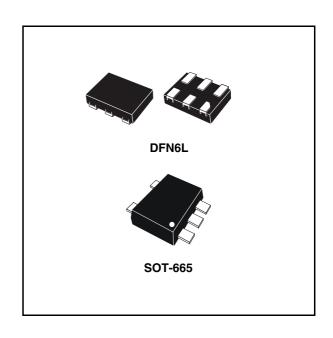


74AUP1G32


Low power single 2-input OR gate

Features

- High speed: $t_{PD} = 5.8$ ns (max.) at $V_{CC} = 2.3$ V
- Power down protection on inputs and outputs
- Balanced propagation delays: t_{PLH} ≈ t_{PHL}
- Operating voltage range: V_{CC} (opr) = 1.2 to 3.6 V
- Low power dissipation: $I_{CC} = 1 \mu A \text{ (max.)}$ at $T_A = 85 \text{ °C}$
- Latch-up performance exceeds 300 mA (JESD 78, Class II)
- ESD performance:
 - 2000-V human body model (A114-A)
 - 200-V machine model (A115-A)
 - 1000-V charged device model (C101)

Applications

- Mobile phones
- Personal digital assistants (PDAs)

Description

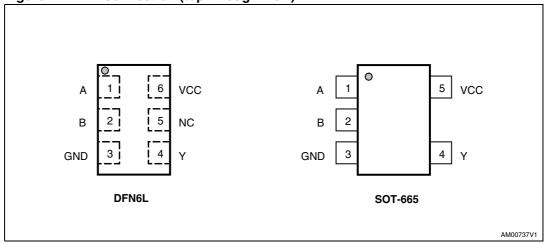
The 74AUP1G32 is a low voltage CMOS single 2-input OR gate fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for 1.2 to 3.6 V operations and low power and low noise applications.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2 kV ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing	
74AUP1G32DTR	DFN6L (1.2 x 1 mm)	Tape and reel	
74AUP1G32GTR	SOT-665 (1.6 x 1.6 mm)	Tape and reel	

May 2009 Doc ID 15648 Rev 1 1/18


www.st.com

Pin settings 74AUP1G32

1 Pin settings

1.1 Pin connection

Figure 1. Pin connection (top through view)

1.2 Pin description

Table 2. Pin assignment

DFN pin number	SOT pin number	Symbol	Name and function
1	1	Α	Data input
2	2	В	Data input
3	3	GND	Ground (0V)
4	4	Υ	Data output
5	-	NC	Not connected
6	5	V _{CC}	Positive supply voltage

74AUP1G32 Pin settings

1.3 Truth table

Figure 2. Truth table

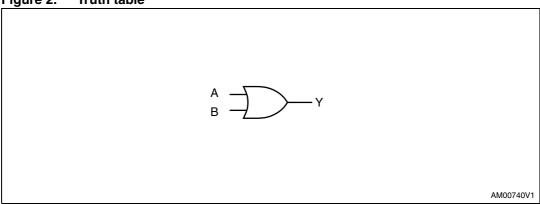
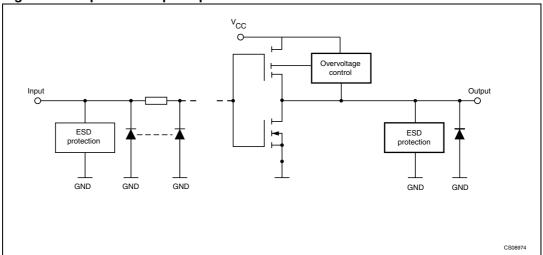



Table 3. Truth table

Α	В	Υ
L	L	L
Н	Х	Н
X	Н	Н

Figure 3. Input and output equivalent circuit

Maximum rating 74AUP1G32

2 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +4.6	V
VI	DC input voltage	-0.5 to +4.6	V
V _O	DC output voltage (V _{CC} = 0 V)	-0.5 to +4.6	٧
V _O	DC output voltage (high or low state)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC input diode current	-20	mA
I _{OK}	DC output diode current	-50	mA
Io	DC output current	±50	mA
I _{CC}	DC supply current per supply pin	±100	mA
I _{GND}	DC ground current per supply pin	±100	mA
P_{D}	Power dissipation	200	mW
T _{stg}	Storage temperature	-65 to +150	°C
T _L	Lead temperature (10 sec)	260	°C

2.1 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Р	Value	Unit	
V _{CC}	Supply voltage		1.2 to 3.6	V
V _I	Input voltage		0 to V _{CC}	V
V _O	Output voltage	Output voltage		
T _{op}	Operating temperature	-40 to 85	°C	
		V _{CC} = 3.0 to 3.6 V	10	ns/V
dt/dv	Input rise and fall time	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$	20	ns/V
		V _{CC} = 1.2 to 1.95 V	100	ns/V

3 Electrical characteristics

Table 6. DC specifications

				Va	lue	Va	lue		
Symbol	Parameter	V _{CC} (V)	Test condition	25	°C	-40 to	85 °C	Unit	
		, ,		Min	Max	Min	Max		
		1.2 to 1.95		0.65 V _{CC}	_	0.65 V _{CC}	-		
V_{IH}	High level input voltage	2.0 to 2.7		1.6	_	1.6	_	V	
	l	2.75 to 3.6		2.0	-	2.0	-		
		1.2 to 1.95		_	0.35 V _{CC}	_	0.35V _{CC}		
V_{IL}	Low level input voltage	2.0 to 2.7		_	0.7	_	0.7	V	
		2.75 to 3.6		_	0.8	_	0.8		
		1.2 to 3.6	I _{OH} = -100 μA	V _{CC} - 0.2	_	V _{CC} – 0.2	_		
		3.0	I _{OH} = -10 mA	2.45	-	2.4	_		
V_{OH}	High level output voltage	2.3	I _{OH} = -6 mA	1.85	-	1.8	_	V	
	output voitage	1.65	I _{OH} = -4 mA	1.30	-	1.25	_		
		1.4	I _{OH} = -2 mA	1.10	-	1.05	_		
		1.2	I _{OH} = -1 mA	1.00	-	0.95	_		
		1.2 to 3.6	I _O = 100 μA	-	0.15	_	0.20		
		3.0	I _O = 10 mA	-	0.50	_	0.55		
V_{OL}	Low level	2.3	I _O = 6 mA	_	0.35	_	0.40	V	
VOL	output voltage	1.65	I _O = 4 mA	-	0.35	_	0.40	V	
		1.4	I _O = 2 mA	-	0.25	_	0.30		
		1.2	I _O = 1 mA	-	0.20	_	0.25		
I _I	Input leakage current	0 to 3.6	$V_I = GND \text{ to } 3.6$	_	±0.1	_	±0.5	μΑ	
I _{off}	Power off leakage current	0	V _I or V _O = 0 to 3.6 V	_	±0.1	_	±1.0	μΑ	
I _{CC}	Quiescent supply current	1.2 to 3.6	V _I = V _{CC} or GND	_	0.1	_	1	μΑ	
Δ I _{CC}	I _{CC} increment per input	3.3	$V_{I} = V_{CC} - 0.6V,$ $I_{O} = 0$	_	80	_	100	μΑ	

577

Table 7. AC electrical characteristics

		V	Test condition		Value		
Symbol	Parameter	V _{CC} (V)	C (nE)	25 °C -40 to 85 °C		Unit	
			C _L (pF)	Тур	Min	Max	
		1.1 to 1.3		8.0	-	12.4	
		1.4 to 1.6		4.1	ı	6.5	
		1.65 to 1.95	5	3.1	-	5.0	
		2.3 to 2.7		1.9	_	2.6	
		3.0 to 3.6		1.4	_	1.9	
		1.1 to 1.3		7.8	-	11.8	
		1.4 to 1.6		5.2	_	7.9	- ns
		1.65 to 1.95	10	4.1	_	6.2	
		2.3 to 2.7		3.0	_	4.4	
	Propagation	3.0 to 3.6		2.5	_	3.6	
t _{PLH} , t _{PHL}	delay time	1.1 to 1.3		8.6	_	12.6	
		1.4 to 1.6		5.9	_	7.9	
		1.65 to 1.95	15	4.7	_	7.1	
		2.3 to 2.7		3.6	_	5.1	
		3.0 to 3.6		3.1	_	4.4	
		1.1 to 1.3		10.3	_	15.7	
		1.4 to 1.6		6.6	_	10.8	
		1.65 to 1.95	30	5.3	_	8.3	
		2.3 to 2.7		4.2	_	5.8	
		3.0 to 3.6		3.7	-	5.2	

Table 8. Capacitive characteristics

		Parameter V _{CC} Test condition					
Symbol	Parameter				Unit		
				Min	Тур	Max	
C _I	Input capacitance	0	$V_I = 0$ or V_{CC}	_	5	_	pF
	при сараснансе	3.6	$V_I = 0$ or V_{CC}	_	5	-	ρι
CO	Output capacitance	3.6	$V_I = 0$ or V_{CC}	_	7	_	pF
C _{PD}	Power dissipation capacitance	3.6	f = 10 MHz	_	8	_	pF

74AUP1G32 Test circuit

4 Test circuit

Figure 4. Test circuit

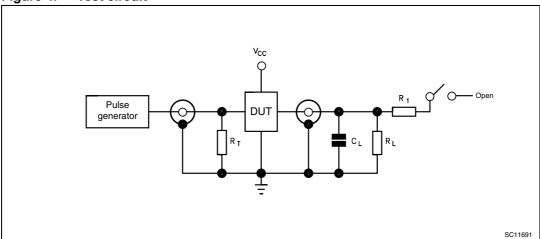


Table 9. Test setting

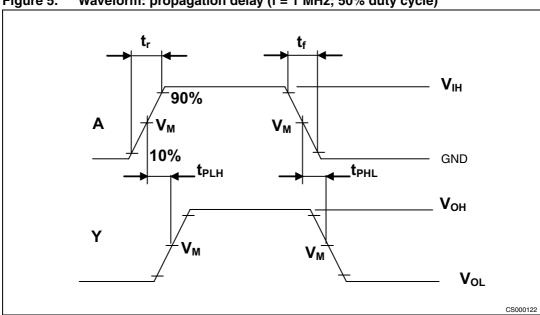
Test	Switch
t _{PLH} , t _{PHL}	Open

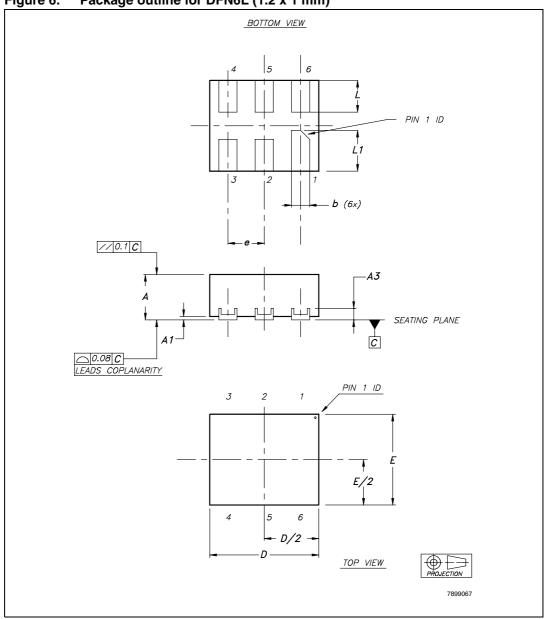
Table 10. Symbol and values for test circuit and waveform

Symbol			V _{CC}		
Symbol	1.2 ± 0.1 V	1.5 ± 0.1 V	1.8 ± 0.15 V	2.5 ± 0.2 V	3.3 ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF			
R_{L}	500 Ω	500 Ω	500 Ω	500 Ω	500 Ω
V_{M}	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	1.5
V_{IH}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
$t_r = t_f$	≤ 2 ns	≤2 ns	≤2 ns	≤2 ns	≤2 ns

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Test circuit 74AUP1G32

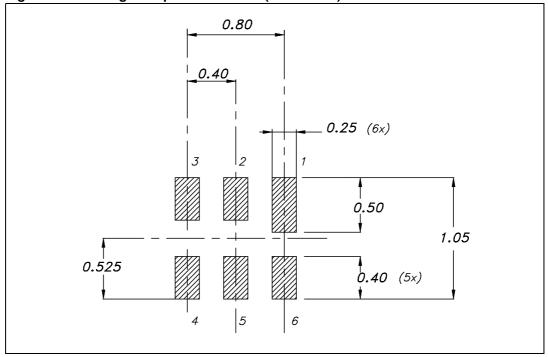



Figure 5. Waveform: propagation delay (f = 1 MHz; 50% duty cycle)

Doc ID 15648 Rev 1

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



57

Table 11. Package mechanical data for DFN6L (1.2 x 1 mm)

Symbol	Millimeters				
Symbol	Тур	Min	Max		
Α	0.50	0.45	0.55		
A1	0.02	0	0.05		
A3	0.127	-	-		
b	0.20	0.15	0.25		
D	1.20	1.15	1.25		
E	1	0.95	1.05		
е	0.40	_	-		
L	0.35	0.30	0.40		
L1	0.45	0.40	0.50		

Figure 7. Package footprint for DFN6L (1.2 x 1 mm)

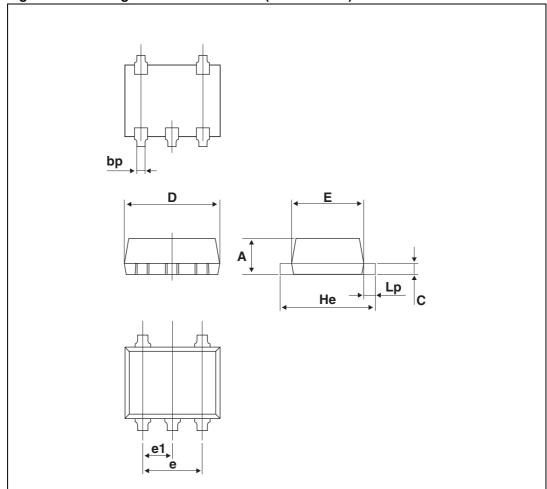


Figure 8. Package outline for SOT-665 (1.6 x 1.6 mm)

Table 12. SOT665 (1.6 x 1.6 mm) mechanical data

Comphal	Millimeters				
Symbol	Тур	Min	Мах		
Α	-	0.50	0.60		
bp	-	0.17	0.27		
С	-	0.08	0.18		
D	-	1.5	1.7		
E	-	1.1	1.3		
е	1	-	-		
e1	0.5	-	-		
He	-	1.5	1.7		
Lp	-	0.1	0.3		

577

Doc ID 15648 Rev 1

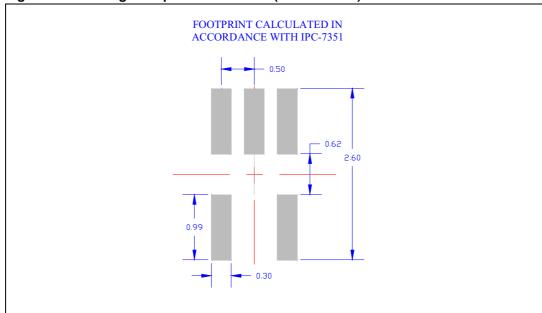
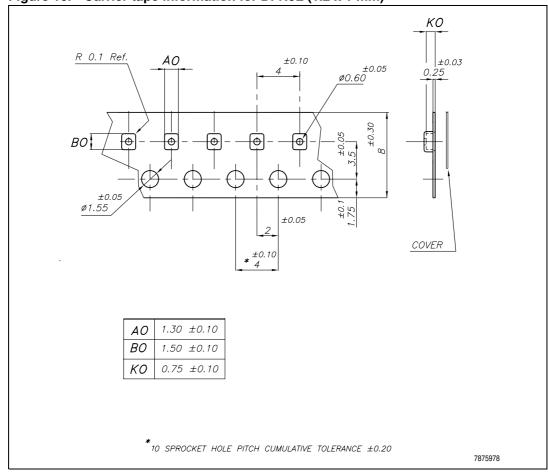



Figure 9. Package footprint for SOT-665 (1.6 x 1.6 mm)

Figure 10. Carrier tape information for DFN6L (1.2 x 1 mm)

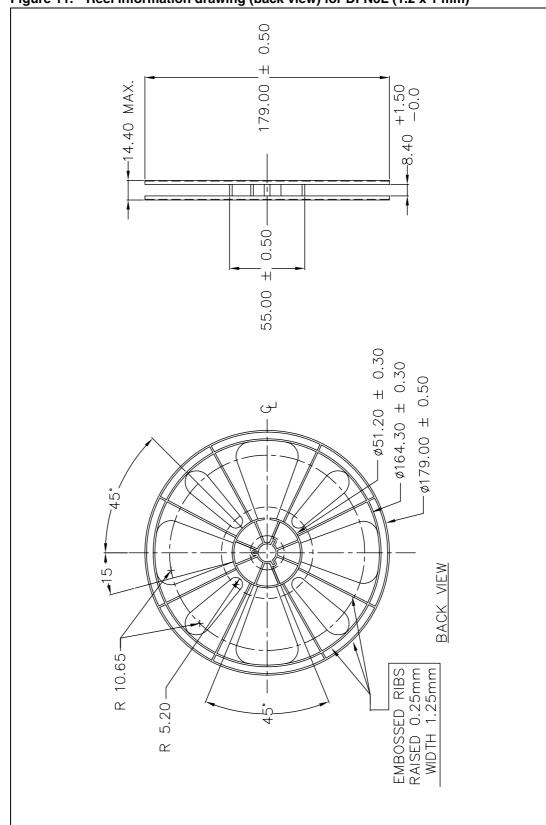


Figure 11. Reel information drawing (back view) for DFN6L (1.2 x 1 mm)

577

Doc ID 15648 Rev 1

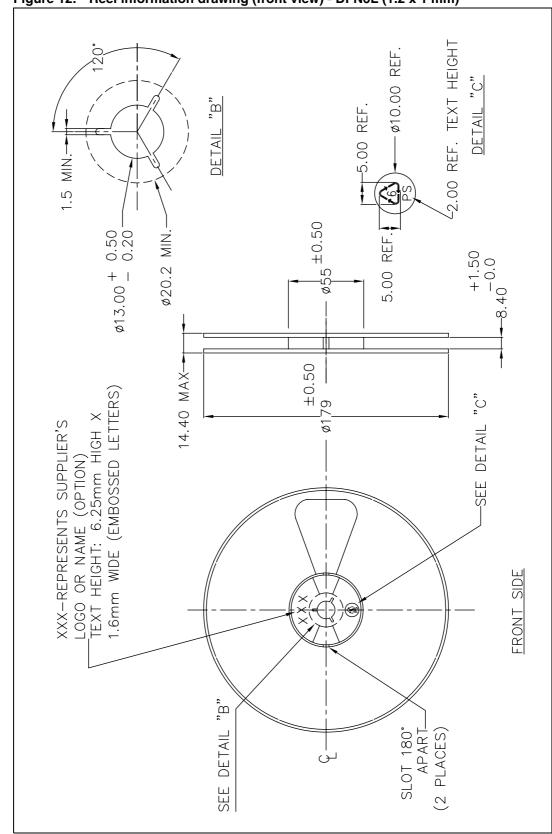


Figure 12. Reel information drawing (front view) - DFN6L (1.2 x 1 mm)

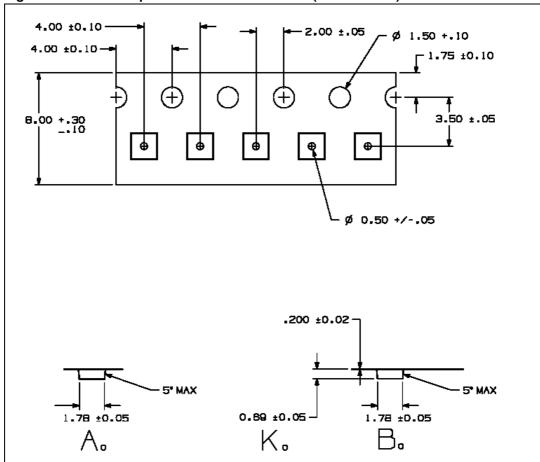
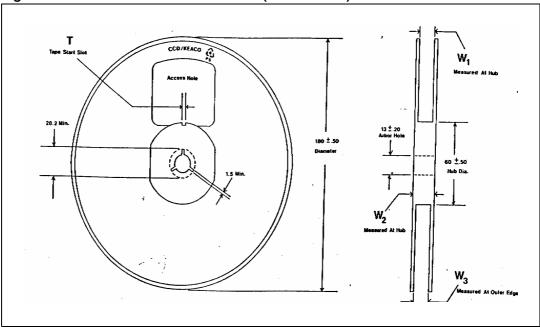



Figure 13. Carrier tape information for SOT-665 (1.6 x 1.6 mm)

577

Doc ID 15648 Rev 1

Table 13. Reel description for SOT-665 (1.6 x 1.6 mm)

Value ⁽¹⁾	R1	R2	R3	eint (at hub)	e1	W1	W2	W3
Min	12.8	175	59.5	8.4	1.5	8.4	-	7.9
Тур	13	180	60	8.4	-	8.4	-	9.4
Max	13.2	185	60.5	10	-	10	14.4	10.9

^{1.} Millimeters.

74AUP1G32 Revision history

6 Revision history

Table 14. Document revision history

Date	Revision	Changes			
19-May-2009	1	Initial release.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

