U*t*RAM

Document Title

1Mx16 bit Uni-Transistor Random Access Memory

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial Draft - Design target	August 21, 2002	Preliminary
0.1	Revised - Deleted Technical Note. - Added package dimension.	November 5, 2002	Preliminary
1.0	Revised - Changed Power Up Sequence - Changed operating and standby current Icc1 from 7mA to 10mA Icc2 from 30mA to 40mA IsB1 from 70µA to 80µA IsBD from 10µA to 15µA	March 6, 2003	Final

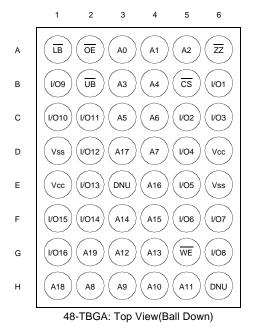
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

U*t*RAM

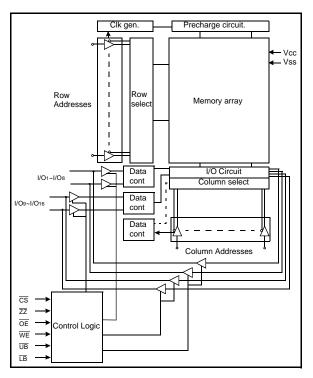
1M x 16 bit Uni-Transistor CMOS RAM

FEATURES

- Process Technology: CMOS
- Organization: 1M x16 bit
- Power Supply Voltage: 2.7~3.1V
- Three State Outputs
- Compatible with Low Power SRAM
- Deep Power Down: Memory cell data holds invalid
- Package Type: 48-TBGA


PRODUCT FAMILY

GENERAL DESCRIPTION


The K1S161615M is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device support industrial temperature range and 48 ball Chip Scale Package for user flexibility of system design. The device also supports deep power down mode for low standby current.

			0		Power Dissipation		
Product Family	Operating Temp.	Vcc Range	(trc)	Standby (Isв1, Max.)	Deep power down(Isвd, Max.)	Operating (Icc2, Max.)	РКС Туре
K1S161615M-I	Industrial(-40~85°C)	2.7~3.1V	70ns	80µA	15μΑ	40mA	48-TBGA

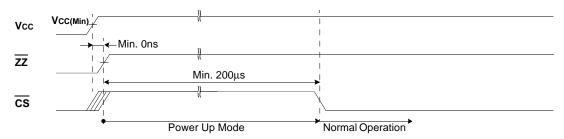
PIN DESCRIPTION

FUNCTIONAL BLOCK DIAGRAM

Name	Function	Name	Function
CS	Chip Select Input	Vcc	Power
ZZ	Deep Power Down	Vss	Ground
OE	Output Enable Input	UB	Upper Byte(I/O9~16)
WE	Write Enable Input	LB	Lower Byte(I/O1~8)
A0~A19	Address Inputs	DNU	Do Not Use ¹⁾
I/O1~I/O16	Data Inputs/Outputs		

1) Reserved for future user

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.


U*t*RAM

POWER UP SEQUENCE

1. Apply power.

2. Maintain stable power(Vcc min.=2.7V) for a minimum 200 μ s with \overline{CS} and \overline{ZZ} high.

TIMING WAVEFORM OF POWER UP

(POWER UP)

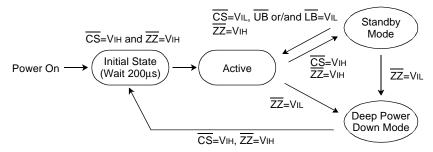
1. After Vcc reaches Vcc(Min.), wait 200 μ s with \overline{CS} and \overline{ZZ} high. Then you get into the normal operation.

FUNCTIONAL DESCRIPTION

CS	ZZ	OE	WE	LB	UB	I/O 1~8	I/O9~16	Mode	Power
Н	Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Deep Power Down
L	Н	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care.(Must be low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾


ltem	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	Vin, Vout	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 3.6V	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	ТА	-40 to 85	°C

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 seconds may affect reliability.

U*t*RAM

STANDBY MODE STATE MACHINES

STANDBY MODE CHARACTERISTIC

Power Mode	Memory Cell Data	Standby Current(mA)	Wait Time(ms)
Standby	Valid	80	0
Deep Power Down	Invaild	15	200

U*t*RAM

PRODUCT LIST

Extended Temperature Products(-25~85°C)					
Part Name	Function				
K1S161615M-EI70	48-TBGA, 70ns, 2.9V				

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Min	Тур	Мах	Unit
Supply voltage	Vcc	2.7	2.9	3.1	V
Ground	Vss	0	0	0	V
Input high voltage	Vін	2.2	-	Vcc+0.32)	V
Input low voltage	VIL	-0.3 ³⁾	-	0.6	V

1. TA=-40 to 85°C, otherwise specified.

2. Overshoot: Vcc+1.0V in case of pulse width ≤20ns.

3. Undershoot: -1.0V in case of pulse width \leq 20ns.

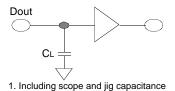
4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾(f=1MHz, TA=25°C)

ltem	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	Vin=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

1. Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

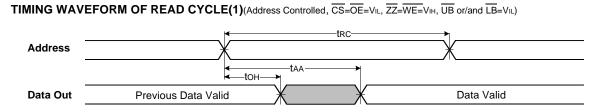

ltem	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc	-1	-	1	μΑ
Output leakage current	Ilo	\overline{CS} =VIH, \overline{ZZ} =VIH, \overline{OE} =VIH or \overline{WE} =VIL, VIO=Vss to Vcc	-1	-	1	μΑ
Average operating current	ICC1	<u>Cy</u> cle time=1μs, 100% duty, lιο=0mA, <u>CS</u> ≤0.2V, ZZ≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V	-	-	10	mA
	ICC2	Cycle time=Min, Iıo=0mA, 100% duty, CS=VIL, ZZ=VIH, VIN=VIL or VIH	-	-	40	mA
Output low voltage	Vol	Iol=2.1mA	-	-	0.4	V
Output high voltage	Vон	Іон=-1.0mA	2.4	-	-	V
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, ZZ≥Vcc-0.2V, Other inputs=Vss to Vcc	-	-	80	μΑ
Deep Power Down	ISBD	ZZ≤0.2V, Other inputs=Vss to Vcc	-	-	15	μΑ

U*t*RAM

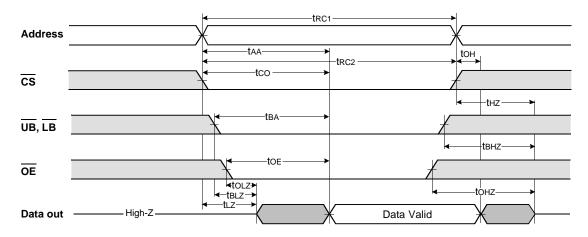
AC OPERATING CONDITIONS TEST CONDITIONS

Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL=50pF

AC CHARACTERISTICS (Vcc=2.7~3.1V, TA=-40 to 85°C)


			Spee	ed Bin	Units	
	Parameter List	Symbol	70	Ons		
			Min	Max		
	Read Cycle Time	trc	70	-	ns	
	Address Access Time	taa	-	70	ns	
	Chip Select to Output	tco	-	70	ns	
	Output Enable to Valid Output	tOE	-	35	ns	
	UB, LB Access Time	tBA	-	70	ns	
Read	Chip Select to Low-Z Output	tLZ	10	-	ns	
Read	UB, LB Enable to Low-Z Output	tBLZ	10	-	ns	
	Output Enable to Low-Z Output	toLz	5	-	ns	
	Chip Disable to High-Z Output	tHZ	0	25	ns	
	UB, LB Disable to High-Z Output	tвнz	0	25	ns	
	Output Disable to High-Z Output	tонz	0	25	ns	
	Output Hold from Address Change	toн	5	-	ns	
	Write Cycle Time	twc	70	-	ns	
	Chip Select to End of Write	tcw	60	-	ns	
	Address Set-up Time	tas	0	-	ns	
	Address Valid to End of Write	tAW	60	-	ns	
	UB, LB Valid to End of Write	tBW	60	-	ns	
Write	Write Pulse Width	tWP	55 ¹⁾	-	ns	
	Write Recovery Time	twr	0	-	ns	
	Write to Output High-Z	twHz	0	25	ns	
	Data to Write Time Overlap	tDW	30	-	ns	
	Data Hold from Write Time	tDH	0	-	ns	
	End Write to Output Low-Z	tow	5	-	ns	

1. tWP(min)=70ns for continuous write operation over 50 times.(Only in case of WE controlled write operation)



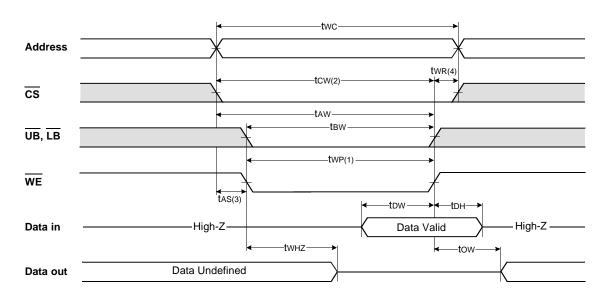
U*t*RAM

TIMING DIAGRAMS

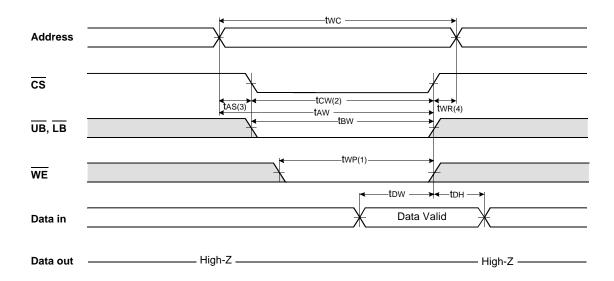
TIMING WAVEFORM OF READ CYCLE(2)(ZZ=WE=VIH)

(READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device interconnection.
- 3. The minimum read cycle(tRC) is determined later one of the tRC1 and tRC2.
- 4. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max).
- 5. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us.

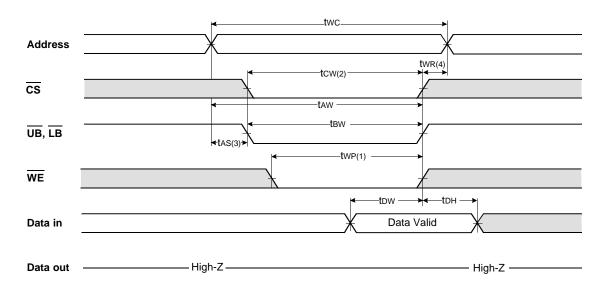


http://www.BDTIC.com/SAMSUNG


K1S161615M

U*t*RAM

TIMING WAVEFORM OF WRITE CYCLE(2)(CS Controlled, ZZ=VIH)

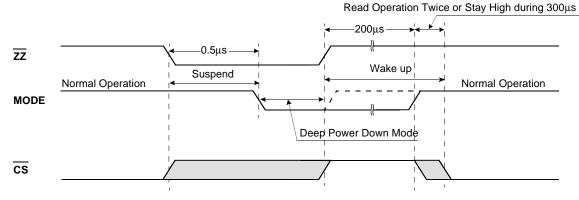


http://www.BDTIC.com/SAMSUNG

K1S161615M

UtRAM

TIMING WAVEFORM OF WRITE CYCLE(3)(UB, LB Controlled, ZZ=VIH)


(WRITE CYCLE)

1. A write occurs during the overlap(twp) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when CS goes high and WE goes high. The twp is measured from the beginning of write to the end of write.

2. tcw is measured from the \overline{CS} going low to the end of write. 3. tas is measured from the address valid to the beginning of write.

4. twe is measured from the end of write to the address change. twe applied in case a write ends as CS or WE going high.

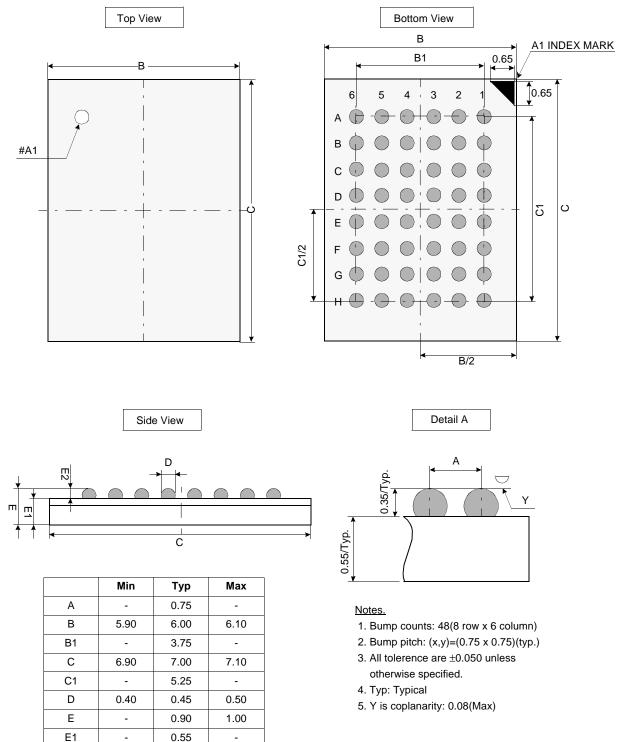
TIMING WAVEFORM OF DEEP POWER DOWN MODE

(DEEP POWER DOWN MODE)

1. When you toggle ZZ pin low, the device gets into the Deep Power Down mode after 0.5µs suspend period.

To return to normal operation, the device needs Wake Up period.
Wake Up sequence is just the same as Power Up sequence shown in next page.

http://www.BDTIC.com/SAMSUNG


K1S161615M

Unit: millimeters

UtRAM

PACKAGE DIMENSION

48 TAPE BALL GRID ARRAY(0.75mm ball pitch)

E2

Y

0.30

-

0.35

-

0.40

0.08