
K1S3216B1C

Document Title

2Mx16 bit Uni-Transistor Random Access Memory

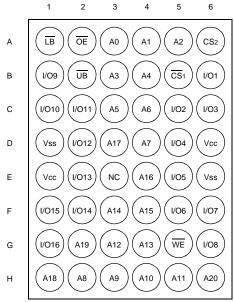
Revision History

Revision No.	<u>History</u>	Draft Date	Remark
0.0	Initial Draft	January 16, 2003	Advanced
0.1	Revised - Changed Package Type from 48 TBGA into 48 FBGA 6.0 x 8.0 - Changed Standby Current(CMOS) from 80uA to 100uA	June 9, 2003	Preliminary

2M x 16 bit Uni-Transistor CMOS RAM

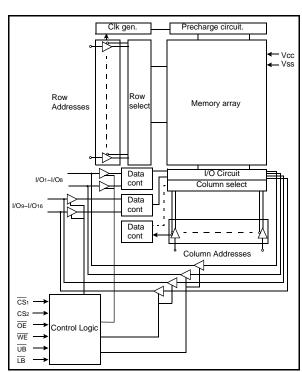
FEATURES

- Process Technology: CMOSOrganization: 2M x16 bit
- Power Supply Voltage: 1.7V~2.1V
- Three State Outputs
- Compatible with Low Power SRAM
- Dual Chip selection support
- Package Type: 48-FBGA-6.0x8.0


GENERAL DESCRIPTION

The K1S3216B1C is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports Industrial temperature range and 48 ball Chip Scale Package for user flexibility of system design. The device also supports dual chip selection for user interface.

PRODUCT FAMILY


					ssipation		
Product Family	Operating Temp.	Vcc Range	Speed	Standby (Isв1, Max.)	Operating (Icc2, Max.)	PKG Type	
K1S3216B1C-I	Industrial(-40~85°C)	1.7V~2.1V	70/85ns	100μΑ	30mA	48-FBGA-6.0x8.0	

PIN DESCRIPTION

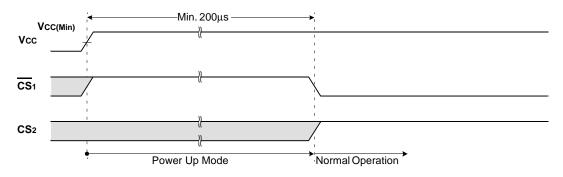
48-FBGA: Top View(Ball Down)

FUNCTIONAL BLOCK DIAGRAM

Name	Function	Name	Function
CS1,CS2	Chip Select Inputs	Vcc	Power
OE	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O9~16)
A0~A20	Address Inputs	LB	Lower Byte(I/O1~8)
I/O1~I/O16	Data Inputs/Outputs	NC	No Connection ¹⁾

¹⁾ Reserved for future use.

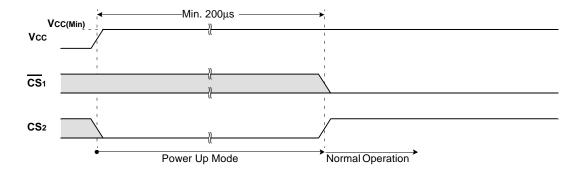
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.



K1S3216B1C Ua

POWER UP SEQUENCE

- 1. Apply power.
- 2. Maintain stable power(Vcc min.=1.7V) for a minimum 200μs with CS1=high.or CS2=low.


TIMING WAVEFORM OF POWER UP(1) (CS1 controlled)

POWER UP(1)

1. After Vcc reaches Vcc(Min.), wait 200 μ s with $\overline{\text{CS}}1$ high. Then the device gets into the normal operation.

TIMING WAVEFORM OF POWER UP(2) (CS2 controlled)

POWER UP(2)

1. After Vcc reaches Vcc(Min.), wait 200µs with CS2 low. Then the device gets into the normal operation.

FUNCTIONAL DESCRIPTION

CS ₁	CS2	OE	WE	LB	UB	I/O1~8	I/O _{9~16}	Mode	Power
Н	X ¹⁾	High-Z	High-Z	Deselected	Standby				
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care.(Must be low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 2.5V	V
Power Dissipation	Pp	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Part Name	Function				
K1S3216B1C-FI70 K1S3216B1C-FI85	48-FBGA, 70ns, 1.8V/2.0V 48-FBGA, 85ns, 1.8V/2.0V				

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	1.7	1.8/2.0	2.1	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	1.4	-	Vcc+0.22)	V
Input low voltage	VIL	-0.23)	-	0.4	V

- 1. Ta=-40 to 85°C, otherwise specified.
- 2. Overshoot: Vcc+1.0V in case of pulse width ≤20ns.
- 3. Undershoot: -1.0V in case of pulse width ≤20ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

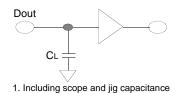
CAPACITANCE¹⁾(f=1MHz, Ta=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	ILI	Vin=Vss to Vcc	-1	-	1	μΑ
Output leakage current	ILO	CS1=VIH or CS2=VIL or OE=VIH or WE=VIL or LB=UB=VIH, VIO=Vss to Vcc	-1	-	1	μА
Average operating current	Icc1	Cycle time=1μs, 100% duty, Iιο=0mA, CS1≤0.2V, LB≤0.2V or/and UB≤0.2V, CS2≥Vcc-0.2V, Vιν≤0.2V or Vιν≥Vcc-0.2V	-	-	5	mA
Average operating current	ICC2	Cycle time=Min, IIo=0mA, 100% duty, $\overline{\text{CS}}$ 1=VIL, CS2=VIH LB=VIL or/and $\overline{\text{UB}}$ =VIL, VIN=VIH or VIL	-	-	30	mA
Output low voltage	Vol	IoL = 0.1mA	-	-	0.2	V
Output high voltage	Vон	Iон = -0.1mA	1.4	-	-	٧
Standby Current(CMOS)	ISB1	Other inputs=0~Vcc 1) \overline{CS} 1≥Vcc-0.2V, \overline{CS} 2≥Vcc-0.2V(\overline{CS} 1 controlled) or 2) $\overline{0}$ 1 \overline{CS} 2 $\overline{0}$ 2 $\overline{0}$ 3 $\overline{0}$ 4 $\overline{0}$ 5 $\overline{0}$ 7 $\overline{0}$ 7 $\overline{0}$ 8 $\overline{0}$ 9 $\overline{0}$	-	-	100	μА


AC OPERATING CONDITIONS

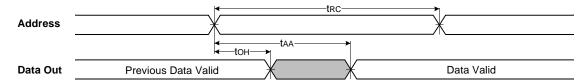
TEST CONDITIONS(Test Load and Test Input/Output Reference)

Input pulse level: 0.2 to Vcc-0.2V Input rising and falling time: 5ns

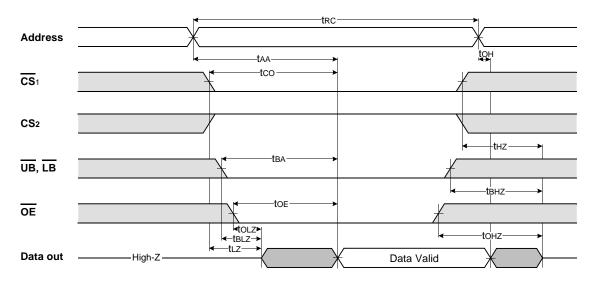
Input and output reference voltage: 0.5 x Vcc

Output load (See right): CL=50pF

AC CHARACTERISTICS(Vcc=1.7~2.1V, TA=-40 to 85°C)


			Speed Bins				
	Parameter List	Symbol	7	0ns	85	ns	Units
			Min	Max	Min	Max	
	Read Cycle Time	trc	70	-	85	-	ns
	Address Access Time	tAA	-	70	-	85	ns
	Chip Select to Output	tco	-	70	-	85	ns
	Output Enable to Valid Output	toE	-	35	-	40	ns
	UB, LB Access Time	tва	-	70	-	85	ns
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	ns
rtodd	UB, LB Enable to Low-Z Output	tBLZ	10	-	10	-	ns
	Output Enable to Low-Z Output	tolz	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	25	0	25	ns
	UB, LB Disable to High-Z Output	tвнz	0	25	0	25	ns
	Output Disable to High-Z Output	tonz	0	25	0	25	ns
	Output Hold from Address Change	tон	5	-	5	-	ns
	Write Cycle Time	twc	70	-	85	-	ns
	Chip Select to End of Write	tcw	60	-	70	-	ns
	Address Set-up Time	tas	0	-	0	-	ns
	Address Valid to End of Write	taw	60	-	70	-	ns
	UB, LB Valid to End of Write	tвw	60	-	70	-	ns
Write	Write Pulse Width	twp	55 ¹⁾	-	60 ¹⁾	-	ns
	Write Recovery Time	twr	0	-	0	-	ns
	Write to Output High-Z	twnz	0	25	0	25	ns
	Data to Write Time Overlap	tow	30	-	35	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	ns

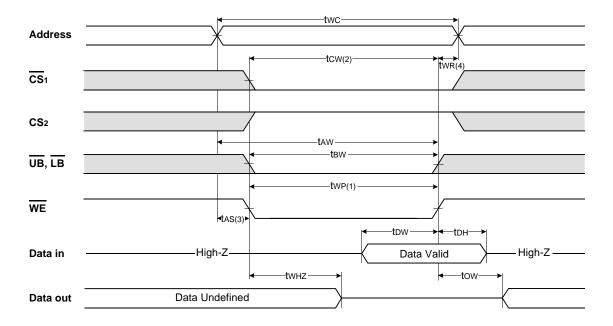
^{1.} tWP(min)=70ns for continuous write operation over 50 times.



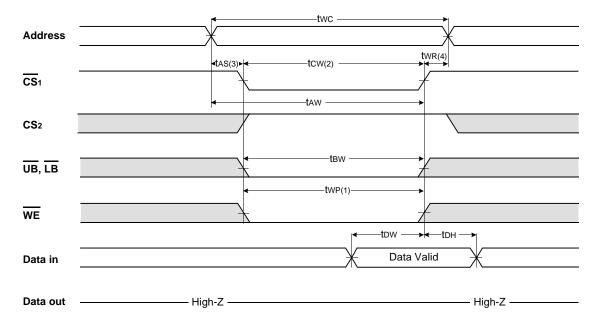
K1S3216B1C U*t*RAN

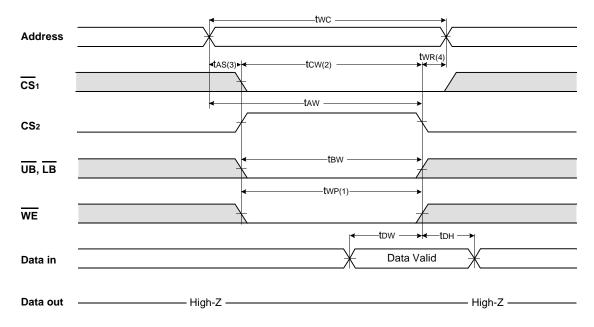
TIMING DIAGRAMS

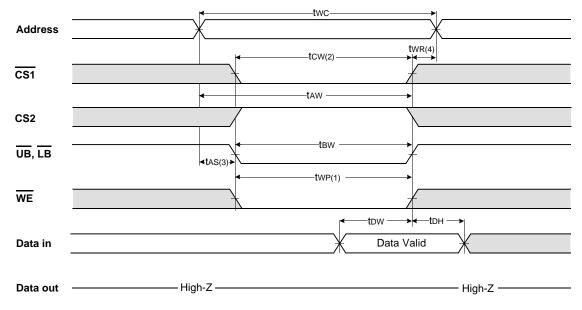
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.
- 3. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max).
- 4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us.


TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

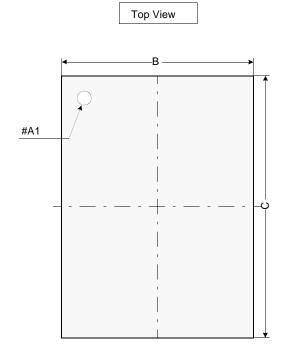

TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

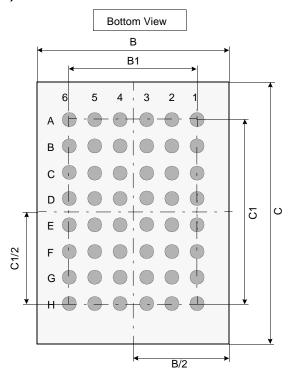
TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)

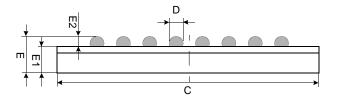
NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of low $\overline{CS1}$ and low \overline{WE} . A write begins when $\overline{CS1}$ goes low and \overline{WE} goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transfer sition when \overline{CS}_1 goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- tow is measured from the CS1 going low to the end of write.
 tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn is applied in case a write ends with $\overline{\text{CS}}$ 1 or $\overline{\text{WE}}$ going high.

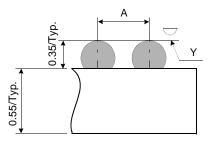



U*t*RAM

PACKAGE DIMENSION


Unit: millimeters

48 FINE PITCH BALL GRID ARRAY(0.75mm ball pitch)



Side View

	Min	Тур	Max
Α	-	0.75	-
В	5.90	6.00	6.10
B1	-	3.75	-
С	7.90	8.00	8.10
C1	-	5.25	-
D	0.40	0.45	0.50
Е	-	0.90	1.00
E1	-	0.55	-
E2	0.30	0.35	0.40
Υ	-	-	0.08

Detail A

Notes.

- 1. Bump counts: 48(8 row x 6 column)
- 2. Bump pitch : $(x,y)=(0.75 \times 0.75)(typ.)$
- 3. All tolerence are ± 0.050 unless specified beside figures.
- 4. Typ: Typical
- 5. Y is coplanarity: 0.08(Max)

