Z Output	tвнz	0	10	ns
	Output Disable to High-Z Output	tонz	0	10	ns
	Output Hold	tон	5	-	ns
	Write Cycle Time	twc	70	-	ns
	Chip Select to End of Write	tcw	60	-	ns
	Address Set-up Time to Beginning of Write	tas	0	-	ns
	Address Valid to End of Write	taw	60	-	ns
Asynch.	UB, LB Valid to End of Write	tвw	60	-	ns
Write	Write Pulse Width	twp	55 ¹⁾	-	ns
Write	WE High Pulse Width	twhp	5	-	ns
	Write Recovery Time	twR	0	-	ns
	Data to Write Time Overlap	tow	20	-	ns
	Data Hold from Write Time	tDH	0	-	ns

1. twp(min)=70ns for continuous write without CS toggling longer than 1.2us


2. The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ x 0.5

3. The Low-Z timings measure a 100mV transition away from the High-Z level toward either VOH or VOL.


TIMING WAVEFORMS (ASYNCH. READ / ASYNCH. WRITE)

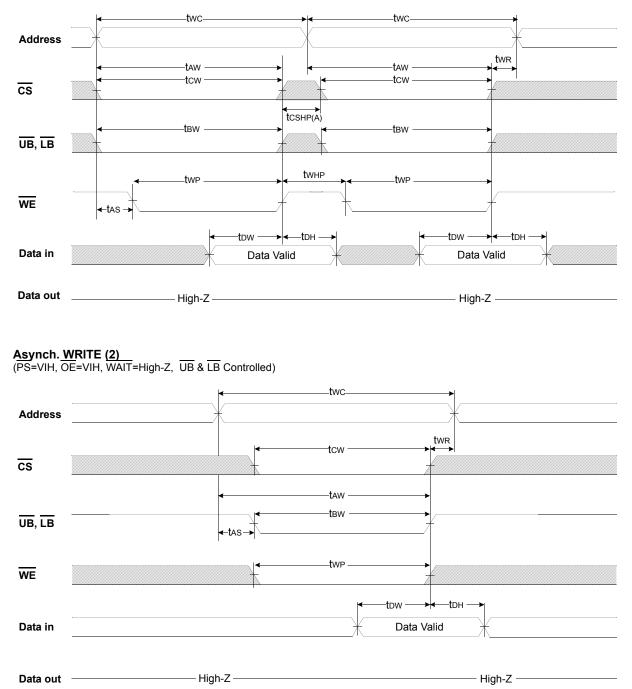
Asynch. READ (PS=VIH, WE=VIH, WAIT=High-Z)

Asynch. PAGE READ

(PS=VIH, WE=VIH, WAIT=High-Z)

1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 2. At any given temperature and voltage condition, tCHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

3. In asynchronous read cycle, Clock and $\overline{\text{ADV}}$ signals are ignored.


4. If invalid address signals shorter than min. tRC are continuously repeated for over 1.2us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 1.2us.

5. In asynchronous 4 page read cycle, Clock and ADV signals are ignored.

Asynch. WRITE (1)

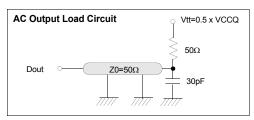
1. A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when \overline{CS} goes high or \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.

2. tcw is measured from the \overline{CS} going low to the end of write.

3. tas is measured from the address valid to the beginning of write.

4. twr is measured from the end of write to the address change. twr is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

5. In asynchronous write cycle, Clock and ADV signals are ignored.


6. Condition for continuous write operation over 15 times : tWP(min)=70ns

MODE 2 AC OPERATING CONDITIONS (SYNCH. READ / ASYNCH. WRITE)

TEST CONDITIONS

(Test Load and Test Input/Output Reference) Input pulse level: 0.2 to Vccq-0.2V Input rising and falling time: 1ns Input and output reference voltage: 0.5 x Vccq Output load: CL=30pF Vcc:1.7V~1.95V TA: -25°C~85°C

AC CHARACTERISTICS

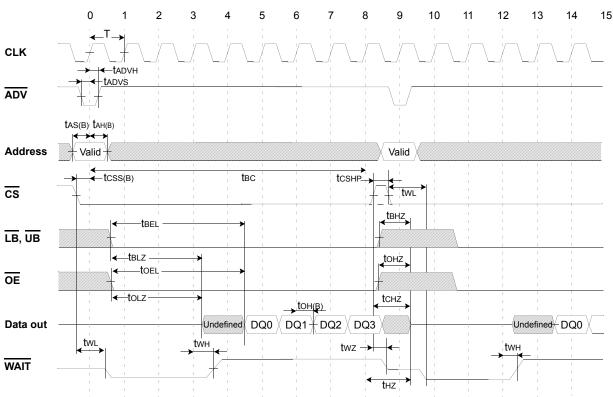
	Downworken Lint	Ourse had	66N	/IHz	801	/IHz	104	MHz	Unite
	Parameter List	Symbol	Min	Max	Min	Max	Min	Max	Units
	Clock Cycle Time	Т	15	200	12.5	200	9.6	200	ns
	Burst Cycle Time	tвc	-	1200	-	1200	-	1200	ns
	Address Set-up Time to clock	tas(b)	3	-	3	-	3	-	ns
	Address Hold Time from clock	tAH(B)	2	-	2	-	2	-	ns
	ADV Setup Time to clock	tadvs	3	-	3	-	3	-	ns
	ADV Hold Time from clock	tadvh	2	-	2	-	2	-	ns
	CS Setup Time to clock	tcss(B)	3	-	3	-	3	-	ns
	CS High to ADV Low (Burst Stop)	tbsadv ¹⁾	0		0		0		ns
	CS Low Hold Time from Clock(Burst Stop)	t CSLH	2	-	2	-	2	-	ns
	CS High Pulse Width	tcshp	5	-	5	-	5	-	ns
	CS Low to WAIT Low	tw∟	-	12	-	12	-	12	ns
Synch. Burst Read	Clock to WAIT High	twн	-	11	-	9	-	7	ns
rioud	CS High to WAIT High-Z	twz	-	10	-	10	-	10	ns
	UB, LB Low to End of Latency Clock	t BEL	20	-	20	-	20	-	ns
	OE Low to End of Latency Clock	toel	20	-	20	-	20	-	ns
	UB, LB Low to Low-Z Output	tBLZ	5	-	5	-	5	-	ns
	OE Low to Low-Z Output	tolz	5	-	5	-	5	-	ns
	Clock Rising to Data Output	tcp	-	11	-	9	-	7	ns
	Output Hold from clock	toh(b)	2	-	2	-	2	-	ns
	Burst End Clock to Output High-Z	tнz	-	10	-	10	-	10	ns
	CS High to Output High-Z	tснz	-	10	-	10	-	10	ns
	OE High to Output High-Z	tонz	-	10	-	10	-	10	ns
	UB, LB High to Output High-Z	tвнz	-	10	-	10	-	10	ns

1. Refresh can not be implemented when tBSADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.2us without CS toggling. To avoid Refresh fail, 13ns for all frequency is needed for tBSADV.

2. The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ x 0.5

3. The Low-Z timings measure a 100mV transition away from the High-Z level toward either VOH or VOL.

	Parameter List	Symphol	Spee	d	Units
	Parameter List	Symbol	Min	Max	Units
	Write Cycle Time	twc	70	-	
	Chip Select to End of Write	tcw	60	-	ns
	ADV Minimum Low Pulse Width	tadv	5	-	ns
	Address Set-up Time to Beginning of Write	tas	0	-	ns
	Address Set-up Time to ADV Rising	tas(a)	5	-	ns
	Address Hold Time from ADV Rising	tah(a)	3	-	ns
Asynch. Write	CS Setup Time to ADV Rising	tcss(A)	5	-	ns
	Address Valid to End of Write	taw	60	-	ns
	UB, LB Valid to End of Write	tвw	60	-	ns
	Write Pulse Width	twp	55 ¹⁾	-	ns
	Write Recovery Time	twr	0	-	ns
	Data to Write Time Overlap	tow	20	-	ns
	Data Hold from Write Time	tDH	0	-	ns


1. tWP(min)=70ns for continuous write longer than 1.2us without CS toggling.

TIMING WAVEFORMS (SYNCH. READ / ASYNCH. WRITE)

Burst READ - Fixed Latency

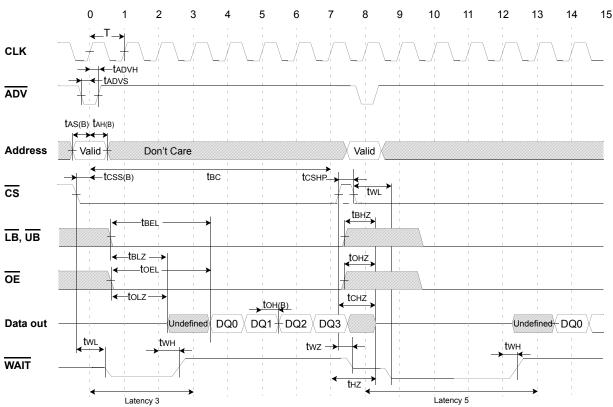
(PS=VIH, WE=VIH, WAIT=High-Z, Latency=4, Burst Length=4, WP=Low enable, WC=one clock prior to the data)

1. /WAIT Low(tWL) : Data not available(driven by \overline{CS} low going edge or \overline{ADV} low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock) /WAIT High-Z(tWZ) : Data don't care(driven by \overline{CS} high going edge)

2. Multiple clock risings are allowed during low ADV period. The data starts after set Latency from the last clock rising.

3. Burst operation should not be longer than $tBC(1.2\mu s)$

Ourseland	661	٨Hz	80MHz		104MHz		Units	Ourseland	661	MHz	80MHz		104	Units	
Symbol	Min	Max	Min	Max	Min	Max	Units	Symbol	Min	Max	Min	Max	Min	Max	Units
Т	15	200	12.5	200	9.6	200	ns	t BLZ	5	-	5	-	5	-	ns
tвc	-	1200	-	1200	-	1200	ns	ns tolz		-	5	-	5	-	ns
tadvs	3	-	3	-	3	-	ns	tHZ	-	10	-	10	-	10	ns
t advh	2	-	2	-	2	-	ns	tснz	-	10	-	10	-	10	ns
tas(b)	3	-	3	-	3	-	ns	tонz	-	10	-	10	-	10	ns
tah(B)	2	-	2	-	2	-	ns	tвнz	-	10	-	10	-	10	ns
tcss(B)	3	-	3	-	3	-	ns	tcD	-	11	-	9	-	7	ns
t CSHP	5	-	5	-	5	-	ns	toh(b)	2	-	2	-	2	-	ns
t BEL	20	-	20	-	20	-	ns	tw∟	-	12	-	12	-	12	ns
t OEL	20	-	20	-	20	-	ns	twн	-	11	-	9	-	7	ns
twz	-	10	-	10	-	10	ns								



http://www.BDTIC.com/SAMSUNG Preliminary UtRAM

K1B5616BAM

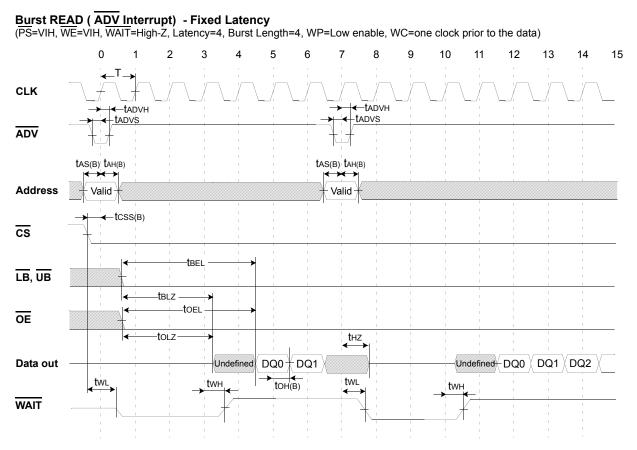
Burst READ - Variable Latency

(PS=VIH, WE=VIH, WAIT=High-Z, Latency=3, Burst Length=4, WP=Low enable, WC=one clock prior to the data)

1. Delayed Latency should be taken increased when refresh is required. Refer to Latency Table.

/WAIT Low(tWL) : Data not available(driven by CS low going edge or ADV low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock)

/WAIT High (WI): Data don't care (driven by CS high going edge) 3. Multiple clock risings are allowed during low ADV period. The data starts after set Latency from the last clock rising.


4. Burst operation should not be longer than tBC(1.2 μ s)

Querra ha a l	66N	/IHz	80N	ЛНz	104	MHz	L lusita	Quanta al	661	ИНz	801	ИНz	104	Unite	
Symbol	Min	Max	Min	Max	Min	Мах	Units	Symbol	Min	Max	Min	Max	Min	Max	Units
Т	15	200	12.5	200	9.6	200	ns	ns t _{BLZ}		-	5	-	5	-	ns
tвc	-	1200	-	1200	-	1200	ns	tolz	5	-	5	-	5	-	ns
tadvs	3	-	3	-	3	-	ns	tнz	-	10	-	10	-	10	ns
tadvh	2	-	2	-	2	-	ns	tснz	-	10	-	10	-	10	ns
tas(b)	3	-	3	-	3	-	ns	tонz	-	10	-	10	-	10	ns
tAH(B)	2	-	2	-	2	-	ns	tвнz	-	10	-	10	-	10	ns
tCSS(B)	3	-	3	-	3	-	ns	tcp	-	11	-	9	-	7	ns
t CSHP	5	-	5	-	5	-	ns	toh(b)	2	-	2	-	2	-	ns
t BEL	20	-	20	-	20	-	ns	tw∟	-	12	-	12	-	12	ns
toel	20	-	20	-	20	-	ns	twн	-	11	-	9	-	7	ns
twz	-	10	-	10	-	10	ns								

http://www.BDTIC.com/SAMSUNG Preliminary **U**tRAM

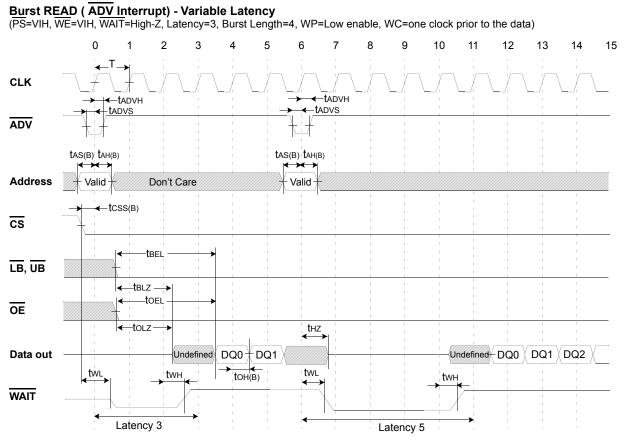
K1B5616BAM

1. Refresh is blocked during ADV Interrupt Read and continuous Burst Read by ADV interrupt should not be longer than tBC (1.2us)

2. /WAIT Low(tWL) : Data not available(driven by CS low going edge or ADV low going edge)

 $\begin{array}{l} \mbox{WAIT High(WH): Data available(driven by Cency-1 clock) \\ \mbox{WAIT High-Z(tWZ): Data available(driven by <u>CE</u>S high going edge) \\ \end{array}$

3. Multiple clock risings are allowed during low ADV period but the First valid data come out after set Latency from the last clock rising.


4. Burst interrupt is allowable after the first data received by controller.

Symphol	661	ИНz	80N	ЛНz	104	MHz	Units	Symbol	66N	ЛНz	80MHz		104	MHz	Units	
Symbol	Min	Max	Min	Max	Min	Мах	Units	Symbol	Min	Max	Min	Max	Min	Max	Units	
т	15	200	12.5	200	9.6	200	ns	ns tBLZ		-	5	-	5	-	ns	
tвс	-	1200	-	1200	-	1200	ns	tolz	5	-	5	-	5	-	ns	
tadvs	3	-	3	-	3	-	ns	tнz	-	10	-	10	-	10	ns	
t advh	2	-	2	-	2	-	ns	tснz	-	10	-	10	-	10	ns	
tas(b)	3	-	3	-	3	-	ns	tонz	-	10	-	10	-	10	ns	
tAH(B)	2	-	2	-	2	-	ns	tвнz	-	10	-	10	-	10	ns	
tcss(B)	3	-	3	-	3	-	ns	tcp	-	11	-	9	-	7	ns	
t CSHP	5	-	5	-	5	-	ns	tон(в)	2	-	2	-	2	-	ns	
t BEL	20	-	20	-	20	-	ns	tw∟	-	12	-	12	-	12	ns	
toel	20	-	20	-	20	-	ns	twн	-	11	-	9	-	7	ns	
twz	-	10	-	10	-	10	ns									

http://www.BDTIC.com/SAMSUNG Preliminary Utram

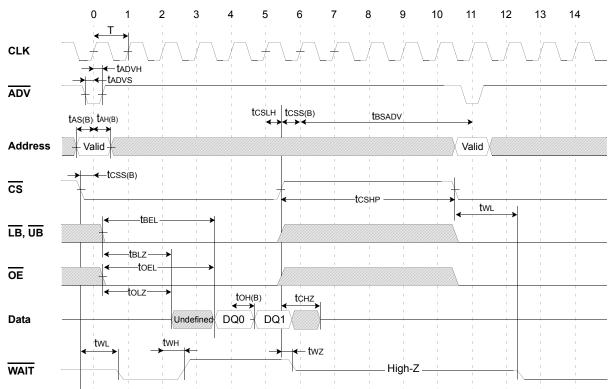
K1B5616BAM

1. Delayed Latency should be taken increased when refresh is required. Refer to Latency Table.

Delayed Latency should be taken increased when the should not be longer than tBC (1.2us)
 Refresh is blocked during ADV Interrupt Read and continuous Burst Read by ADV interrupt should not be longer than tBC (1.2us)
 WAIT Low(tWL) : Data not available(driven by CS low going edge or ADV low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock)

- WAIT HighI(Wr). Data available(unver by Latency 100k)
 WAIT High-Z(tWZ) : Data don't care(driven by <u>CS</u> high going edge)
 Multiple clock risings are allowed during low ADV period but the First valid data come out after set Latency from the last clock rising.
 Burst interrupt is allowable after the first data received by controller.

Cumula al	661	ИHz	80N	ЛНz	104MHz		11	Quanta	661	ΛHz	80MHz		104	Units		
Symbol	Min	Max	Min	Max	Min	Max	Units	Symbol	Min	Max	Min	Max	Min	Мах	Units	
Т	15	200	12.5	200	9.6	200	ns	is tBLZ		-	5	-	5	-	ns	
tвс	-	1200	-	1200	-	1200	ns	tolz	5	-	5	-	5	-	ns	
tadvs	3	-	3	-	3	-	ns	tHZ	-	10	-	10	-	10	ns	
t advh	2	-	2	-	2	-	ns	tснz	-	10	-	10	-	10	ns	
tas(b)	3	-	3	-	3	-	ns	tонz	-	10	-	10	-	10	ns	
tAH(B)	2	-	2	-	2	-	ns	tвнz	-	10	-	10	-	10	ns	
tcss(B)	3	-	3	-	3	-	ns	tCD	-	11	-	9	-	7	ns	
t CSHP	5	-	5	-	5	-	ns	toh(b)	2	-	2	-	2	-	ns	
t BEL	20	-	20	-	20	-	ns	tw∟	-	12	-	12	-	12	ns	
toel	20	-	20	-	20	-	ns	twн	-	11	-	9	-	7	ns	
twz	-	10	-	10	I	10	ns									



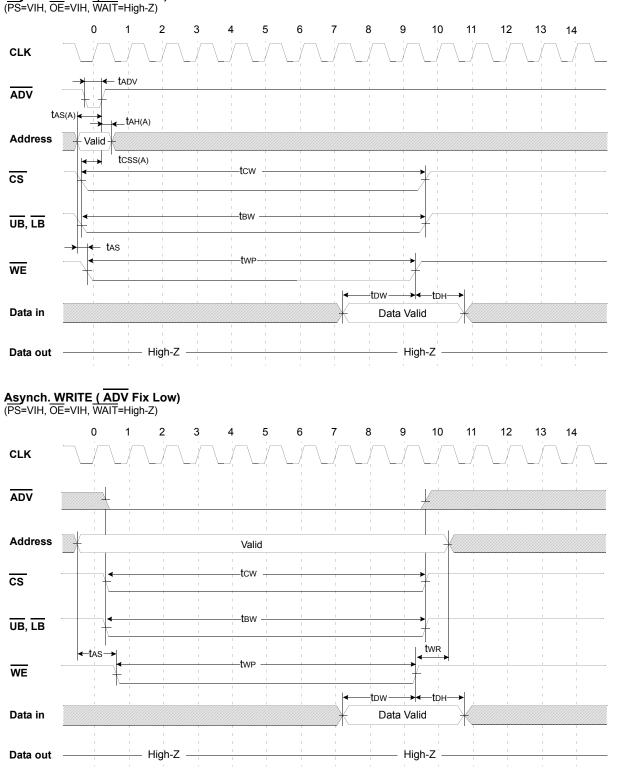
http://www.BDTIC.com/SAMSUNG Preliminary UtRAM

K1B5616BAM

Burst READ STOP

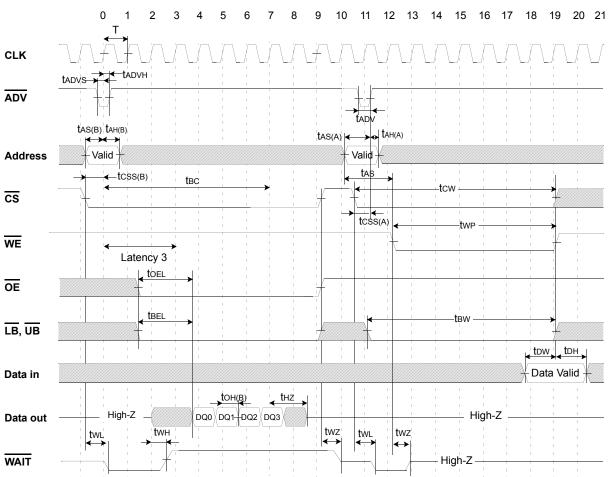
(PS=VIH, Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

/WAIT Low(tWL): Data not available(driven by CS low going edge or ADV low going edge) /WAIT High(tWH): Data available(driven by Latency-1 clock)


WAIT High/(twn). Data available(unverbig) Later(cy-1 clock)
WAIT High-Z(tWZ): Data don't care(driven by <u>CS</u> high going edge)
Multiple clock risings are allowed during low ADV period. The data starts after set Latency from the last clock rising.
Refresh can not <u>b</u>e implemented when tBSADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.2us without CS toggling. To avoid Refresh fail, 13ns for all frequency is needed for tBSADV.

Sympol	66N	66MHz		80MHz		104MHz		Symbol	66MHz		80MHz		104	Units		
Symbol	Min	Max	Min	Max	Min	Max	Units	Symbol	Min	Max	Min	Max	Min	Max	Units	
tBSADV	0	-	0	-	0	-	ns	tcp	-	11	-	9	-	7	ns	
tCSLH	2	-	2	-	2	-	ns	toh(b)	2	-	2	-	2	-	ns	
tCSHP	5	-	5	-	5	-	ns	tснz	-	10	-	10	-	10	ns	
t BEL	20	-	20	-	20	-	ns	tw∟	-	12	-	12	-	12	ns	
t OEL	20	-	20	-	20	-	ns	twн	-	11	-	9	-	7	ns	
t BLZ	5	-	5	-	5	-	ns	twz	-	10	-	10	-	10	ns	
tolz	5	-	5	-	5	-	ns									

http://www.BDTIC.com/SAMSUNG Preliminary UtRAM


Asynch. WRITE (ADV Latch)

Burst READ followed by Asynch. WRITE

(PS=VIH, WAIT=High-Z, Variable Latency=3)

1. A write occurs during the overlap(twP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for word operation. A write ends at the earliest transition when CS goes high or WE goes high. The twp is measured from the beginning of write to the end of write.

taw is measured from the address valid to the end of write. In this address latch type write timing, twc is same as taw.
 tcw is measured from the <u>CS</u> going low to the end of write.

4. tew is measured from the UB and LB going low to the end of write.

Asynch. WRITE followed by Burst READ (PS=VIH, Variable Latency=3,Burst Length=4, WP=Low Enable, WC=one clock prior to the data)																					
		0	1	2	3	4	5	6	7	8	9	10	11 1 T	2 13	3 14	15	16	17	18	19	20
CLK		<u>j</u>										<u>/</u> ≻ к		Ņ	Ì	\∱		$\int_{-\frac{1}{2}}$		<u>_</u>	
ADV		<u>-</u> 	- tadv		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	 		DVS→		 			 		 	 	 	
		∖) t/ ➤ >	чн(А) 1	I I I	I I I	 	 	I I I	 	 		3) tah(e ★ →	3)		 	 	 	, 	 	 	
Addres	sV	alid -	ŧ.			AW —					<u> </u>	/alid	-					<u> </u>			
cs			-tcss	(A)	1	CW —			1 1 1 1 1				CSS(B)		tBC		 	- - - -			
WE		AS			I I I I	twr		 	 	→		tw∟	1 1 1 1 1 1	I I I I I I I I I I	 	 	 		tv	×∠≯	
OE	 		 	 		1 1 1 1	 		 			1	+	TOEL		 	 	- 	 		
LB, UB			 	 	te	3W	1 1 1 1	 	 	→	1 1 1	 	-	tBEL	→ ¹ 1 1	 	 	 	 		
- / ·		 	1	 	 			1		73		1				-	1		1	1	1
Data in		-	-		-	-		-	∦ Da	ta Va				,, 1 1			-		-		1
Data ou	ıt	1 1 1 1	 	 	(– Hi	gh-Z	(1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	→ wн				<u> </u>	HZ		1 1 1 1 1
WAIT			 	 		– Hig	h-Z		 	 	1 1 1 1		¦ → ' '			 					

/WAIT Low(tWL) : Data not available(driven by CS low going edge or ADV low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock) /WAIT High-Z(tWZ) : Data don't care(driven by CS high going edge)
 Multiple clock risings are allowed during low ADV period. The data starts after set Latency from the last clock rising.
 Burst operation should not be longer than tBC(1.2µs)

