Document Title

8Mx16 bit Page Mode Uni-Transistor Random Access Memory

Revision History

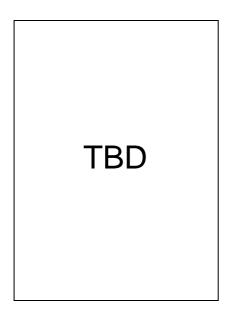
Revision No.	<u>History</u>	Draft Date	Remark
0.0	Initial Draft - Design Target	April 12, 2004	Preliminary
0.1	Revised - Updated "TIMING WAVEFORM OF WRITE CYCLE(1) ($\overline{\text{WE}}$ Controlled)" in page 8 and added tWHP($\overline{\text{WE}}$ High Pulse Width) parameter as Min.5ns - Added comment on standby current(IsB1) measure condition as "Standby mode is supposed to be set up after at least one active operation after power up. IsB1 is measured after 60ms from the time when standby mode is set up." - Filled out operating current value(IcC2) as Max. 40mA - Filled out standby current value(IsB1, < 40°C) as Max. 130µA - Filled out standby current value(IsB1, < 85°C) as Max. 250µA	July 12, 2004	Preliminary
1.0	Finalize - Changed ton from 5ns to 3ns	April 06, 2005	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

8M x 16 bit Page Mode Uni-Transistor CMOS RAM

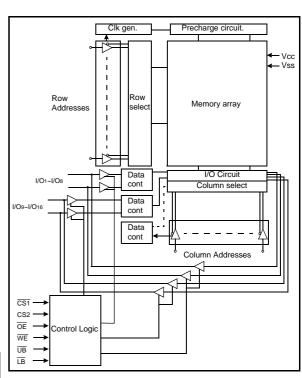
FEATURES

- Process Technology: CMOSOrganization: 8M x16 bit
- Power Supply Voltage: 2.7~3.1V
- Three State Outputs
- Compatible with Low Power SRAM
- Support 4 page read mode
- Package Type: TBD


GENERAL DESCRIPTION

The K1S28161CM is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports 4 page read operation and Industrial temperature range. The device supports dual chip selection for user interface. The device also supports internal Temperature Compensated Self Refresh mode for the standby power saving at room temperature range.

PRODUCT FAMILY

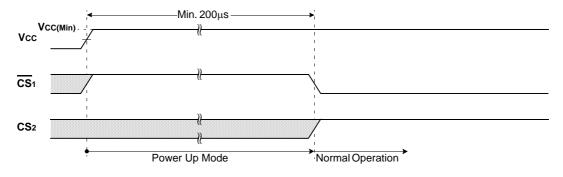

Product Family Operating Temp.			Conned	Power Dissipation		
		Vcc Range	Speed (trc)	Standby (Isв1, Max.)	Operating (Icc2, Max.)	PKG Type
K1S28161CM-I	Industrial(-40~85°C)	2.7~3.1V	70ns	130μA(< 40°C)	40mA	TBD
K1320101CW-1	industrial(-40~65 C)	2.7~3.10	70115	250μA(< 85°C)	40111A	100

PIN DESCRIPTION

Name	Function	Name	Function
CS1,CS2	Chip Select Inputs	Vcc	Power
ŌĒ	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O9~16)
A0~A22	Address Inputs	LB	Lower Byte(I/O1~8)
I/O1~I/O16	Data Inputs/Outputs	NC	No Connection ¹⁾

FUNCTIONAL BLOCK DIAGRAM

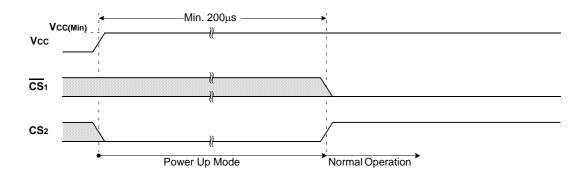
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.


¹⁾ Reserved for future use

POWER UP SEQUENCE

During the Power Up mode, the standby current can not be guaranteed. To get the stable standby current level, at least one cycle of active operation should be implemented regardless of wait time duration. To get the appropriate device operation, be sure to keep the following power up sequence.

- 1. Apply power.
- 2. Maintain stable power(Vcc min.=2.7V) for a minimum 200 μ s with $\overline{CS}1$ =high.or CS2=low.


TIMING WAVEFORM OF POWER UP(1) (CS1 controlled)

POWER UP(1)

1. After Vcc reaches Vcc(Min.), wait 200 μ s with \overline{CS} 1 high. Then the device gets into the normal operation.

TIMING WAVEFORM OF POWER UP(2) (CS2 controlled)

- 3 -

POWER UP(2)

1. After Vcc reaches Vcc(Min.), wait 200 μs with CS2 low. Then the device gets into the normal operation.

FUNCTIONAL DESCRIPTION

CS ₁	CS2	OE	WE	LB	UB	I/O1~8	I/O _{9~16}	Mode	Power
Н	X ¹⁾	High-Z	High-Z	Deselected	Standby				
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care.(Must be low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 3.6V	V
Power Dissipation	Po	1.0	W
Storage temperature	Tstg	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability

PRODUCT LIST

Industrial Temperature Product(-40~85°C)				
Part Name	Function			
K1S28161CM	70ns, 2.9V			

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	2.9	3.1	V
Ground	Vss	0	0	0	٧
Input high voltage	VIH	0.8 x Vcc	-	Vcc+0.2 ²⁾	٧
Input low voltage	VIL	-0.23)	-	0.6	V

^{1.} Ta=-40 to 85°C, otherwise specified.

CAPACITANCE¹⁾(f=1MHz, Ta=25°C)

ltem	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	ILI	Vin=Vss to Vcc		-1	-	1	μΑ
Output leakage current	ILO	CS1=VIH or CS2=VIL or OE=VIH or WE=VIL or LB=UB=VIH, VIO=Vss to Vcc			-	1	μА
Average operating current	ICC2	Cycle time=tRC+3tPC, Iio=0mA, 100% duty, \overline{CS} 1=ViL, CS2=ViH, \overline{LB} =ViL or/and \overline{UB} =ViL, ViN=ViH or ViL			-	40	mA
Output low voltage	Vol	IoL=2.1mA			-	0.4	V
Output high voltage	Voн	Iон=-1.0mA	IOH=-1.0mA			-	V
		Other inputs=0~Vcc < 40°C		-	-	130	μА
Standby Current(CMOS)	ISB1	1) \overline{CS} 1 \geq Vcc-0.2V, CS2 \geq Vcc-0.2V(\overline{CS} 1 controlled) or 2) 0V \leq CS2 \leq 0.2V(CS2 controlled)	< 85°C	-	-	250	μА

^{1.} Standby mode is supposed to be set up after at least one active operation.after power up.

ISB1 is measured after 60ms from the time when standby mode is set up.

^{2.} Overshoot: Vcc+1.0V in case of pulse width \leq 20ns. 3. Undershoot: -1.0V in case of pulse width \leq 20ns.

^{4.} Overshoot and undershoot are sampled, not 100% tested.

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

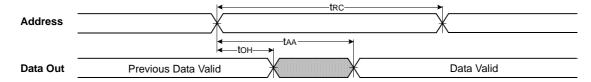
Input pulse level: 0.4 to 2.2V Input rising and falling time: 3ns

Input and output reference voltage: 0.5 x Vcc

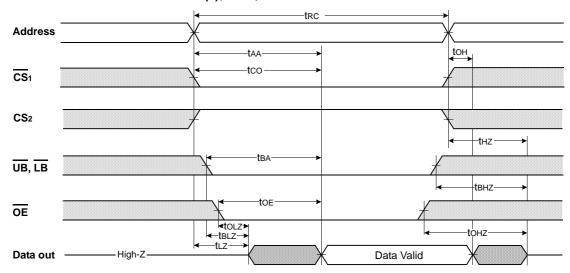
Output load (See right): CL=30pF

AC Output Load Circuit $Vt = 0.5 \times VCC$ 50Ω Dout $20 = 50\Omega$ 30pF

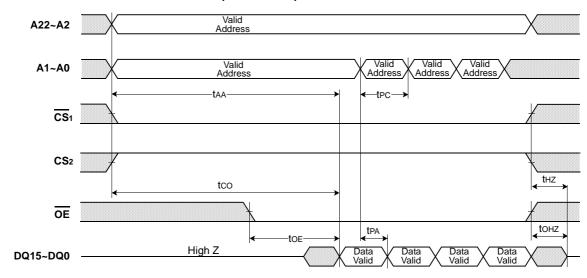
AC CHARACTERISTICS (Vcc=2.7~3.1V, TA=-40 to 85°C)


			Spee	d Bins	Units
	Parameter List	Symbol	70)ns	
			Min	Max	
	Read Cycle Time	trc	70	-	ns
	Address Access Time	tAA	-	70	ns
	Chip Select to Output	tco	-	70	ns
	Output Enable to Valid Output	toe	-	35	ns
	UB, LB Access Time	tBA	-	70	ns
	Chip Select to Low-Z Output	tLZ	10	-	ns
Read	UB, LB Enable to Low-Z Output	tBLZ	10	-	ns
Read	Output Enable to Low-Z Output	toLz	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	25	ns
	UB, LB Disable to High-Z Output	tвнz	0	25	ns
	Output Disable to High-Z Output	tonz	0	25	ns
	Output Hold from Address Change	toн	3	-	ns
	Page Cycle	tPC	25	-	ns
	Page Access Time	tpA	-	20	ns
	Write Cycle Time	twc	70	-	ns
	Chip Select to End of Write	tcw	60	-	ns
	Address Set-up Time	tas	0	-	ns
	Address Valid to End of Write	taw	60	-	ns
	UB, LB Valid to End of Write	tвw	60	-	ns
\\/rito	Write Pulse Width	twp	55 ¹⁾	-	ns
Write	WE High Pulse Width	twhp	5	-	ns
	Write Recovery Time	twr	0	-	ns
	Write to Output High-Z	twnz	0	25	ns
	Data to Write Time Overlap	tow	30	-	ns
	Data Hold from Write Time	tDH	0	-	ns
	End Write to Output Low-Z	tow	5	-	ns

^{1.} tWP(min)=70ns for continuous write operation over 50 times.

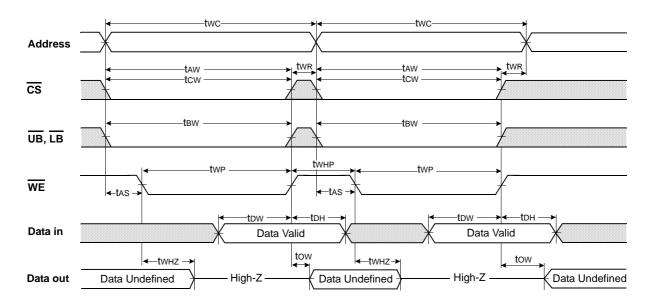


TIMING DIAGRAMS

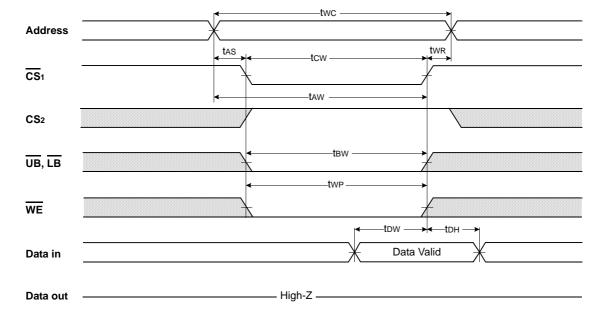

TIMING WAVEFORM OF READ CYCLE(1)(Address Controlled, $\overline{CS}1=\overline{OE}=VIL$, $CS2=\overline{WE}=VIH$, \overline{UB} or/and $\overline{LB}=VIL$)

TIMING WAVEFORM OF READ CYCLE(2)(WE=VIH)

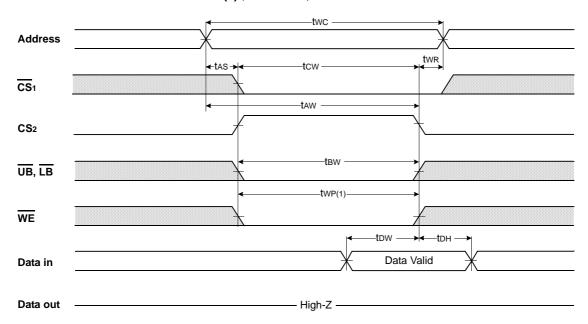
TIMING WAVEFORM OF PAGE CYCLE(READ ONLY)



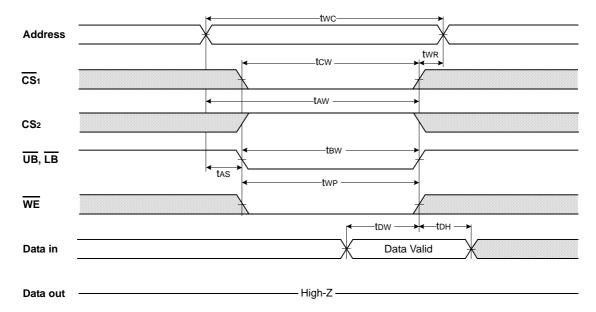
(READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.
- 3. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max).
- 4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)



TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)

NOTES (WRITE CYCLE)

1. A write occurs during the overlap(twp) of low $\overline{CS}1$ and low \overline{WE} . A write begins when $\overline{CS}1$ goes low and \overline{WE} goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when $\overline{\text{CS}}_1$ goes high and $\overline{\text{WE}}$ goes high. The twp is measured from the beginning of write to the end of write.

- 9 -

- 2. tow is measured from the CS1 going low to the end of write.

 3. tas is measured from the dadress valid to the beginning of write.
- 4. twn is measured from the end of write to the address change, twn is applied in case a write ends with $\overline{\text{CS}}$ 1 or $\overline{\text{WE}}$ going high.

PACKAGE DIMENSION

TBD

