

SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

## **Applications**

- 802.11n, MIMO solutions
- IEEE802.11b DSSS WLAN
- IEEE802.11g OFDM WLAN
- IEEE802.11a OFDM WLAN
- Access Points, PCMCIA, PC cards

#### **Features**

- 1 Transmit and 1 receive path architecture for use as MIMO building block.
- All RF ports matched to 50 Ω
- Integrated 2.4/5 GHz PA, 2.4/5 GHz LNA, TX Filter, T/R switches and diplexers
- Integrated Power Detector
- 19 dBm O/P Power, 802.11b, 11 Mbits, ACPR = 32 dBc
- 18 dBm @ 3.0 % EVM, 802.11g, 54 Mbits
- 16 dBm @ 3.0 % EVM, 802.11a, 54 Mbits
- Single supply voltage: 3.3 V ± 10 %
- Lead free, halogen free, RoHS compliant, MSL3 plated LGA package, 5 mm x 6 mm x 1.0 mm

#### **Ordering Information**

| Part No.                          | Package Rema |                |
|-----------------------------------|--------------|----------------|
| SE2593A20                         | 30 pin LGA   | Samples        |
| SE2593A20-T *  * Through Dec 2008 | 30 pin LGA   | Tray           |
| SE2593A20-R * * From Jan 2009     | 30 pin LGA   | Tape and Reel  |
| SE2593A20-EK1                     | N/A          | Evaluation kit |

#### **Product Description**

The SE2593A20 is a complete 802.11n WLAN RF front-end module providing all the functionality of the power amplifiers, LNA, power detector, T/R switch, diplexers and associated matching. The SE2593A20 provides a complete 2.4 GHz and 5 GHz WLAN Multiple Input, Multiple Output (MIMO) RF solution from the output of the transceiver to the antennas in a compact form factor.

The receive path is designed to maximize performance by providing both a low noise amplifier as well as a bypass state, for use when high power signals are being received.

Designed for ease of use, all RF ports are matched to 50  $\Omega$  to simplify PCB layout and the interface to the transceiver RFIC. The SE2593A20 also includes a transmitter power detector for each band with 20 dB of dynamic range. The power ramp rise/fall time is less than 0.5  $\mu$ s.

The device also provides band pass filters for both the a and b/g bands prior to the input of each 2.4 GHz and 5 GHz power amplifiers, respectively.

The SE2593A20 packaged in 5mm x 6mm x 1.0mm, Halogen free, Lead free, ROHS compliant, MSL 3 LGA package.



SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

## **Functional Block Diagram**

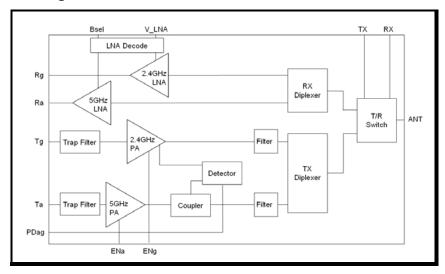



Figure 1: Functional Block Diagram



SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

## **Pin Out Diagram**

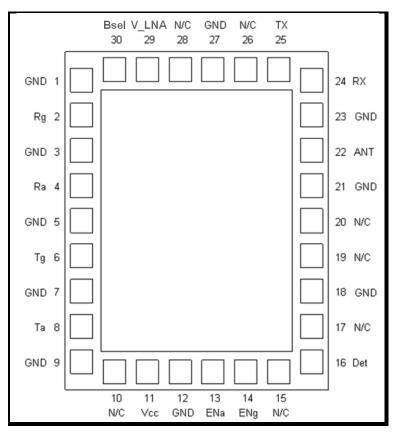



Figure 2: SE2593A20 Pin Out (Top View Through Package)

## **Pin Out Description**

| Pin No. | Name | Description            |
|---------|------|------------------------|
| 1       | GND  | Ground                 |
| 2       | Rg   | 2.4 GHz Receive Output |
| 3       | GND  | Ground                 |
| 4       | Ra   | 5 GHz Receive Output   |
| 5       | GND  | Ground                 |
| 6       | Tg   | 2.4 GHz Transmit Input |
| 7       | GND  | Ground                 |
| 8       | Та   | 5 GHz Transmit Input   |
| 9       | GND  | Ground                 |
| 10      | N/C  | Not used, floating PIN |
| 11      | VCC  | Supply Voltage         |
| 12      | GND  | Ground                 |

| Pin No. | Name | Description            |
|---------|------|------------------------|
| 13      | ENa  | 5 GHz PA Enable        |
| 14      | ENg  | 2.4 GHz PA Enable      |
| 15      | N/C  | Not used, floating PIN |
| 16      | Det  | Power Detector         |
| 17      | N/C  | Not used, floating PIN |
| 18      | GND  | Ground                 |
| 19      | N/C  | Not used, floating PIN |
| 20      | N/C  | Not used, floating PIN |
| 21      | GND  | Ground                 |
| 22      | ANT  | Antenna                |
| 23      | GND  | Ground                 |
| 24      | RX   | Rx Switch Select       |



## SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

| Pin No. | Name | Description            |
|---------|------|------------------------|
| 25      | TX   | Tx Switch Select       |
| 26      | N/C  | Not used, floating PIN |
| 27      | GND  | Ground                 |

| Pin No. | Name  | Description            |  |
|---------|-------|------------------------|--|
| 28      | N/C   | Not used, floating PIN |  |
| 29      | V_LNA | LNA Enable             |  |
| 30      | Bsel  | LNA Band Select        |  |

## **Absolute Maximum Ratings**

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

| Symbol | Definition                                   | Min. | Max. | Unit |
|--------|----------------------------------------------|------|------|------|
| Vcc    | Supply Voltage                               | -0.3 | 4.2  | V    |
| PU     | ENg, ENa, V_LNA, Bsel                        | -0.3 | 4.0  | V    |
| TXRF   | Ta, Tg, ANT terminated into $50\Omega$ match | -    | 10.0 | dBm  |
| TA     | T <sub>A</sub> Operating Temperature Range   |      | 85   | °C   |
| Тѕтс   | Storage Temperature Range                    | -40  | 150  | °C   |

## **Recommended Operating Conditions**

| Symbol | Parameter           | Min. | Тур. | Max. | Unit |
|--------|---------------------|------|------|------|------|
| Vcc    | Supply Voltage      | 3.0  | 3.3  | 3.6  | V    |
| TA     | Ambient Temperature | -10  | 25   | 85   | °C   |

#### **DC Electrical Characteristics**

Conditions: Vcc = 3.3 V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

| Symbol  | Parameter                                                 | Conditions                                                                                            | Min. | Тур. | Max. | Unit |
|---------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|
| Txlcc-g | Total 802.11g Transmit<br>Supply Current                  | $P_{OUT}$ = 17 dBm, 54 Mbps OFDM<br>signal, 64QAM,<br>ENg = 3.3 V, ENa = 0 V,<br>TX = 3.3 V, RX = 0 V | -    | 140  | 165  | mA   |
| TxIcq-G | Quiescent current ,<br>802.11g Transmit<br>supply Current | No RF applied<br>ENg = 3.3 V, ENa = 0 V,<br>TX = 3.3V, RX = 0 V                                       | -    | -    | 110  | mA   |
| TxIcc-A | Total 802.11a Transmit<br>Supply Current                  | $P_{OUT}$ = 17 dBm, 54 Mbps OFDM<br>signal, 64QAM, ENa = 3.3 V,<br>ENg = 0 V,<br>TX = 3.3 V, RX = 0 V | -    | 180  | 200  | mA   |
| TxIcq-A | Quiescent current,                                        | No RF applied                                                                                         | -    | -    | 160  | mA   |



## SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

| Symbol  | Parameter                                    | Conditions                                            | Min. | Тур. | Max. | Unit |
|---------|----------------------------------------------|-------------------------------------------------------|------|------|------|------|
|         | 802.11a Transmit supply Current              | ENa = 3.3V, ENg = 0V,<br>TX = 3.3V, RX = 0V           |      |      |      |      |
| RxIcc-G | Total 802.11b/g<br>Receive Supply<br>Current | V_LNA = 3.3 V, Bsel = 3.3 V,<br>RX = 3.3 V, TX = 0 V  | -    | 8.5  | 15   | mA   |
| RxIcc-a | Total 802.11a Receive Supply Current         | V_LNA = 3.3 V, Bsel = 0 V,<br>RX = 3.3 V, TX = 0 V    | -    | 8.5  | 15   | mA   |
| Icc_off | Total Supply Current                         | No RF, ENg = ENa = 0 V,<br>V_LNA = 0 V, TX = RX = 0 V | -    | 2    | 10   | μΑ   |

## **Transmit Power Amplifier Logic Characteristics**

Conditions: Vcc = 3.3 V,  $Ta = 25 ^{\circ}C$ , as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (de-

embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

| Symbol | Parameter                                      | Conditions | Min. | Тур. | Max. | Unit |
|--------|------------------------------------------------|------------|------|------|------|------|
| Venh   | Logic High Voltage for ENg,<br>ENa (Module On) | -          | 2.0  | -    | Vcc  | V    |
| VENL   | Logic Low Voltage ENg,<br>ENa (Module Off)     | -          | 0    | -    | 0.5  | V    |
| lenh   | Input Current Logic High<br>Voltage (ENg, ENa) | -          | -    | 100  | 150  | μΑ   |
| lenl   | Input Current Logic Low<br>Voltage (ENg, ENa)  | -          | -    | 0.2  | -    | μA   |

## **Receive LNA Logic Characteristics**

Conditions: Vcc = 3.3 V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

| Symbol | Parameter                                         | Conditions | Min. | Тур. | Max. | Unit |
|--------|---------------------------------------------------|------------|------|------|------|------|
| VRENH  | Logic High Voltage for V_LNA, Bsel (Module On)    | -          | 2.5  | -    | Vcc  | V    |
| VRENL  | Logic Low for V_LNA, Bsel<br>(Module Off)         | -          | -0.5 | -    | 0.3  | V    |
| IRENH  | Input Current Logic High<br>Voltage (V_LNA, Bsel) | -          | -    | 1    | 2    | μΑ   |
| IRENL  | Input Current Logic Low<br>Voltage (V_LNA, Bsel)  | -          | -    | 0    | -    | μΑ   |

| LNA Enable Logic | LNA Function | Comment |
|------------------|--------------|---------|
|------------------|--------------|---------|



# SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

| V_LNA | Bsel  | 2.4 GHz LNA | 5 GHz LNA   |                                                                            |
|-------|-------|-------------|-------------|----------------------------------------------------------------------------|
| VRENL | VRENL | Bypass Mode | Bypass Mode | No gain in either path. This can be used for high input signal conditions. |
| VRENL | VRENH | Bypass Mode | Bypass Mode | No gain in either path. This can be used for high input signal conditions. |
| VRENH | VRENL | Off         | On          | Activates a-band LNA                                                       |
| VRENH | VRENH | On          | Off         | Activates bg-band LNA                                                      |

#### **RF Switch Characteristics**

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

| Symbol   | Parameter                                | Conditions                                          | Min. | Тур. | Max. | Unit |
|----------|------------------------------------------|-----------------------------------------------------|------|------|------|------|
| Vctl_on  | Control Voltage<br>(On State)            | -                                                   | 3.0  | -    | 3.6  | V    |
| VCTL_OFF | Control Voltage<br>(OFF State)           | -                                                   | 0.0  | -    | 0.2  | V    |
| SWon     | Low Loss Switch Control<br>Voltage       | High State = Vctl_on - Vctl_off                     | 2.8  | -    | Vcc  | V    |
| SWoff    | High Loss Switch Control Voltage         | Low State = Vctl_off - Vctl_off                     | 0    | 1    | 0.3  | V    |
| ICTL_ON  | Switch Control Bias Current (RF Applied) | On pin (TX, RX)<br>being driven high.<br>RF Applied | -    | -    | 100  | μΑ   |
| ICTL_ON  | Switch Control Bias Current<br>(No RF)   | On pin (TX, RX)<br>being driven high.<br>No RF      | -    | -    | 30   | μА   |
| Ссть     | Control Input Capacitance                | -                                                   | -    | -    | 100  | pF   |

| RF Swit | ch Logic | RF Switch    | n Function   |
|---------|----------|--------------|--------------|
| CTRL_T  | CTRL_R   | Tg, Ta – ANT | Rg, Ra – ANT |
| SWon    | SWoff    | ON           | OFF          |
| SWoff   | SWon     | OFF          | ON           |



7

## **DATA SHEET**

SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

## 2.4 GHz AC Electrical Characteristics

#### 2.4 GHz Transmit Characteristics

Conditions: Vcc = 3.3 V, ENg = TX = 3.3 V, V\_LNA = ENa = RX = 0 V, TA = 25 °C, as measured on Skyworks

Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

| Symbol               | Parameter                                | Condition                                                               | Min.                                                        | Тур. | Max.              | Unit    |
|----------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|------|-------------------|---------|
| Fin                  | Frequency Range                          | -                                                                       | 2400                                                        | -    | 2500              | MHz     |
| P <sub>802.11g</sub> | Output power                             | 54 Mbps OFDM signal,<br>64QAM, EVM ≤ 3.0 %                              | 17                                                          | 18   | -                 | dBm     |
| Р802.11Ь             | Output power                             | 11 Mbps CCK signal,<br>BT = 0.45<br>ACPR(Adj) < -32<br>ACPR(Alt) < -52  | 19                                                          | 20   | -                 | dBm     |
| BEVM                 | Backed Off EVM                           | 54 Mbps, OFDM signal,<br>64 QAM, P = 12 dBm                             | -                                                           | 1.5  | -                 | %       |
| P <sub>1dB</sub>     | P1dB                                     | -                                                                       | -                                                           | 25   | -                 | dBm     |
| <b>S</b> 21          | Small Signal Gain                        | 2400 – 2485 MHz<br>960 – 1600 MHz<br>1600 – 1660 MHz<br>3260 – 3267 MHz | 23<br>-<br>-<br>-                                           |      | 30<br>0<br>0<br>2 | dB      |
| Δ\$21                | Small Signal Gain<br>Variation Over Band | Over any 40 MHz band                                                    | -                                                           | -    | 0.5               | dB      |
| 2f,3f                | Harmonics                                | Pout = 18 dBm, 1 Mbps,<br>802.11b CCK                                   | -                                                           | -50  | -45.2             | dBm     |
| 21,31                | Haimonics                                | Pout = 17 dBm, 54Mbps<br>OFDM signal                                    |                                                             | -55  | -48.2             | авііі   |
| NF                   | Noise Figure                             | Pout < 20 dBm                                                           | -                                                           | ı    | 10                | dB      |
| tr                   | Rise Time                                | 10 % to 90% of final output power level                                 | -                                                           | -    | 0.5               | μs      |
| tdr, tdf             | Delay and rise/fall<br>Time              | 50 % of VEN edge and 90/10 % of final output power level                | -                                                           | -    | 0.5               | μs      |
| S <sub>11</sub>      | Input Return Loss                        | -                                                                       | 10                                                          | -    | -                 | dB      |
| Spur                 | Spurious                                 | Pout < 20 dBm, VSWR = 2:1 100 MHz to 10 GHz                             | -                                                           | -    | -45               | dBm/MHz |
| STAB                 | Stability                                | Pout ≤ PSAT<br>Load VSWR = 10:1                                         | All non-harmonically related outputs less than -50 dBc/1MHz |      | outs less than    |         |



SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

#### 2.4 GHz Receive Characteristics

Conditions: VCC = V\_LNA = Bsel = RX = 3.3V, ENg = ENa = TX = 0 V, TA = 25 °C, as measured on Skyworks

Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

| Symbol              | Parameter                    | Condition                                                                                  | Min.                   | Тур.                   | Max.                        | Unit |
|---------------------|------------------------------|--------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------------|------|
| Fouт                | Frequency Range              | -                                                                                          | 2400                   | -                      | 2500                        | MHz  |
| <b>S</b> 21         | Receive Gain, LNA enabled.   | 2400 – 2485 MHz<br>800 – 1200 MHz<br>1200 – 1700 MHz<br>1700 – 1900 MHz<br>3200 – 6000 MHz | 11<br>-<br>-<br>-<br>- | 13<br>-<br>-<br>-<br>- | -<br>-10<br>3<br>+10<br>+10 | dB   |
|                     | Receive Gain,<br>Bypass mode | V_LNA = 0 V<br>2400 – 2485 MHz                                                             | -                      | -7                     | -                           | dB   |
| Δ\$21               | Gain Variation               | 2400 – 2485 MHz, Over<br>any 40MHz band                                                    | -                      | -                      | .5                          | dB   |
| NF                  | Noise Figure                 |                                                                                            | -                      | 2.6<br>7               | 2.8<br>-                    | dB   |
| IIP3                | Third Order Intercept        |                                                                                            | -                      | TBD                    | -                           | dBm  |
| ISOL <sub>RRX</sub> | Reverse Isolation            | V_LNA = 0V, RX = 0 V                                                                       | -                      | -23                    | -                           | dB   |
| INT                 | Interferer                   | With this input , IIP3 can only degrade by 1dB                                             | -10                    | -                      | -                           | dBm  |
| S <sub>11</sub>     | Input Return Loss            | -                                                                                          | 10                     | 12                     | -                           | dB   |
| IP1dB               | Input P1dB                   | V_LNA = 3.3 V<br>V_LNA = 0 V                                                               | -                      | -5<br>8                | -3.5<br>-                   | dBm  |
| T <sub>EN</sub>     | Enable Time                  | 10% to 90% of RX RF<br>power, from time that<br>V_LNA is at 50%                            |                        |                        | 500                         | nsec |

#### **5 GHz AC Electrical Characteristics**

#### **5 GHz Transmit Characteristics**

Conditions: VCC = 3.3 V, ENa = TX = 3.3 V, V\_LNA = ENg = RX = 0 V, TA = 25 °C, as measured on Skyworks

Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

| Symbol               | Parameter            | Condition                                   | Min. | Тур. | Max. | Unit |
|----------------------|----------------------|---------------------------------------------|------|------|------|------|
| Fin                  | Frequency Range      | -                                           | 4900 | -    | 5850 | MHz  |
| P <sub>802.11a</sub> | Nominal Output Power | 54 Mbps OFDM signal, 64<br>QAM, EVM = 3.0 % | -    | 16   | -    | dBm  |
| BEVM                 | Backed Off EVM       | 54 Mbps, OFDM signal,<br>64 QAM, P = 7 dBm  | -    | 1.5  | -    | %    |



## SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

| Symbol           | Parameter                            | Condition                                                                                                     | Min.                        | Тур.                                 | Max.                      | Unit           |
|------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|---------------------------|----------------|
| P <sub>1dB</sub> | P1DB                                 | -                                                                                                             | -                           | 22                                   | -                         | dBm            |
| S <sub>21</sub>  | Small Signal Gain                    | 4900 – 5850 MHz<br>960 – 3265 MHz<br>3265 – 3900 MHz<br>6900 – 7250 MHz<br>7250 – 7800 MHz<br>7800 – 8500 MHz | 22<br>-<br>-<br>-<br>-<br>- | -<br>-30<br>-10<br>-10<br>-12<br>-10 | 28<br>10<br>5<br>3<br>-10 | dB             |
| ΔS <sub>21</sub> | Small Signal Gain Variat             | ion Over 40 MHz Channel                                                                                       | -                           | -                                    | 0.4                       | dB             |
| Δ321             | Small Signal Gain Variat             | ion Over Band                                                                                                 | -                           | -                                    | 3                         | dB             |
| 2f,3f            | Harmonics, 54Mbps,<br>802.11a signal | Pout = 16dBm<br>4900 – 5150 MHz<br>5150 – 5850 MHz                                                            |                             | -45<br>-50                           | -42<br>-48                | dBm/MHz        |
| NF               | Noise Figure                         | Pout < 16 dBm<br>4900 – 5850 MHz                                                                              | -                           | TBD                                  | 10                        | dB             |
| tr               | Rise Time                            | 10 % to 90% of final output power level                                                                       | -                           | -                                    | 0.8                       | μs             |
| tdr, tdf         | Delay and rise/fall<br>Time          | 50 % of Ven edge and 90/10 % of final output power level                                                      | -                           | -                                    | 0.5                       | μs             |
| S <sub>11</sub>  | Input Return Loss                    | -                                                                                                             | 10                          | -                                    | -                         | dB             |
| SPUR             | Spurious                             | Pout < 16dBm, VSWR = 2:1, 100 – 24000 MHz                                                                     | -                           | -                                    | -45                       | dBm/MHz        |
| STAB             | Stability                            | Pout ≤ 18 dBm<br>Load VSWR = 10:1                                                                             | All non-ha                  |                                      | related outp              | outs less than |

#### **5 GHz Receive Characteristics**

Conditions: VCC = V\_LNA = RX = 3.3 V, Bsel = ENg = ENa = TX = 0 V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

| Symbol | Parameter                    | Condition                                                               | Min.        | Тур.                 | Max.                | Unit |
|--------|------------------------------|-------------------------------------------------------------------------|-------------|----------------------|---------------------|------|
| Fouт   | Frequency Range              | -                                                                       | 4900        | 1                    | 5850                | MHz  |
| S21    | Receive Gain                 | 4900 – 5850 MHz<br>800 – 2500 MHz<br>2500 – 3900 MHz<br>6500 – 7800 MHz | -<br>-<br>- | 12<br>-10<br>6<br>11 | -<br>-5<br>10<br>12 | dB   |
|        | Receive Gain,<br>Bypass mode | V_LNA = 0.0 V                                                           | -           | -7                   | -                   | dB   |
| Δ\$21  | Gain Variation               | 4900 – 5850 MHz, Over<br>any 40MHz band                                 | -           | -                    | 0.5                 | dB   |
| NF     | Noise Figure                 |                                                                         | -           | 2.8                  | 3.2                 | dB   |



# SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

| Symbol              | Parameter             | Condition                                                 | Min. | Тур.     | Max. | Unit |
|---------------------|-----------------------|-----------------------------------------------------------|------|----------|------|------|
| IIP3                | Third Order Intercept |                                                           | -    | TBD      | -    | dBm  |
| ISOL <sub>RRX</sub> | Reverse Isolation     | V_LNA = 0V, RX = 0V                                       | -    | 20       | 1    | dB   |
| INT                 | Interferer            | With this input IIP3 can only degrade by 1dB              | -10  | -        | -    | dBm  |
| S <sub>11</sub>     | Return Loss           | -                                                         | 8    | 12       | -    | dB   |
| IP1dB               | Input P1dB            | V_LNA = 3.3 V<br>V_LNA = 0 V                              | -    | -3<br>10 | -    | dBm  |
| T <sub>EN</sub>     | Enable Time           | 10% to 90% of RX RF power, from time that V_LNA is at 50% |      |          | 500  | nsec |

#### 2.4 GHz Power Detector Characteristics

Conditions: Vcc = 3.3 V, ENg = TX = 3.3 V, LNAa = LNAg = RX = ENa = 0 V, TA = 25 °C, as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

| Symbol             | Parameter                                                | Condition                            | Min. | Тур. | Max. | Unit |
|--------------------|----------------------------------------------------------|--------------------------------------|------|------|------|------|
| Fouт               | Frequency Range                                          | -                                    | 2400 | -    | 2500 | MHz  |
| PDR                | Power detect range, peak power                           | Measured at ANT                      | 0    | -    | 22   | dBm  |
| PDZLOAD            | DC load impedance                                        | -                                    | -    | 2.7  | 3    | kΩ   |
| PDV <sub>P17</sub> | Output Voltage, Pout = 21 dBm                            | -                                    | -    | -    | 1.0  | V    |
| PDV <sub>p0</sub>  | Output Voltage, Pout = 5 dBm                             | -                                    |      | 0.35 | -    | V    |
| PDVpnoRF           | Output Voltage, Pout = No RF                             | -                                    | -    | 0.32 | -    | V    |
| LPF-3dB            | Power detect low pass<br>filter -3dB corner<br>frequency | Load = high impedance<br>Typ: 500 kΩ | 270  | 300  | 400  | KHz  |



SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

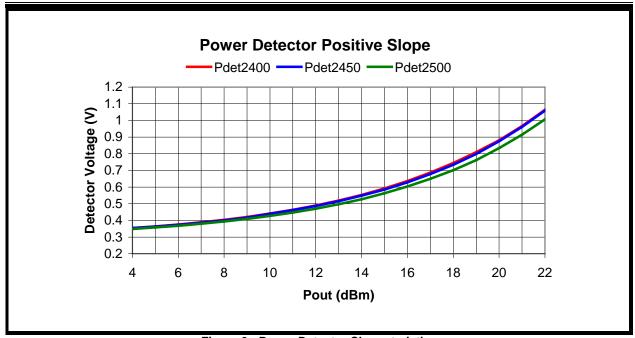



Figure 3: Power Detector Characteristics

#### **5 GHz Power Detector Characteristic**

Conditions: Vcc = 3.3 V, ENa = TX = 3.3 V, LNAa = LNAg = RX = ENg = 0 V,  $TA = 25 \,^{\circ}\text{C}$ , as measured on Skyworks Solutions' SE2593A20-EV1 evaluation board (de-embedded to device), all unused ports

terminated with 50 ohms, unless otherwise noted.

| Symbol             | Parameter                                                | Condition                            | Min. | Тур. | Max. | Unit |
|--------------------|----------------------------------------------------------|--------------------------------------|------|------|------|------|
| Fouт               | Frequency Range                                          | -                                    | 4900 | -    | 5850 | MHz  |
| PDR                | Power detect range, peak power                           | Measured at ANT                      | 0    | -    | 20   | dBm  |
| PDZLOAD            | DC load impedance                                        | -                                    | -    | 2.7  | 3    | kΩ   |
| PDV <sub>P17</sub> | Output Voltage, Pout = 17 dBm                            | -                                    | -    | -    | 1.0  | V    |
| PDV <sub>p0</sub>  | Output Voltage, Pout = 3 dBm                             | -                                    | -    | 0.35 | -    | ٧    |
| PDVpnoRF           | Output Voltage, Pout = No RF                             | -                                    | -    | 0.32 | -    | V    |
| LPF-3dB            | Power detect low pass<br>filter -3dB corner<br>frequency | Load = high impedance<br>Typ: 500 kΩ | 270  | 300  | 400  | KHz  |



# **DATA SHEET**SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

Power Detector Positive Slope

4920 MHz — 5320 MHz — 5810 MHz

2.50

2.00

1.50

0.50

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Pout (dBm)



SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

## Package Diagram

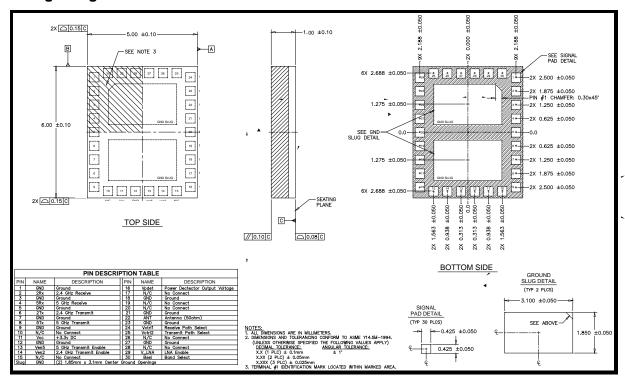



Figure 4: Package Outline Drawing



# SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

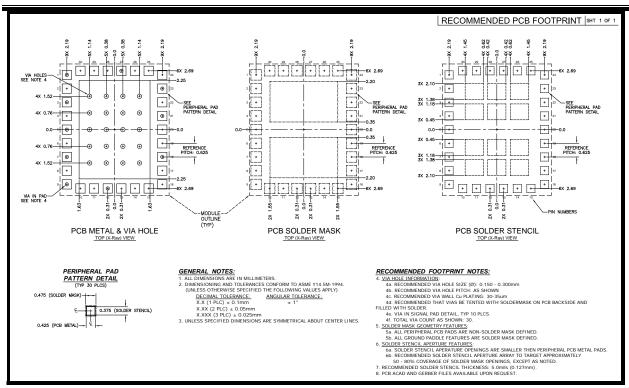



Figure 5: Recommended Land and Solder Patterns

#### **Package Handling Information**

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2593A20 is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended, please refer to:

- "Land Grid Array Module Solder Reflow & Rework Information", Document Number QAD-00046.
- "Handling, Packing, Shipping and Use of Moisture Sensitive LGA", Document Number QAD-00047.





SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

## **Branding Information**

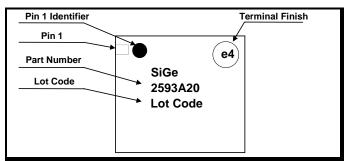



Figure 6: SE2593A20 Branding Information

## Tray Information - Available until Dec 2008

| Tray Matrix (Devices) | Devices per Tray | Trays per stack | Devices per stack |
|-----------------------|------------------|-----------------|-------------------|
| 14 x 35               | 490              | 10 + 1(empty)   | 4,900             |

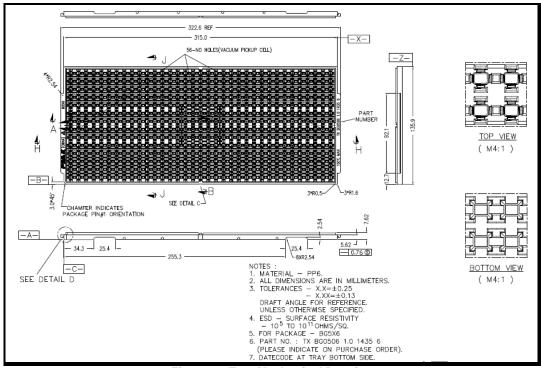



Figure 6: Tray Mechanical Drawing



## SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

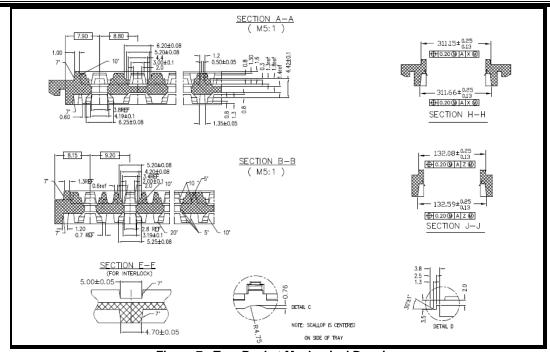



Figure 7: Tray Pocket Mechanical Drawing

#### Tape and Reel Information - Available from Jan 2009

| Parameter        | Value          |
|------------------|----------------|
| Devices per Reel | 3,000          |
| Reel Diameter    | 13 Inches      |
| Tape Width       | 12 millimetres |



## SE2593A20: Dual-Band 802.11n Wireless LAN Front-End

**Preliminary Information** 

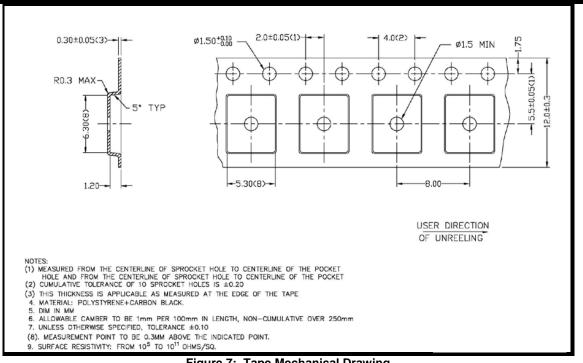



Figure 7: Tape Mechanical Drawing

#### **Document Change History**

| Revision | Date             | Notes                                                                                                                                                                                                                                                                                                                                              |
|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0      | November 9, 2006 | Create                                                                                                                                                                                                                                                                                                                                             |
| 1.1      | February 8, 2007 | Standardize Pin Naming.                                                                                                                                                                                                                                                                                                                            |
| 1.2      | March 28, 2007   | Update 5GHz detector characteristics                                                                                                                                                                                                                                                                                                               |
| 1.3      | March 28, 2007   | Updated package thickness                                                                                                                                                                                                                                                                                                                          |
| 1.4      | June 29, 2007    | Modify LNA controls from LNAg & LNAa to BSEL & V_LNA.  Updated current consumption in 2GHz and 5GHz TX channels  Updated spurious rejection specifications in 2GHz and 5GHz TX channels  Updated noise figure specification in 2GHz and 5GHz RX channels.  Updated gain profiles in 2GHz and 5GHz RX chains  Updated 5GHz detector characteristics |
| 1.5      | August 23, 2007  | Updated schematic                                                                                                                                                                                                                                                                                                                                  |
| 1.6      | January 28, 2008 | Updated product name from SE2593A to SE2593A20. Updated quiescent current in 2GHz and 5GHz TX chains. Added shipping tray information                                                                                                                                                                                                              |
| 1.7      | March 5, 2008    | Updated harmonics specification in 2GHz TX chain.                                                                                                                                                                                                                                                                                                  |
| 1.8      | April 15, 2008   | Add 5GHz detector plot Update tray specification and MOQ                                                                                                                                                                                                                                                                                           |
| 1.9      | Jun 15, 2008     | Updated packaging for halogen free                                                                                                                                                                                                                                                                                                                 |



# SE2593A20: Dual-Band 802.11n Wireless LAN Front-End Preliminary Information

| Revision | Date         | Notes                                                                                                                 |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------|
|          |              | Updated to include recommended land patterns, solder patterns.                                                        |
| 2.0      | Sep 24, 2008 | Updated for 3.2GHz LO gain in the 2GHz channel Added Tape and Reel Packing information and discontinued Tray Packing. |
| 2.1      | May 26, 2009 | Amended back page.                                                                                                    |
| 2.2      | Mar 28, 2012 | Updated with Skyworks logo and disclaimer statement                                                                   |

#### Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.