Low voltage 0.5Ω max, quad SPDT switch with break-before-make feature

Features

- High speed:
$-\mathrm{t}_{\mathrm{PD}}=1.5 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\mathrm{t}_{\mathrm{PD}}=1.5 \mathrm{~ns}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
■ Ultra low power dissipation:
- $\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low ON resistance $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$:
$-R_{\mathrm{ON}}=0.50 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=0.55 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=0.55 \Omega\left(\max . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Wide operating voltage range:
- $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65$ to 4.3 V single supply

■ 4.3 V tolerant and 1.8 V compatible thresholds on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 3.0 V

- Latch-up performance exceed 300 mA (JESD 17)
- ESD performance (analog chan. vs. GND): HBM > 2 kV (MIL STD 883 method 3015)

Description

The STG3699B is a high-speed CMOS low voltage quad analog SPDT (single-pole doublethrow) switch or 2:1 multiplexer/demultiplexer switch fabricated using silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. Designed to operate from 1.65 to 4.3 V, this device is ideal for portable applications.

It offers very low ON resistance $\left(\mathrm{R}_{\mathrm{ON}}<0.5 \Omega\right.$) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$. The nIN inputs are provided to control the independent channel switches nS1 and nS 2 . The switches nS 1 are ON (connected to common ports Dn) when the nIN input is held high and OFF (state of high impedance exists between the two ports) when nIN is held low. The switches nS 2 are ON (connected to common ports Dn) when the nIN input is held low and OFF (state of high impedance exists between the two ports) when IN is held high. Additional key features are fast switching speed, break-before-make delay time and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD and excess transient voltage immunity.
The STG3699B is available in the commercial temperature range of -40 to $125^{\circ} \mathrm{C}$ in a QFN16L, $2.6 \times 1.8 \mathrm{~mm}$ package.

Table 1. Device summary

Order code	Temperature range	Package	Packaging
STG3699BVTR	-40 to $125^{\circ} \mathrm{C}$	QFN16L $(2.6 \times 1.8 \mathrm{~mm})$	Tape and reel

Contents

1 Summary description 3
1.1 Pin connection 3
2 Maximum rating 5
3 DC and AC parameters 6
4 Typical application 9
5 Test circuit 10
6 Waveforms 11
7 Package mechanical data 14
8 Revision history 17

1 Summary description

1.1 Pin connection

Figure 1. Connections diagram (top through view)

Table 2. Pin description

Pin \mathbf{N}°	Symbol	Name and function
$15,3,7,11$, $1,5,9,13$	1 S1 to 4S1,	
1 S2 to 4S2	Independent channels switches	
$16,4,8,12$	D1 to D4	Common channels
2,10	$1-2 \mathrm{NN}, 3-4 \mathrm{IN}$	Input controls
14	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage
6	GND	Ground (0V)

Figure 2. Input equivalent circuit

Table 3. Truth table

$\mathbf{1 - 2 I N}$	3-4IN	ON switches
L	-	1S2-D1, 2S2-D2
H	-	1S1-D1, 2S1-D2
-	L	3S2-D3, 4S2-D4
-	H	$3 S 1-D 3,4 S 1-D 4$

2 Maximum rating

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC control input voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{IKC}}$	DC input diode current on control pin $\left(\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC input diode current $\left(\mathrm{V}_{\text {IN }}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC output diode current	± 50	mA
I_{O}	DC output current	± 300	mA
I_{OP}	DC output current peak (pulse at $1 \mathrm{~ms}, 10 \%$ duty Cycle)	± 500	mA
I_{CC} or $^{\mathrm{I}} \mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}^{(1)}$	1120	mW
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature $(10$ sec $)$	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$: by $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage (truth table guaranteed: 1.2 to 4.3 V)	1.65 to 4.3	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
T_{OP}	Operating temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 2.7 V	0 to 20
	Vs / V		

3 DC and AC parameters

Table 6. DC specification

Symbol	Parameter	V_{cc} (V)	Test condition	Value							Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	High level input voltage	1.65-1.95		$\begin{aligned} & 0.65 \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.65 \\ & \mathrm{~V}_{\mathrm{Cc}} \end{aligned}$		$\begin{aligned} & 0.65 \\ & V_{C C} \end{aligned}$		V
		2.3-2.5		1.2			1.2		1.2		
		2.7-3.0		1.3			1.3		1.3		
		3.3		1.4			1.4		1.4		
		3.6		1.5			1.5		1.5		
		4.3		1.6			1.6		1.6		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95				0.25		0.25		0.25	V
		2.3-2.5				0.25		0.25		0.25	
		2.7-3.0				0.25		0.25		0.25	
		3.3				0.30		0.30		0.30	
		3.6				0.30		0.30		0.30	
		4.3				0.40		0.40		0.40	
R_{ON}	Switch ON resistance	4.3	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $V_{C C}$$\mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA}$		0.35	0.50		0.60			Ω
		3.0			0.45	0.55		0.65			
		2.7			0.45	0.55		0.65			
		2.3			0.45	0.70		0.80			
		1.8			0.55	1.5		2.0			
		1.65			0.65	1.5		2.0			
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance match between channels ${ }^{(1)}$	2.7	V_{S} at $R_{\text {ON }}$ max $I_{S}=100 \mathrm{~mA}$		0.15						Ω
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		0.15	0.20		0.20			Ω
		3.0			0.20	0.25		0.25			
		2.7			0.20	0.25		0.25			
		2.3			0.20	0.25		0.25			
		1.65			0.32	0.42		0.42			
IOFF	OFF state leakage current (nSn), (Dn)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V			± 20		± 100			nA

Table 6. DC specification (continued)

Symbol	Parameter	$V_{c c}$ (V)	Test condition	Value							Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
I_{IN}	Input leakage current	0-4.3	$\mathrm{V}_{\mathrm{IN}}=0$ to 4.3 V			± 0.1		± 1			$\mu \mathrm{A}$
I_{CC}	Quiescent supply current	1.65-4.3	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & G N D \end{aligned}$			± 0.05		± 0.2		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCLV }}$	Quiescent supply current low voltage driving	4.3	$V_{1-2 I N}$, $\mathrm{V}_{3-41 \mathrm{~N}}=1.65 \mathrm{~V}$		± 37	± 50		± 100			$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{1-21 \mathrm{~N},} \\ & \mathrm{~V}_{3-41 \mathrm{~N}}=1.80 \mathrm{~V} \end{aligned}$		± 33	± 40		± 50			
			$\mathrm{V}_{1-2 \mathrm{IN}}$, $V_{3-41 \mathrm{~N}}=2.60 \mathrm{~V}$		± 12	± 20		± 30			

1. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{Max})}-\mathrm{R}_{\mathrm{ON}(\mathrm{Min})}$
2. Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal ranges.

Table 7. \quad AC electrical characteristics $\left(C_{L}=35 \mathrm{pF}, R_{L}=50 \Omega \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	$V_{c c}$ (V)	Test condition	Value							Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation delay	1.65-1.95	$V_{1}=$ OPEN		0.45						ns
		2.3-2.7			0.40						
		3.0-3.3			0.30						
		3.6-4.3			0.30						
t_{ON}	Turn-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		120						ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		45	55		65			
		3.0-3.3			42	55		65			
		3.6-4.3			40	55		65			
$t_{\text {OFF }}$	$\begin{aligned} & \text { Turn-OFF } \\ & \text { time } \end{aligned}$	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		22						ns
		$2.3-2.7$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		18	30		40			
		3.0-3.3			16	30		40			
		3.6-4.3			15	30		40			

Table 7. AC electrical characteristics $\left(C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right.$) (continued)

Symbol	Parameter	$V_{c c}$ (V)	Test condition	Value							Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
t_{D}	Break-before- make time delay	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{aligned}$		53						ns
		2.3-2.7			28						
		3.0-3.3			12						
		3.6-4.3			8						
Q	Charge injection	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		42						pC
		$2.3-2.7$			48						
		3.0-3.3			48						
		3.6-4.3			57						

Table 8. Analog switch characteristics $\left(C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	$\begin{aligned} & V_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	Test condition	Value							Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
OIRR	Off Isolation (1)	1.65-4.3	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-71						dB
Xtalk	Crosstalk	1.65-4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-72						dB
THD	Total harmonic distortion	2.3-4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{1 \mathrm{~N}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$		0.03						\%
BW	-3dB Bandwidth	1.65-4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		40						MHz
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance				5						
$\mathrm{C}_{\text {Sn }}$	Sn port capacitance	3.3	$\mathrm{f}=1 \mathrm{MHz}$		80						pF
$C_{\text {D }}$	D port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		170						

[^0]www.bdtic.com/ST

4 Typical application

Figure 3. ON resistance

Figure 5. OFF leakage

Figure 4. Bandwidth

Figure 6. Channel-to-channel crosstalk

Figure 7. OFF isolation

5 Test circuit

Figure 8. Test circuit

$C_{L}=5 / 35 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=50 \Omega$ or equivalent
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)

6 Waveforms

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection ($\mathrm{V}_{G E N}=0 \mathrm{~V}, \mathrm{R}_{G E N}=0 \Omega, R_{L}=1 \mathrm{M} \Omega$ $C_{L}=100 \mathrm{pF}$)

Figure 11. Turn ON, Turn OFF delay time

$7 \quad$ Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 12. QFN16L ($2.6 \times 1.8 \mathrm{~mm}$) package outline

1. Drawing not to scale.

Table 9. QFN16L ($2.6 \times 1.8 \mathrm{~mm}$) mechanical data

Dimensions			
Symbol	Databook (mm)		
	Nom	Min	Max
A	0.55	0.45	0.60
A1	0.02	0	0.05
b	0.20	0.15	0.25
D	2.60	2.50	2.70
E	1.80	1.70	1.90
e	0.40		
L	0.40	0.35	0.45

Figure 13. Footprint recommendations

Figure 14. QFN16L ($2.6 \times 1.8 \mathrm{~mm}$) tape \& reel information

- 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ± 0.20

$\underbrace{\substack{70.70 \\ 0.70}}_{0}$

$\frac{\text { Detail of Pin Hole }}{(\text { Scole:2/1) }}$

8 Revision history

Table 10. Document revision history

Date	Revision	Changes
13-Oct-2005	1	First Release.
21-Dec-2005	2	Added tape \& reel information.
17-Feb-2006	3	R $_{\text {FLAT }}$ updated it Table 6: DC specification on page 6.
10-Aug-2006	4	New template, Table 1 updated.
19-Feb-2007	5	Updated OIRR, Xtalk valuers in Table 8 on page 8.
4-Sept-2007	6	Updated I IKK value in Table 4 on page 5, small text changes, restructured layout.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

[^0]: 1. Off-isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output, $\mathrm{V}_{\mathrm{S}}=$ input to off switch
