OCTAL D-TYPE FLIP FLOP WITH CLEAR

- HIGH SPEED:
$\mathrm{f}_{\mathrm{MAX}}=170 \mathrm{MHz}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS:
$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}),. \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (MAX)
- POWER DOWN PROTECTION ON INPUTS \& OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (MIN)
- BALANCED PROPAGATION DELAYS: $\mathrm{t}_{\text {PLH }} \cong \mathrm{t}_{\text {PHL }}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=4.5 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 273
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: $\mathrm{V}_{\mathrm{OLP}}=0.9 \mathrm{~V}$ (MAX.)

DESCRIPTION

The 74VHCT273A is an advanced high-speed CMOS OCTAL D-TYPE FLIP FLOP WITH CLEAR fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. Information signals applied to D inputs are transferred to the Q outputs on the positive going

Table 1: Order Codes

PACKAGE	T \& R
SOP	74VHCT273AMTR
TSSOP	74VHCT273ATTR

edge of the clock pulse.
When the CLEAR input is held low, the Q outputs are held low independently of the other inputs.
Power down protection is provided on all inputs and outputs and 0 to 7 V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5 V to 3 V since all inputs are equipped with TTL threshold.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N	SYMBOL	NAME AND FUNCTION
1	$\overline{\text { CLEAR }}$	Asynchronous Master Reset (Active LOW)
$2,5,6,9,12$, $15,16,19$	Q0 to Q7	Flip-Flop Outputs
$3,4,7,8,13$, $14,17,18$	D0 to D7	Data Inputs
11	CLOCK	Clock Input (LOW-to-HIGH Edge Triggered)
10	GND	Ground (OV)
20	V $_{\text {CC }}$	Positive Supply Voltage

Table 3: Truth Table

INPUTS			OUTPUT	FUNCTION
$\overline{\text { CLEAR }}$	D	CLOCK	Q	
L	X	X	L	CLEAR
H	L	-	L	
H	H	-	H	
H	X	L	Q $_{n}$	NO CHANGE

X: Don't care
Table 4: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Table 5: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (see note 1)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (see note 2)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) $V_{C C}=O V$
2) High or Low State

Table 6: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (see note 1)	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (see note 2)	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (see note 3) $\quad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}\right)$	0 to 20	$\mathrm{~ns} / \mathrm{V}$

1) $V_{C C}=O V$
2) High or Low State
3) $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2 V

Table 7: DC Specifications

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$		2			2		2		V
V_{IL}	Low Level Input Voltage	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$				0.8		0.8		0.8	V
V_{OH}	High Level Output Voltage	4.5	$\mathrm{l}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	4.4	4.5		4.4		4.4		V
		4.5	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$	3.94			3.8		3.7		
V_{OL}	Low Level Output Voltage	4.5	$\mathrm{l}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		4.5	$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$			0.36		0.44		0.55	
1	Input Leakage Current	$\begin{gathered} \hline 0 \text { to } \\ 5.5 \end{gathered}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			4		40		40	$\mu \mathrm{A}$
${ }^{+} \mathrm{lcc}$	Additional Worst Case Supply Current	5.5	One Input at 3.4 V , other input at V_{CC} or GND			1.35		1.5		1.5	mA
IopD	Output Leakage Current	0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			0.5		5.0		5.0	$\mu \mathrm{A}$

Table 8: AC Electrical Characteristics (Input $t_{r}=t_{f}=3 n s$)

Symbol	Parameter	Test Condition			Value							Unit
		V_{Cc} (V)	$\begin{aligned} & C_{L} \\ & (\mathrm{pF}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time CLOCK to Q	$5.0{ }^{(* *)}$	15			5.8	8.2	1.0	10.0	1.0	10.0	ns
		$5.0^{(* *)}$	50			6.8	9.2	1.0	11.0	1.0	11.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time CLEAR to Q	$5.0^{(* *)}$	15			7.5	10.0	1.0	11.6	1.0	11.6	ns
		$5.0{ }^{(* *)}$	50			8.5	11.0	1.0	12.6	1.0	12.6	
t_{W}	$\overline{\mathrm{CLR}}$ Pulse Width LOW	$5.0{ }^{(* *}$			5.0			5.0		5.0		ns
t_{W}	CK Pulse Width HIGH or LOW	$5.0{ }^{(* *)}$			5.0			5.0		5.0		ns
t_{s}	Setup Time D to CLOCK, HIGH or LOW	$5.0{ }^{(* *)}$			2.0			2.0		2.0		ns
$t_{\text {h }}$	Hold Time D to CK, HIGH or LOW	$5.0{ }^{(* *)}$			2.0			2.0		2.0		ns
$\mathrm{t}_{\text {REM }}$	Removal Time $\overline{\text { CLR }}$ to CLOCK	$5.0{ }^{(* *)}$			1.0			1.0		1.0		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	$5.0^{(* *)}$	15		75	170		65		65		MHz
	Frequency	$5.0^{(* *)}$	50		50	160		45		45		MHz
tosth toshl	Output to Output Skew time (note 1)	$5.0{ }^{(* *)}$	50				1.0		1.0		1.0	ns

(*) Voltage range is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Note 1: Parameter guaranteed by design. $t_{\text {soLH }}=\left|t_{p L H m}-t_{p L H n}\right|, t_{\text {soHL }}=\left|t_{p H L m}-t_{p H L n}\right|$

Table 9: Capacitive Characteristics

Symbol	Parameter	Test Condition	Value							Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
			Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			6	10		10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)			16						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / 8$ (per Flip-Flop)

Table 10: Dynamic Switching Characteristics

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Voltage Quiet Output (note 1, 2)	5.0	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0.6	0.9					V
$\mathrm{V}_{\text {OLV }}$				-0.9	-0.6						
$\mathrm{V}_{\text {IHD }}$	Dynamic High Voltage Input (note 1, 3)	5.0		2.0							
$V_{\text {ILD }}$	Dynamic Low Voltage Input (note 1, 3)	5.0				0.8					

1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0 V to 3.0 V , ($\mathrm{n}-1$) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. ($\mathrm{n}-1$) switching 0 V to 3.0 V . Inputs under test switching: 3.0V to threshold (V ILD), 0 V to threshold $\left(V_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.
Figure 3: Test Circuit

[^0]Figure 4: Waveform - Propagation Delays, Setup And Hold Times ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 5: Waveform - Propagation Delays ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)
$\frac{\text { CLEAR }}{90 \%}$

Figure 6: Waveform - Recovery Time ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.30	0.004		0.012
B	0.33		0.51	0.013	0.020	
C	0.23		0.32	0.009		0.013
D	12.60		13.00	0.496		0.512
E	7.4		7.6	0.291		0.299
H	10.00			10.65	0.394	
h	0.25		0.75	0.010		0.419
L	0.4					
ddd				0.27		

TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Tape \& Reel SO-20 MECHANICAL DATA

DIM.	mm.		inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		30.4			0.433
T			13.4	0.520		0.528
Bo	13.2		3.3	0.122		0.130
Ko	3.1		4.1	0.153		0.161
Po	3.9					
P	11.9					

Tape \& Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			7	0.268		0.276
Bo	6.8		1.9	0.272		0.075
Ko	1.7		4.1	0.153		0.161
Po	3.9					
P	11.9					

Note: Drawing not in scale

Table 11: Revision History

Date	Revision	Description of Changes
$16-$ Dec-2004	3	Order Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

[^0]: $\mathrm{C}_{\mathrm{L}}=15 / 50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
 $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

