

STL100N6LF6

N-channel 60 V, 0.0038 Ω, 22 A, PowerFLAT™ 5x6 STripFET™ VI DeepGATE™ Power MOSFET

Preliminary data

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STL100N6LF6	60 V	< 0.0045 Ω	22 A

- Low gate charge
- Very low on-resistance
- High avalance ruggedeness

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the 6th generation of STripFET™ DeepGATE™ technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest RDS(on) in all packages.

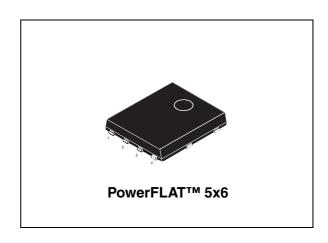


Figure 1. Internal schematic diagram

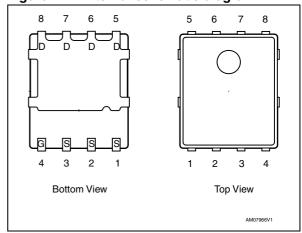


Table 1. Device summary

change without notice.

Order code	Marking	Package	Packaging
STL100N6LF6	100N6LF6	PowerFLAT™ 5x6	Tape and reel

November 2011 Doc ID 010015 Rev 2 1/13

Contents STL100N6LF6

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package mechanical data	7
5	Revision history 1	12

STL100N6LF6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	100	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	22	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} =100 °C	14	Α
I _{DM} ⁽³⁾	Drain current (pulsed)	88	Α
P _{TOT} (1)	Total dissipation at T _C = 25 °C	80	W
P _{TOT} (2)	Total dissipation at T _{pcb} = 25 °C	4	W
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Operating junction temperature	- 55 10 150	

- 1. The value is rated according to $R_{\text{thj-c}}$
- 2. The value is rated according to $R_{\mbox{\scriptsize thj-pcb}}$
- 3. Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} (1)	Thermal resistance junction-pcb max	31.3	°C/W
R _{thj-case}	Thermal resistance junction-case (drain, steady state) max.	1.56	°C/W

^{1.} When mounted on FR-4 board of 1 inch 2 , 2 oz Cu, t < 10 sec

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	TBD	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	TBD	mJ

2 Electrical characteristics

(T_J = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	60			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 60 V, V _{DS} = 60 V, T _C =125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V
B-a/	Static drain-source on	V _{GS} = 10 V, I _D = 11 A		0.0038	0.0045	Ω
R _{DS(on)}	resistance	V _{GS} = 4.5 V, I _D = 11 A		0.006	0.0072	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	8900 650 360	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 30 \text{ V}, I_D = 22 \text{ A}$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 3</i>)	-	130 TBD TBD	-	nC nC nC
R _g	Gate input resistance	f=1 MHz Gate DC Bias=0 test signal level=20 mV open drain	-	TBD	-	Ω

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f}	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 30 V, I_{D} = 11 A, R_{G} =4.7 Ω V_{GS} =10 V (see <i>Figure 2</i>)	-	TBD TBD TBD TBD	-	ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		22	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		84	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 22 A, V _{GS} = 0	-		1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 22 \text{ A},$ di/dt = 100 A/ μ s, $V_{DD} = 30 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$ (see <i>Figure 4</i>)	-	TBD TBD TBD		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Test circuits STL100N6LF6

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

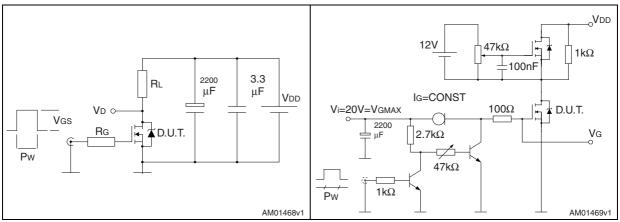


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

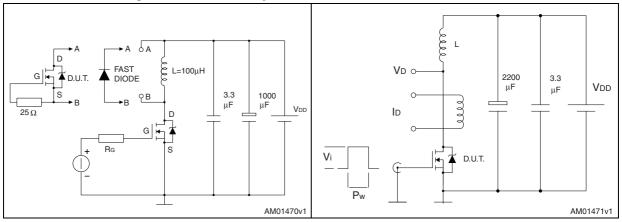
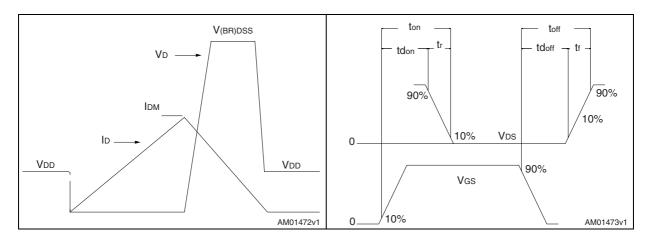



Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

6/13 Doc ID 010015 Rev 2

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

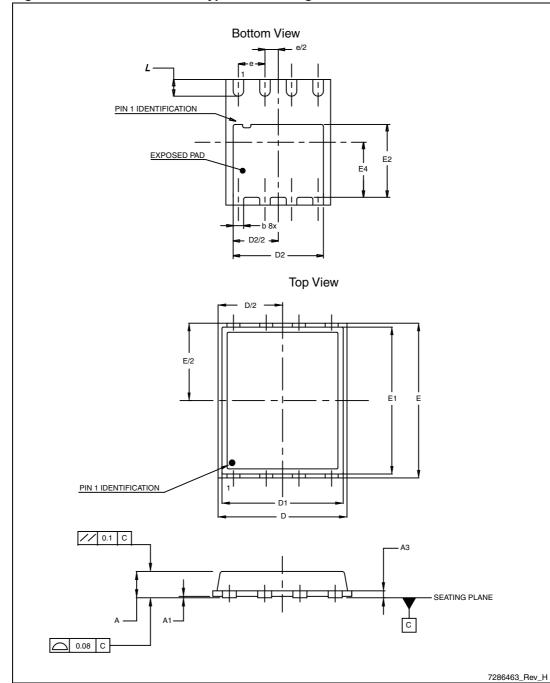
57

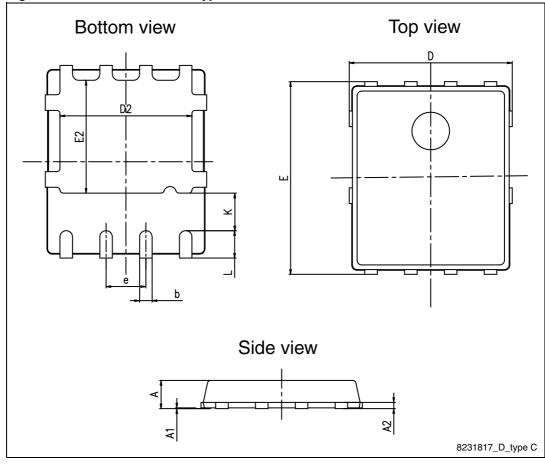
Doc ID 010015 Rev 2

Table 9. PowerFLAT™ 5x6 type C-B mechanical data

Dim.		mm	
Diiii.	Min.	Тур.	Max.
Α	0.80	0.83	0.93
A1	0	0.02	0.05
A3		0.20	
b	0.35	0.40	0.47
D		5.00	
D1		4.75	
D2	4.15	4.20	4.25
E		6.00	
E1		5.75	
E2	3.43	3.48	3.53
E4	2.58	2.63	2.68
е		1.27	
L	0.70	0.80	0.90

8/13 Doc ID 010015 Rev 2




Figure 8. PowerFLAT™ 5x6 type C-B drawing

577

Table 10. PowerFLAT™ 5x6 type S-C mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.20	
E		6.15	
D2	4.11		4.31
E2	3.50		3.70
е		1.27	
e1		0.65	
L	0.715		1.015
K	1.05		1.35

Figure 9. PowerFLAT™ 5x6 type S-C mechanical data

10/13 Doc ID 010015 Rev 2

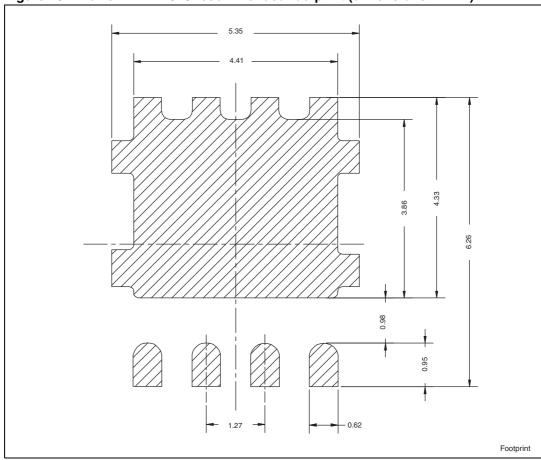


Figure 10. PowerFLAT™ 5x6 recommended footprint (dimensions in mm)

5/

Doc ID 010015 Rev 2

Revision history STL100N6LF6

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
24-Feb-2011	1	First release
10-Nov-2011	2	Section 4: Package mechanical data has been updated. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 010015 Rev 2