

PRELIMINARY DATA SHEET

SKY65172: 400-2700 MHz Variable Gain Amplifier

Applications

- GSM/EDGE, CDMA2000, WCDMA, LTE, TD-SCDMA cellular base station systems
- Repeaters
- WLL and ISM band transmitters
- Other wireless communication systems

Features

- Wideband frequency range: 400 to 2700 MHz
- Two variable attenuators: one analog with 25 dB continuous range; one digital with 31.5 dB range in 0.5 dB steps
- On-die serial to parallel interface converter
- High linearity OIP3: cascaded +38 dBm
- Gain: 26.5 dB
- Single DC supply: +5 V
- On-chip active bias circuits
- Small, low-cost MCM (48-pin, 7 x 7 mm) SMT package (MSL3, 260 °C per JEDEC J-STD-020)

Skyworks offers lead (Pb)-free RoHS (Restriction of Hazardous Substances) compliant packaging.

Description

Skyworks SKY65172 is a high performance, wideband Variable Gain Amplifier (VGA) with two Power Amplifiers (PAs), a Voltage Controlled Attenuator (VCA), and a Digital Step Attenuator (DSA) integrated into a small form factor module. The input and output stages are independently accessible for maximum flexibility.

The output of the first PA (AMP1) is externally matched to the input of the VCA. The output of the VCA is externally matched to the input of the second PA (AMP2). The output of the second PA is externally matched to the input of the DSA.

The SKY65172 VGA uses low-cost Surface Mount Technology (SMT) in the form of a compact, 7 x 7 mm 48-pin Multi-Chip Module (MCM). A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Figure 1. SKY65172 Block Diagram

Figure 2. SKY65172 Pinout – 48-Pin MCM (Top View)

Table 1. SKY65172 Signal Descriptions

Pin #	Name	Description	Pin #	Name	Description
1	GND	Ground	25	FB2	AMP2 bias control
2	AMP1_IN	AMP1 RF input	26	VCC_AMP2	AMP2 supply voltage
3	Y1	AMP1 bias node	27	AMP2_OUT	AMP2 RF output
4	BYP1	AMP1 bypass	28	GND	Ground
5	GND	Ground	29	GND	Ground
6	FB1	AMP1 bias control	30	GND	Ground
7	VCC_AMP1	AMP1 supply voltage	31	DSA_IN	DSA RF input
8	AMP1_OUT	AMP1 RF output	32	GND	Ground
9	GND	Ground	33	GND	Ground
10	VCA_IN	VCA RF input	34	GND	Ground
11	GND	Ground	35	DSA_OUT	DSA RF output
12	GND	Ground	36	GND	Ground
13	GND	Ground	37	GND	Ground
14	VDD_CTRL	VCA control voltage	38	GND	Ground
15	GND	Ground	39	CLK	SPI clock
16	VDD3	VCA supply voltage	40	DATA	SPI data
17	GND	Ground	41	LE	SPI latch enable
18	VCA_OUT	VCA RF output	42	GND	Ground
19	GND	Ground	43	GND	Ground
20	GND	Ground	44	GND	Ground
21	GND	Ground	45	VDD2	DSA supply voltage
22	AMP2_IN	AMP2 RF input	46	GND	Ground
23	Y2	AMP2 bias node	47	VDD1	SPI supply voltage
24	BYP2	AMP2 bypass	48	GND	Ground

Functional Description

Control and Programming

The serial I/O control interface consists of the CLK, LE, and DATA control signals. A three-wire serial bus is used to program the 6-bit digital attenuator. The attenuation logic is shown in Table 2. The resolution or minimum step is 0.5 dB. The serial input timing diagram is shown in Figure 3.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY65172 are provided in Table 3. The recommended operating conditions are specified in Table 4 and electrical specifications are provided in Table 5.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

THE SKY65172 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *PCB Design & SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format. For packaging details, refer to the Skyworks Application Note, *Tape and Reel*, document number 101568.

Table 2. Digital Attenuator Logic

Attenuation Value	Bits							
(dB)	D5	D4	D3	D2	D1	DO		
0	0	0	0	0	0	0		
0.5	0	0	0	0	0	1		
1.0	0	0	0	0	1	0		
2.0	0	0	0	1	0	0		
4.0	0	0	1	0	0	0		
8.0	0	1	0	0	0	0		
16.0	1	0	0	0	0	0		
31.5	1	1	1	1	1	1		

Figure 3. SKY65172 Serial Input Timing Diagram

Table 3. SKY65172 Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage	Vcc	4.75	5.25	V
Supply current	lcc		*** TBD ***	mA
Input power	Рім		*** TBD ***	dBm
Operating case temperature	Tc	-40	+85	°C
Storage case temperature	Тѕтс	-40	+125	°C
Junction temperature	TJ		+150	°C

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value.

CAUTION: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 4. SKY65172 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply voltage	Vcc	4.75	5.00	5.25	V
Frequency range	f	400		2700	MHz
Operating case temperature	Tc	-40		+85	°C

Table 5. SKY65172 Electrical Specifications (1 of 3) (Note 1) (Vcc = 4.75 to 5.25 V, Tc = +25 °C, Unless Otherwise Noted)

Parameter Symbol **Test Condition** Min Typical Мах Units General Frequency range 400 2700 MHz Return loss RL -10 -15 dB Supply current lcc 340 mΑ Isolation AMP1 out to VCA out 45 dB AMP1 out to DSA out 60 dB AMP2 out to DSA out 55 dB AMP1 Input to AMP1 Output Noise Figure NFAMP1 0.4 to 1.0 GHz 6 dB 1.4 to 2.2 GHz 5 dB 2.2 to 2.7 GHz 5 dB Gain G_AMP1 0.4 to 1.0 GHz 16.0 dB 1.4 to 2.2 GHz dB 15.5 2.2 to 2.7 GHz 15.0 dB Gain flatness (with every 200 MHz in each GFLAT_AMP1 0.4 to 1.0 GHz 1 dB frequency band) 1.4 to 2.2 GHz 1 dB 2.2 to 2.7 GHz 1 dB

Table 5. SKY65172 Electrical Specifications (2 of 3) (Note 1) (Vcc = 4.75 to 5.25 V, Tc = +25 °C, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Мах	Units
AMP1 Input to AMP1 Output (Continued)						
Gain variation over temperature	GTEMP_AMP1	−40 °C ~ +25 °C		+0.02		dB/°C
		+25 °C ~ +85 °C		-0.02		dB/°C
1 dB Output Compression Point	OP1dBamp1	0.4 to 1.0 GHz		+24.5		dBm
		1.4 to 2.2 GHz		+24.5		dBm
		2.2 to 2.7 GHz		+24.5		dBm
3 rd Order Output Intercept Point	OIP3amp1	0.4 to 1.0 GHz		+41.0		dBm
		1.4 to 2.2 GHz		+41.0		dBm
		2.2 to 2.7 GHz		+40.5		dBm
VCA Input to VCA Output						
Insertion loss	ILvca			2.5		dB
VCA gain control range	Grange_vca			25		dB
Control voltage range	VCTRL_VCA		0.5		4.5	V
Attenuation slope	Slope_vca			40		dB/V
1 dB Input Compression Point	IP1dBvca			+25		dBm
3 rd Order Input Intercept Point	IIP3vca	$P_{IN} = +2 \text{ dBm},$		+41		dBm
		f = 10 MHz				
AMP2 Input to AMP2 Output			T	1		T
Noise Figure	NFamp2	0.4 to 1.0 GHz		6.0		dB
		1.4 to 2.2 GHz		5.0		dB
		2.2 to 2.7 GHz		5.0		dB
Gain	Gamp2	0.4 to 1.0 GHz		16.0		dB
		1.4 to 2.2 GHz		15.5		dB
		2.2 to 2.7 GHz		15.0		dB
Gain flatness (with every 200 MHz in each	GFLAT_AMP2	0.4 to 1.0 GHz		1		dB
		1.4 to 2.2 GHz		1		dB
		2.2 to 2.7 GHz		1		dB
Gain variation over temperature	GTEMP_AMP2	−40 °C ~ +25 °C		+0.035		dB/°C
	_	+25 °C ~ +85 °C		-0.050		dB/°C
1 dB Output Compression Point	OP1dBamp2	0.4 to 1.0 GHz		+24.5		dBm
		1.4 to 2.2 GHz		+24.5		dBm
		2.2 to 2.7 GHz		+24.5		dBm
3 rd Order Output Intercept Point	OIP3amp2	0.4 to 1.0 GHz		+41.0		dBm
		1.4 to 2.2 GHz		+41.0		dBm
		2.2 to 2.7 GHz		+40.5		dBm
DSA Input to DSA Output			1			
Insertion loss	ILdsa	0.4 to 1.0 GHz		1.5		dB
		1.4 to 2.2 GHz		1.8		dB
		2.2 to 2.7 GHz		2.0		dB
DSA gain control range	GRANGE_DSA			31.5		dB

Table 5. SKY65172 Electrical Specifications (3 of 3) (Note 1)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
DSA Input to DSA Output (Continued)						
DSA step size	GSTEP			0.5		dB
Attenuation accuracy				±(0.3 + 5% × atten)		dB
1 dB Input Compression Point	IP1dBdsa			+28		dBm
3 rd Order Input Intercept Point	IIP3dsa			+48		dBm
Switching speed (50% control to 0.5 dB of attenuation value)				1		μs
Switching control frequency					25	kHz
Serial Interface						
SPI clock speed	Clk				10	MHz
Clock high time	tclk_H		30			ns
Clock low time	tclk_l		30			ns
Clock-to-load-enable set-up time	tlesup		10			ns
Load-enable pulse width	tlepw		10			ns
Data setup to clock rise	tsdsup		10			ns
Data hold from clock rise	tsdhld		10			ns
Input low voltage	VIL				0.9	V
Input high voltage	Vih		2.1			V

 $(Vcc = 4.75 \text{ to } 5.25 \text{ V}, Tc = +25 ^{\circ}C, \text{ Unless Otherwise Noted})$

Note 1: Performance is guaranteed only under the conditions listed in this Table.

Evaluation Board Description

The SKY65172 Evaluation Board is used to test the performance of the SKY65172 VGA. The Evaluation Board schematic diagram is shown in Figure 4. An assembly drawing for the Evaluation Board is shown in Figure 5 and the layer detail is provided in Figure 6.

Circuit Design Configurations

The following design considerations are general in nature and must be followed regardless of final use or configuration:

- 1. Paths to ground should be made as short as possible.
- 2. The ground pad of the SKY65172 has special electrical and thermal grounding requirements. This pad is the main thermal conduit for heat dissipation. Since the circuit board acts as the heat sink, it must shunt as much heat as possible from the device. Therefore, design the connection to the ground pad to dissipate the maximum wattage produced by the circuit board. Multiple vias to the grounding layer are required.
- 3. Skyworks recommends including external bypass capacitors on the VCC voltage inputs of the device.

Testing Procedure

Use the following procedure to set up the SKY65172 Evaluation Board for VGA testing:

1. *** TBD ***

Package Dimensions

Figure 7 shows the package dimensions for the 48-pin MCM and Figure 8 provides the tape and reel dimensions.

*** TBD ***

Figure 4. SKY65172 Evaluation Board Schematic

*** TBD ***

Figure 5. SKY65172 Evaluation Board Assembly Drawing

Figure 6. SKY65172 Evaluation Board Layer Detail

*** TBD ***

9

All measurements are in millimeters

Dimensioning and tolerancing according to ASME Y14.5M-1994

Figure 8. SKY65172 Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Kit Part Number
SKY65172 400-2700 MHz Variable Gain Amplifier	SKY65172	*** TBD ***

Copyright © 2010 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.